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ABSTRACT

Matched-Texture Coding is a novel image coder that utilizes

the self-similarity of natural images that include textures, in

order to achieve structurally lossless compression. The key to

a high compression ratio is replacing large image blocks with

previously encoded blocks with similar structure. Adjusting

the lighting of the replaced block is critical for eliminating

illumination artifacts and increasing the number of matches.

We propose a new adaptive lighting correction method that is

based on the Poisson equation with incomplete boundary con-

ditions. In order to fully exploit the benefits of the adaptive

Poisson lighting correction, we also propose modifications of

the side-matching (SM) algorithm and structural texture sim-

ilarity metric. We show that the resulting matched-texture al-

gorithm achieves better coding performance.

Index Terms— Poisson equation, Dirichlet problem,

Neumman problem, structural texture similarity metric

1. INTRODUCTION

In order to achieve high compression ratios, image and video

compression techniques need to exploit both the signal prop-

erties and the characteristics of human perception. One of the

keys to further advances in compression is exploiting the re-

dundancy of textured areas, which exhibit a high degree of

self-similarity and distortion masking ability [1, 2]. However,

traditional techniques fail to do so because, with a few excep-

tions (e.g., fractal coding [3]), they rely on spatial or tempo-

ral prediction coupled with encoding of the residual, which

requires relatively high encoding rates, due to the high fre-

quency content of the textured areas. Instead, some recently

proposed approaches (as well as an early approach by Popat

and Picard [4]) rely on texture analysis/synthesis techniques

and transmission of the texture parameters [5, 6, 7, 8, 9].

Another alternative, which we consider in this paper, is the

recently proposed matched-texture coding (MTC) approach

[10], which exploits texture self-similarity by simply reusing

previously encoded texture patches.

One of the key obstacles in exploiting texture self-

similarity has been the lack of appropriate texture similarity

metrics. Existing approaches rely on PSNR or models of just-

noticeable distortion [11] that cannot exploit the stochastic

nature of texture, which allows visible point-by-point dif-

ferences that do not affect the overall quality of the image.

However, the development of structural texture similarity

metrics [2, 12] opens up new possibilities. MTC [10] at-

tempts to exploit texture self-similarity by simply replacing

an image patch (target) with previously encoded patches (can-

didates) that are structurally similar to – but not perceptually

indistinguishable from – the target. If no such match can

be found, then the target is encoded with a standard base-

line coding technique (e.g., JPEG). To evaluate the similarity

between target and candidate patches, MTC uses the new

structural texture similarity metric (STSIM-2) [2], which un-

like PSNR and perceptual metrics we mentioned above that

are point-by-point metrics, relies on local texture statistics.

For each successfully replaced target unit (typically 32 × 32
pixels), only few bits must be transmitted to the decoder. The

bits saved in this way can be used for higher quality baseline

coding in the other regions to achieve much higher overall

rate-distortion performance. The ultimate goal of MTC is

structurally-lossless compression [13, 10, 12], whereby the

original and reconstructed image are similar but may have

visible differences, even though both look natural and are of

equally high visual quality.

One of the challenges in achieving low-bitrate structurally-

lossless compression with MTC is finding suitable candidates

for the target patches and concealing the artifacts that are

introduced by patch replacement. There are two kinds of

artifacts, spatial discontinuities in texture and illumination.

The former can be solved by the use of quilting algorithms

[14, 15], while the latter are the main focus of this paper.

In [10], Jin et al. introduced a technique that uses interpo-

lation of local average values of the original image to gener-

ate a low frequency component (illumination map) that can be

subtracted from the original image before MTC is applied. (A

similar decomposition into a lowpass lighting and a highpass

texture component was used by Ballé et al. in their texture

coding-by-synthesis approach [9].) However, this approach

has three disadvantages. First, the illumination map is com-

puted in a preprocessing step, and is hard to update adaptively

during the encoding process. Second, accurately quantizing

and encoding of the low frequency illumination map requires

a relatively high bitrate. Third, the subtraction of the illu-

mination map introduce significant artifacts in the vicinity of

strong edges, which further complicate the encoding process
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Fig. 1: Boundary Condition

and increase the bitrate.

In this paper, we introduce a new Adaptive Poisson Light-

ing Correction (APLC) algorithm to eliminate all three dis-

advantages mentioned above. Moreover, the proposed APLC

increases the number of matching candidates for the encoding

process. This is because by eliminating the low-pass illumi-

nations, all the blocks with similar structure become suitable

candidates. The incorporation of APLC requires a new SM

algorithm as well as a modification of the STSIM-2 metric.

We show that the proposed additions to MTC result in better

quality images and lower bitrate than the algorithm presented

in [10]. We also compare with JPEG.

