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ABSTRACT

In video conferencing applications, the perceived quality of the video signal is affected by the presence of an audio
signal (speech). To achieve high compression rates, video coders must compromise image quality in terms of spatial
resolution, gray-scale resolution, and frame rate and may introduce various kinds of artifacts. We consider tradeoffs
in gray-scale resolution and frame rate, and use subjective evaluations to assess the perceived quality of the video
signal in the presence of speech. In particular, we explore the importance of lip synchronization.

In our experiment we used an original gray-scale sequence at QCIF resolution, 30 frames/second, and 256 gray levels.
We compared the 256-level sequence at different frame rates (1 to 7.5 frames/sec) with a two-level version of the
sequence at 30 frames/sec. The viewing distance was 20 image heights, or roughly two feet from an SGI workstation.
We used uncoded speech. To obtain the two-level sequence we used an adaptive clustering algorithm for segmentation
of video sequences. The binary sketches it creates move smoothly and preserve the main characteristics of the face,
so that it is easily recognizable. More importantly, the rendering of lip and eye movements is very accurate. The
test results indicate that, when the frame rate of the full gray-scale sequence is low (less than 5 frames/sec), most
observers prefer the two-level sequence.

1. INTRODUCTION

The perceived quality of a video signal can be affected by the presence of an audio signal. In order to achieve
high compression rates, video coders must compromise image quality in terms of spatial resolution, frame rate, and
gray-scale (or color) resolution and may also introduce various kinds of coding artifacts (spatial artifacts, motion
artifacts, or blurring due to motion). The goal of this paper is to examine how some of these compromises affect the
perceived image quality in the presence of an audio signal.

We consider video conferencing and video phone applications, where the video data is a head and shoulder sequence
and the audio data is speech. We consider tradeoffs in gray-scale resolution and temporal resolution (frame rate),
and use subjective evaluations to assess the perceived image quality in the presence of speech. In particular, we
explore the importance of the synchronization of lip movements with speech. The tradeoffs we consider in this paper
are intended to provide guidelines for the design of a video compression scheme as well as for the choice of a display
device.

In our experiments, we compared video sequences at high gray-scale resolution (256 gray levels), low spatial resolution
(QCIF), and low frame rates (1 to 7.5 frames/sec) with a sequence at high temporal resolution (30 frames/sec), the
same low spatial resolution (QCIF), and minimal gray-scale resolution (two gray levels). All sequences were obtained
from the same original sequence. We used uncoded speech of relatively high quality. The viewing distance was 20
image heights, or roughly two feet from an SGI workstation.
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The low frame rate sequences were obtained by decimating the original sequence in time. This was done to preserve
the spatial resolution of each frame. The two-level sequence was obtained using an adaptive clustering algorithm for
segmentation of video sequences [1]. It is an extension of an adaptive clustering algorithm for segmentation of still
images that uses spatial constraints and takes into consideration the local intensity characteristics of the image [2].
The three-dimensional algorithm uses temporal constraints and temporal local intensity adaptation to ensure that
motion is smooth. It produces a binary (two-level) sketch of the image sequence which preserves the movements of
the head, the eyes, and the lips, while other details in the background and clothing may be lost. The moving sketches
also preserve the main characteristics of the face, so that it is easily recognizable.

The test results indicate that, when the frame rate of the full gray-scale sequence is low (less than 5 frames/sec),
most observers prefer the binary sequence that preserves smooth motion and lip synchronization. About 25% of the
observers prefer the “clear” (full gray-scale) images to the binary sketches at all rates, indicating that the tradeoff
we chose may have been a little too extreme. This actually strengthens the results because it indicates that the
two-level sequence is quite objectionable. Therefore, an observer would choose it only if the jerkiness and lack of lip
synchronization of the grey-scale sequence at a low frame rate is really annoying. Thus, our test indicates that 5
frames/sec is probably a critical rate for video conferencing. Lower rate sequences are very objectionable and people
are ready to make significant compromises to avoid them.

The remainder of this paper is organized as follows. In Section 2, we review the adaptive clustering algorithm
for segmentation of video sequences. In Section 3, we present the subjective evaluation test. The conclusions are
summarized in Section 4.

