October 2005

|

|

B

B ! ]
1

]

@
magazine
The SPIE Magazine of Phq_ftonics :Techno!ogies‘gl}:d‘,zApplicqtions
\1 ::) AR f.
Computers Play |
‘Tag’ withimage Arc]

o oaT e

>> ASIC s,a

,&,.
l redeye \
' goodbye\

| >> Building ah ' » :
f betﬁeras«mg‘-w

| o R\ A
!“ >> IR opticsi
| leap forward /7"




BY THRASYVOULOS PAPPAS, NORTHWESTERN
UNIVERSITY; JUNQING CHEN, UNILEVER RESEARCH;
AND DEJAN DEPALOV, NORTHWESTERN UNIVERSITY

Lea

L”"L”LLL“LL.

=
=1
oI
o
=
&7
=
=
=
=
=
==
>
@
=
f=
=
=
w2
=
=
=

lmage segrmentation,
classification, and
retrieval algarithms
imcorporate models of
human vision and
sigrnal attributes.
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ignal processing systems are still a long way from

matching the performance of the human visual

system (HVS). This could be intimidating or
discouraging, but human performance also can provide
inspiration and a performance goal for scientists and
engineers working in the field. Many image- and video-
processing algorithms rely, at least implicitly, on the
properties of human vision. Image halftoning (displaying
continuous-tone images using a limited number of colors),
for example, would not be possible without the ability of the
eye to act as a spatial lowpass filter. Movies would be
perceived as a sequence of still-frame images were it not for
the ability of the eye to act as a temporal lowpass filter.

There has been a lot of progress recently in incorporating
explicit HVS models in image processing algorithms to
maximize system performance. We can achieve “perceptually
lossless” compression of images and video, for example, using
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perceptual models that determine the amount of distortion
that can be introduced in the signal without being noticed by
the human observer. Similar ideas are used in audio
compression algorithms for MP3 players and in multimedia
watermarking.

An exciting topic of current research is the development of
perceprual models for image analysis and understanding; for
example, one can apply perceprual principles to the
segmentation of complex natural scenes and extract semantic
information that can be used for intelligent and efficient
image organization and retrieval. Qur group has developed
an adaptive perceprual color-texture segmentation algorithm
that combines knowledge of human perception with an
understanding of signal characteristics to segment natural
scenes into perceptually/semantically uniform regions.' The
method can be used for image labeling and classification.”
Still images are the focus of this article, but the techniques




Figure 1 To produce a segmented image, the algorithm
divides the image into adaptive dominant colors (a) and texture
classes (b; smooth regions shown in black, horizontal in gray,
and complex in white). It then performs crude segmentation (c).
A border-refinement step produces the final segmentation (d),
shown here overlaying the original image.

we discuss also form the basis for content-based analysis of
video sequences.

Feature Selection

Developing models for the segmentation of images of
natural scenes is difficult because unlike the detection of
faces or specific objects, natural textures do not have a
specific structure. In addition, in natural scenes, the texture
characteristics of perceptually distinct regions are not
statistically uniform due to effects of lighting, perspective,
scale changes, and so on. In spite of such difficulties,
the HVS can effortlessly segment natural scenes into
perceptually/semantically uniform regions. A successful
segmentation algorithm needs to incorporate both signal
characteristics and models of the HVS.

In contrast to texture analysis/synthesis that requires a
large number of parameters,’ the spatially varying
characteristics of natural texture dictate simple models, the
paramerters of which can be robustly estimated from
relatively few sample points. The proposed approach is based
on two types of spatially adaptive features. The first provides
a localized description of the color composition of the
texture and the second models the spatial characteristics of
its gray-scale component.

The color composition feature exploits the fact that the
HVS cannot perceive a large number of colors simul-
taneously. In addition, it accounts for the spatially varying
image characteristics and the adaptive nature of the HVS, It
thus consists of a small number of spatially adaptive
dominant colors and the corresponding percent occurrence
of each color in the vicinity of a pixel

fc{xs_ys Nx,y,) = ‘{(C‘lspi): R T M!Pi € [0$ 1]} [11

where ¢; is a 3-D color vector and p; is the corresponding
percentage. /N, denotes the neighborhood of the pixel at
(x, ) and M is the number of dominant colors in NV, ; a
typical value is M = 4. We obtain the spatially adaptive
dominant colors using the adaptive clustering algorithm (see
figure 1).* Finally, we use a perceprually based similarity
metric to compare color-composition feature vectors.