The remainder of the paper is organized as follows. Sec-

tion 2 reviews Poisson lighting correction. Section 3 intro-

duces the proposed adaptive PLC for MTC compression. A

new SM algorithm for MTC and modifications to STSIM-2,

along with experimental results are presented in Section 4.

The conclusions are summarized in Section 5.

2. POISSON LIGHTING CORRECTION (PLC)

The Poisson equation is a second order partial differential

equation (PDE) of elliptic type. For a real/complex function

u defined on the domain Ω with boundary ∂Ω, the Poisson

equation is defined as follows [16]:

−∇2u = −∇2f, u ∈ Ω (1)

with one of the following two boundary conditions:

u = f, u ∈ ∂Ω, or (2a)

∂u

∂n
=

∂f

∂n
, u ∈ ∂Ω (2b)

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2 is the Laplacian of u on Ω, n is the

boundary normal, and f is a given scalar function. When the

boundary condition in (2a) is used, i.e., the pixel values on ∂Ω
are given, this is known as the Dirichlet problem. When the

boundary condition in (2b) is used, i.e., the first-order deriva-

tive is given instead of pixel value on ∂Ω, this is called the

Neumman problem. However, in some cases (e.g., [17] and

the MTC coding problem we discuss below) it is necessary

to have mixed boundary conditions. Let the boundary be di-

vided into two distinct, nonoverlapping segments, ∂ΩD and

∂ΩN , such that ∂ΩD ∪ ∂ΩN = ∂Ω, as shown in Figure 1.

Then the Dirichlet and Neumann boundary conditions can be

applied to ∂ΩD and ∂ΩN , respectively.

A smooth function u satisfying the Poisson equation (1)

with boundary condition (2a) or (2b) is called a classical so-

lution [16]. The classical solution is unique if a Dirichlet

boundary condition or a mixed boundary condition is given.

If only the Neumman boundary condition is available, the so-

lution is not be unique, as adding a constant to u produces

another solution. Solving the Poisson equation is equivalent

to solving the following minimization problem:

min
u

∫∫

Ω

|∇u −∇f |2, s.t.

u = f, u ∈ ∂ΩD, and
∂u

∂n
=

∂f

∂n
, u ∈ ∂ΩN

(3)

where ∇u = [u
x
, u
y
]′ is the gradient of u.

Poisson equations have been used extensively for im-

age impainting, panorama stitching, and texture synthesis

[18, 19]. In the highly cited Perez paper [18], only the

Dirichlet condition is given, and all the values on ∂Ω are

assumed to be known. In MTC encoding, however, only the

left and upper boundaries are available because, assuming the

image is encoded in raster scan order, at the time of encoding

each target coding unit, only the left and upper boundaries

are available. Thus, the use of mixed boundary conditions is

necessary.

Sadeghi and et al. [17] proposed using mixed bound-

ary conditions when doing image stitching, where ∂ΩD is

the stitching seam and ∂ΩN is the boundary of the image

which is going to be lighting corrected. In our experiments,

we found that when the lighting of two images is significantly

different, it is hard to find a good solution with such mixed

boundary conditions. To avoid this problem, in the next sec-

tion we propose a modified PLC algorithm, in which, in ad-

dition to the available Dirichlet boundary condition on ∂ΩD

and the Neumman boundary condition on ∂ΩN (zero deriva-

tive in the direction normal to the boundary), we introduce

additional Dirichlet boundary conditions on ∂ΩN . Once the

lighting correction is done, we use thin-plate spline smooth-

ing to get an explicit estimate of the lighting, which we can

then compare to the lighting of the original image.

Thin-Plate Spline Smoothing (TPSS): A thin-plate spline

is a second order spline [20, 21] that is widely used for 2D

signal regression and smoothing, and is defined as

min
v

λ
∑

Ω
||u− v||2 + (1− λ)

∫∫

Ω

[

∂2v
∂x2 + 2 ∂2v

∂x∂y
+ ∂2v

∂y2

]

dxdy (4)

where u ∈ Ω is the input image, v is the smoothed function,

and λ controls the smoothness. If λ → 1, (4) becomes least

squares regression, and if λ → 0, a second order smoother.

3. ADAPTIVE PLC (APLC)

As we discussed in Section 2, when the lighting of the tar-

get and surrounding blocks are significantly different, PLC

with mixed boundary conditions (3) could fail. Thus, we in-

troduce an additional Dirichlet boundary condition on ∂ΩN .

The motivation comes from the predictive quadtree interpola-

tion (PQI) coder [22], which encodes the “foot” (lower right

pixel) of a target block and uses it, along with the known pix-

els in the left and upper boundary of the block, to interpo-

late the other values in the block. In PQI, a special metric is



Fig. 2: Feet locations

used to measure the similarity between the interpolated target

block and the original block. If the interpolated block is not

sufficiently similar to the original, the target block is split into

four subblocks, and the procedure is repeated for each sub-

block until an adequate match is found or a minimum block

size is reached. Thus, a quadtree is formed.