2. VIDEO SEQUENCE SEGMENTATION

In this section, we review the adaptive clustering algorithm for obtaining a binary sketch of a sequence of gray-scale
images [1]. It is an extension of the adaptive clustering algorithm for still images [2]. It uses a Bayesian approach
to segment the gray-scale images into black and white regions. Each segmented image preserves significant features
while discarding unimportant detail. It is an adaptive thresholding scheme that uses temporal as well as spatial
constraints and takes into consideration the local intensity characteristics of the image sequence. As a result, the
algorithm creates image segments with smooth boundaries in both space and time without sacrificing spatial or
temporal resolution. Thus, it provides image sequences with high spatial and temporal resolution and minimal gray-
scale resolution. Similar approaches have been considered for segmentation of three-dimensional medical image data
in [3] and [4]. However, there are significant differences between video sequences and three-dimensional still images.
For computational efficiency as well as performance we use a multi-resolution approach.

2.1. Model

Let y be the three-dimensional (3-D) volume of images, and y; be the observed gray-scale image at time ¢. Each 2-D
slice consists of a grid of sites s and the intensity of a pixel at site s is denoted by y; ¢, which typically takes values
between 0 and 255. The pair (s,t) can index each location in the 3-D volume. We model the spatio-temporal 3-D
volume of the video sequence as a collection of regions of uniform or slowly varying intensity. Each region varies in
shape and size and extends throughout the sequence of images. The only sharp transitions in gray level in space or
time occur at the region boundaries.

A segmentation of the sequence of images into regions will be denoted by x, where x; is the segmentation of the
image y; into regions. Let z,; = ¢ mean that the pixel at s in slice y; belongs to region i. The number of different
region types (or classes) is K = 2. We model the segmentation distribution as a 3-D Gibbs random field.

The algorithm seeks to maximize the a posteriori probability density function p(x|y). By Bayes’ theorem

p(xly) o< p(y|x) p(x) (1)

where p(x) is the a priori density of the distribution of regions and p(y|x) is the conditional density of the observed
video sequence given the distribution of regions.
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Figure 1: Clique types for Gibbs density

We model the distribution of regions by a 3-D Gibbs random field. We consider each image defined on the Cartesian
grid and a neighborhood consisting of the 8 nearest pixels in the same 2-D slice and the two adjacent pixels at the
identical site s in the surrounding frames. The Gibbs density for x has the following form

p(x) =~ eXp { > Volx } 2)

where Z is a normalizing constant, Vo (x) are the clique potentials, and the summation is over all cliques C. A clique
is a set of points that are neighbors of each other. A clique potential V¢ is a function that depends only on the pixels
that belong to a clique C.

Our model assumes that the only nonzero potentials are those that correspond to the one- and two-point cliques
shown in Fig. 1. In this simple case the cliques are either spatial (S) or temporal (T). The two-point clique potentials
are defined as follows: 3 ; (5.1).(0.0) €
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The parameters 8; and (2 are positive, so that two neighboring pixels are more likely to belong to the same class
than to different classes. The clique potentials control the interaction between pixels within a single frame as well
as across frames. We arbitrarily chose the total weight of the interaction within each frame to be equal to the total
weight of the interaction across frames. Thus, 28: = 803;. We further assume that the one-point clique potentials
are zero, which means that all region types are equally likely.

The conditional density is modeled as a white Gaussian process, with mean u;t and variance 2. Each region i is
characterized by a different uf;’t which is a slowly varying function of s and ¢.

The combined probability density has the form

plxly) ocexp { - 22 s s = 1537 = Vet | (5)
C

We observe that the probability density function has two components. One constrains the region intensity to be
close to the data; the other imposes spatial and temporal continuity. Since increasing o? is equivalent to increasing
B1 and Ba, we fix #; and 3> and estimate the noise variance o2. The noise variance controls the amount of detail in
the segmentation. The performance of the algorithm is reasonable over a wide range of noise variances [2].

2.2. Algorithm

We now consider an iterative algorithm for estimating the distribution of regions x and the local intensity functions
,ui’t throughout the 3-D volume. At each frame ¢, the algorithm alternates between estimating x; and the intensity
functions ,ui,t. Note that the functions ,ui,t are defined on the same 3-D grid as the original gray-scale sequence y
and the distribution of regions x.

First, we consider the problem of estimating the local intensity functions in a frame at time ¢ (denoted by u!). Given
the region labels in the frame z; and the two surrounding frames z; 1 and z:y1, we estimate the intensity pg , at



each pixel s in the frame by averaging the gray levels of all the pixels that belong to region ¢ and are inside a window
of width W centered at pixel s in three consecutive frames.