The spatial-texture feature extraction is based on a
multiscale frequency decomposition with four orientation
subbands (horizontal, vertical, +45°, —45°). Such
decompositions offer an efficient and flexible approximation
of early processing in the HVS. We use the local energy
of the subband coefficients as a simple but effective
characterization of spatial texture. At each pixel location, the
maximum of the four subband coefficients determines the
texture orientation. A median filtering operation boosts the
response to texture within uniform regions and suppresses
the response due to wansitions between regions. Pixels are
then classified into smooth and non-smooth classes. Non-
smooth pixels are further classified on the basis of dominant
orientation as horizontal, vertical, +45°, —45°, and complex
(i.e.; no dominant orientation).

Adaptation and Perceptual Tuning

The segmentation algorithm combines color-composition
and spatial-texture features t obtain segments of uniform
texture. It is a fairly elaborate algorithm that relies on spatial
texture to determine the major structural composition of the
image and combines it with color, first to estimate the major
segments, and then to obtain accurate and precise localization
of the border between regions.
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Figure 2 Once we segment an image (a), we can analyze
segments (b) to identify medium-level descriptors such as
color composition (c) and texture composition (d). To further
reduce the dimensionality of the feature vectors, we map
the dominant colors onto a small set of prototypical colors
(i.e., black, white, gray, red, green, etc.).
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The border-refinement approach illustrates the adaptive
nature of the algorithm. We estimare the texture char-
acteristics (color-composition feature vector) of each pixel
using a small window and compare them to localized
estimates of the texture characreristics of each of the adjacent
regions using a larger window. We then use the similarity
metric to classify the pixel as part of one of the regions. A
spatial constraint is added to ensure region smoothness. We
repeat this procedure for all pixels on the borders of non-
smooth regions. A few iterations are necessary for conver-
gence. The key to adapting to the spatial variations of texture
characteristics is that the window sizes progressively decrease
as the algorithm converges.

Several critical parameters of texture features and the
segmentation algorithm can be determined by subjective
tests.” © These include thresholds for classifying smooth and
non-smooth pixels, determining the dominant orientation,
and identifying color-composition feature similarity. The
goal of the tests is to relate human perception of isolated
(context-free) texture patches to the statistics of natural
textures. Experimental results demonstrate thar this
perceptual tuning leads to significant improvements in
segmentation performance,

Bridging the Semantic Gap

Recent subjective experiments have identified important
semantic categories that people use for image organization
and retrieval.” Two important dimensions in human
similarity perception are “natural” versus “man-made,” and
“human” versus “non-human.” Ir was also found that cerrain
cues, such as “sky,” “water,” “mountains,” etc., have an
imporrant influence in human image perception. Rather than
trying to obtain a complete and detailed description of every
object in a scene, this information suggests that for image
classificacion, it may be sufficient to isolate segments of such
perceptual significance.

The extraction of low-level image features that can be
correlated with high-level image semantics remains a
challenging task, however. The key to bridging this gap is the
extraction of medium-level segment descriptors (see figure 2).
These include region-wide color and texture features, as well
as segment location, size, and boundary shape. The success of
this approach depends on obtaining segments that are seman-
tically meaningful. The approach is thus critically dependent
on the segmentation methodology we described above.

Once the medium-level descriptors have been identified,
the task is to extract semantic labels, first at the segment level
and then for the entire image. We have assembled a hierarchy
of labels, which puts the natural, man-made, human, and
animal categories at the top.

To demonstrate the effectiveness of the proposed approach,
we conducted a set of simple experiments with a database of
approximately 1600 photographs, focusing initially on the
natural versus man-made dimension. The images were
segmented using the segmentation algorithm described above,
and the resulting segments were labeled manually to be used
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as the ground truth for supervised learning and testing. This
activity resulted in approximately 4000 labeled segments,
80% of which were used for training and the rest for testing,
We used the Fisher linear discriminant method for training
and classification. In our initial experiment, we used only

Results of Classification Testing

Natural Man-Made

Precision 88% 66%

Recall 87% 69%

spatial-texture and color-composition features. Our results
showed a recall rate (the ratio of correctly labeled segments
to the total number of relevant segments in the database)
and precision (the ratio of correctly labeled segments to the
total number of segments that the algorithm assigned to the
[abel) that compare favorably to the methods in the literature
(see table).

We are currently in the process of identifying the correct
descriptors for discriminating between categories farther
down in the hierarchy (i.e., sky, water, mountains, buildings,
etc.). Overall scene interpreration will be based on proba-
bilistic layout models. oe
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