The estimates of p;t must be obtained for all region types ¢ and all pixels s in each frame. To reduce computation,
we obtain the estimates ,ui,t only on a grid of points in each frame, and use bilinear interpolation to obtain the
remaining values. The spacing of the grid points in a frame is a function of the window size. We choose the spacing
equal to half the window size in each spatial dimension (50% overlap). Since the functions pi,t are smooth, this is a
good approximation. It also guarantees that the amount of computation is independent of window size.

Second, we consider the problem of estimating the distribution of regions. Given the intensity functions ui’t, we use
the Iterated Conditional Modes (ICM) approach proposed by Besag [5] to obtain an approximate MAP estimate for
the distribution of regions x.

The overall adaptive clustering algorithm alternates between estimating x and the intensity functions pi,t. An initial
estimate of x is obtained by the K-means algorithm [6] applied to each frame individually. In [1] we discussed a
direct extension of the 1-D algorithm proposed in [2] as well as several suboptimal algorithms which offer advantages
in terms of computational efficiency and time delay. Since computational efficiency and real time implementation
were not critical in this project, we used Method A of [1] which offers the best performance for a reasonable amount
of computation.

Method A [1] attempts to reduce the amount of computation while retaining the advantage of joint segmentation
of all the frames in the 3-D volume. First, an initial estimate of x is obtained by the K-means algorithm applied
to each frame individually. Given the region labels at some frame z; and the two surrounding frames z; ; and
Tyy1, we estimate the intensity Hi,t at each pixel s in the frame. Then we update the estimate of z; using the ICM
approach. The segmentation of the surrounding frames x;—; and x4 is fixed. The algorithm then moves to the
next frame and updates the estimates of ui and z;, and so on, until all the frames are processed. Then the process
is repeated. We define an iteration to consist of one update of x in all frames in the sequence. The window size for
the intensity function estimation is kept constant until the procedure converges. The stopping criterion is that the
update of x; at each frame in the volume converges in one cycle for all the frames. Weaker convergence criteria can
be used to reduce the number of iterations. The whole procedure is then repeated with a smaller window size. The
window depth (three consecutive frames) remains constant throughout the algorithm. The assumption is that scene
characteristics remain fairly constant over time. A flowchart of the algorithm is given in Fig. 2. The algorithm stops
when the minimum window size is reached. Typically we keep reducing the window size by a factor of two, until a
minimum size of W = 7 pixels.

Finally, as in [2], we use a multi-resolution approach to improve algorithm performance and computational efficiency.
First, we construct a pyramid of images at different resolutions. Then, the algorithm described above is performed
on the images of the lowest resolution in the pyramid. When the minimum window size is reached, it moves to the
next level in the pyramid and uses the current segmentation for all frames, expanded by two, as a starting point. As
in [2], the starting window size for each level in the pyramid is twice the minimum window size of the previous level.

3. SUBJECTIVE EVALUATION TEST

The purpose of our experiment was to consider tradeoffs between temporal and gray-scale resolution for video
conferencing and video phone applications. In particular, we were interested to find out for what frame rates of the
full gray-scale sequence the observers prefer a binary sequence that preserves smooth motion and lip synchronization.

In the experiment we used an original gray-scale sequence at QCIF resolution, 30 frames/second, and 256 gray levels.
The sequences shows a woman speaking on a technical subject. The total duration of the sequence was 48.9 secs (1467
frames). We obtained a two-level segmentation of this sequence at 30 frames/second using the algorithm described
in the previous section. Figure 3 shows three consecutive frames of the gray-scale sequence and the corresponding
segmentation. This two-level sequence was compared to the 256-level sequence at different frame rates: 1, 2, 3,
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Figure 2: Adaptive clustering algorithm, Method A

3.75, 5, 6, and 7.5 frames/sec. The viewing distance was 20 image heights, the equivalent of two feet from an SGI
workstation. The sequences were actually recorded on digital tape (D1) and played back on a large monitor.? The
speech signal was not coded and of relatively high quality.

There were 23 participants in the subjective evaluation test. The test group included mostly people with technical
backgrounds but also some nontechnical people. None of the observers had background in video compression. All
were familiar with the speaker and comfortable with the topic she discusses.

Each observer was first shown the original gray-scale sequence, and was told to consider it as a standard against
which to rate all other sequences. The observer was given the option to see the original again (none did) and was
asked if he/she had any difficulty in understanding the speaker (none had). Then, the observer was shown seven
different pairs of video sequences. Each pair consisted of the two-level sequence at 30 frames/sec and the gray-scale
sequence at one of the above rates. The two sequences were shown one after the other, with the time between them
fixed at 5 secs. The order of the pairs and the sequences within each pair was random. The time between different
pairs was variable because the sequences were recorded on digital tape, and rewinding was necessary. After each
pair was shown, the observer was asked to choose the sequence that he/she would prefer for communication. It was

2To avoid artifacts due to interlacing, the image frames were magnified by a factor of two using pixel repetition.
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Figure 3: Original gray-scale sequence and its two-level segmentation

explained that the two sequences differ from the original in a variety of ways and that the decision must be based on
overall quality of perceived potential communication. The observers were not told that the audio signal was going to
be the same for all sequences. At the end of the test, each observer was asked for comments and, in particular, what
characteristics of the video influenced the decision and whether lip synchronization or eye contact was important.
FEach observer also completed a demographics survey to determine gender, vision, hearing, and familiarity with video
communication systems.
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Figure 4: Test results

Since the gray-scale sequences were compared to a binary sketch, it was important to assume that the observers were
familiar with the speaker. Indeed, all the test subjects were familiar with the woman in the video sequence. It was
made clear that the purpose of the video sequence was to communicate with someone you already know, not to meet
a person you have never seen before.

The test results are shown in Figure 4. The horizontal axis shows the different frame rates for the gray-scale sequence.
Each observer is denoted by a black dot. For all the rates to the right of a black dot, the observer chose the gray-scale
sequence over the two-level sequence. For all the rates to the left of the dot, the observer chose the two-level sequence
over the gray-scale sequence. The hollow dots indicate special cases, discussed below.

The test results indicate that, when the frame rate of the full gray-scale sequence is low, most observers prefer the
binary sequence that preserves smooth motion and lip synchronization. Most observers preferred the binary sequence
when the rate of the gray-scale sequence was less than 5 frames/sec. About 25% of the observers prefer the “clear”
(full gray-scale) images to the binary sketches at all rates, indicating that the tradeoff we chose was a little too
extreme. Actually, this strengthens the results because it indicates that the two-level sequence is quite objectionable.
Therefore, one would choose it only if the gray-scale sequence at a low frame rate is really annoying. One observer
chose the gray-scale sequence at high rates (6 frames/sec and above, shown with a hollow dot) and also at low rates
(1 frame/sec), and chose the two-level sequence at the intermediate rates. That is, according to this observer, the
moving sequence should either be synchronized with the speech, or it should be a sequence of almost still images.
Two of the observers, also shown with hollow dots, changed their mind during the test. The final choice is shown in
the figure.

Most of the observers (12) indicated that lip synchronization was important in their decision and a few (2) mentioned
that jerkiness was annoying. One observer pointed out that the binary sketches showed some expressions because of
the movement. The observers that chose the gray-scale sequence at all rates indicated that it is important to see a
“reasonable” or “clear” picture of the person, that they wanted to see the expression of the face and to get feedback
about what the other person is feeling, and that the artifacts of the two-level sequence were unacceptable. Finally,
one observer chose the two-level sequence at all rates and indicated that, since the audio was very clear, the video



was not needed at all.

If we exclude the observers that found the binary sketches unacceptable, the distribution of the remaining observers
is a nice bell-shaped curve that indicates that 5 frames/sec is probably a critical rate for video conferencing. The
jerkiness and lack of lip synchronization at rates lower than 5 frames/sec is very objectionable and people are ready
to make significant compromises to avoid it.

4. CONCLUSIONS

We considered tradeoffs between temporal and gray-scale resolution for video conferencing and video phone applica-
tions. We conducted a subjective evaluation test to determine how the quality of sequences with different gray-scale
and temporal resolutions is perceived in the presence of an audio signal. In particular, we explored the importance
of the synchronization of lip movements with speech.

The test results indicate that, when the frame rate of the full gray-scale sequence is low (less than 5 frames/sec),
most observers prefer a two-level sequence that preserves smooth motion and lip synchronization. The tradeoffs
considered in this paper are intended to help in the design of a video compression scheme and the choice of a display
device.
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