For the boundary conditions on ∂ΩN , we adopt a simi-

lar approach. However, in PQI, the interpolation is intended

to succeed when the block is relatively smooth. In contrast,

our goal is to estimate the lighting of textured blocks. Thus,

the value of a single pixel is not suitable for estimating the

foot. Instead, we encode the local average of the image at

the foot for a more accurate estimate. For similar reasons, we

use the local average of the known pixels near the upper right

and lower left corners of the target block, which along with

the foot (or feet), are used to linearly interpolate the remain-

ing values of the boundary. Moreover, additional feet along

the lower and right boundary can be used to provide more

accurate estimates of the lighting. Figure 2 shows the possi-

ble locations of the encoded feet as red pixels and the known

corner average values as yellow pixels.

We now define a modified PLC (MPLC) approach, which

will become adaptive (APLC), when we allow a variable

number of feet. Let IT (Ω) be the original image block to

be coded (called target) and IC(Ω
′) be the candidate block

which will replace IT in the coded image. We use ÎT to

denote the interpolated boundary on ∂ΩN that is based on the

encoded feet. Then the Poisson equation becomes:

−∇2u(Ω) = −∇2IC(Ω
′), u ∈ Ω, with boundary conditions:

u = IT , u ∈ ∂ΩD;
∂u

∂n
= 0, u ∈ ∂ΩN ;u = ÎT , u ∈ ∂ΩN

(5)

PQI encodes only one foot at the lower right corner pixel

of the block. Since the rest of the block is interpolated, pro-

viding additional feet is equivalent to subdividing the block,

which is what PQI does. In MTC, however, the feet are used

to interpolate the boundary conditions, while the remaining

pixels are obtained based on the candidate block and the solu-

tion of the Poisson equation with mixed boundary conditions.

Since the coding gains increase with increasing block size,

it pays to use (an adaptive number of) additional feet in or-

der to obtain more accurate lighting estimates. A block can

have zero (no lighting correction), one, or multiple feet. The

error criterion for selecting the number of feet is illustrated

in Figure 3. We compute the mean squared error (MSE) be-

tween the TPSS of the original target block and the TPSS of

the MPLC based on the target block and interpolated feet as

specified in (5).

✲ ✲ MSE

❄

✛ ✛

original TPSS TPSS MPLC

Fig. 3: Error Measurement for selecting number of feet
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49dB
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Fig. 4: Modified PLC Examples

To demonstrate the need for additional feet, we consider

the ideal case where an image block is used as both the target

and the candidate. Figure 4 shows two examples of an orig-

inal block and the MPLC with one and three feet (top row)

and the corresponding TPSS (bottom row). Figure 5 demon-

strates how MPLC works on the entire image for a fixed block

size (64 × 64 pixels) and a fixed number or feet (1 and 3).

Note, however, that the original image block is used as both

the target and the candidate. TPSS is then applied to the orig-

inal image and the MPLC of each block, and the PSNR is

computed. Figures 4 and 5 demonstrate that the additional

feet result in considerable improvement in lighting correction

performance. Note, however, that one foot is sufficient for

the homogeneous regions of the image, while more feet are

needed in more complex transition regions. Thus, an adaptive

number of feet is needed.

The error criterion we discussed above can be used to se-

lect the minimum number of feet that meet a given PSNR

requirement. Figure 6 shows the APLC results for variable

block size. If the requirement is not met with the maximum

number of feet (typically three), then the block is subdivided

into four subblocks. Note that in Figure 6, if a minimum block

size is reached and the criterion is not met, the failed APLC

results are still shown as noticeable artifacts. In the actual

coder implementation, however, these blocks will be encoded

with the baseline encoder. We should also point out that in

this example, since we use the original image block as both

target and candidate, using no lighting correction is always

the best. Thus, in order to test the performance of APLC,

we had to force at least one foot. Figure 6 shows examples

with two initial block sizes (64× 64 and 128× 128), and also

compares with the lighting correction approach of [10].

Figure 7 plots the rate-distortion curves of APLC with dif-

ferent number of feet and different block sizes. It also shows

APLC with variable block sizes and number of feet for differ-

ent initial block sizes. The curves are obtained by varying the

PSNR threshold for the lighting correction. Note the superior
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Fig. 5: MPLC with fixed block size (64× 64)
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Fig. 6: APLC with variable block size vs. LC in [10]

Fig. 7: Rate-Distortion analysis

rate-distortion performance of the adaptive approach. Look-

ing at Figures 5 and 6, one can conclude that the adaptation

results in better visual quality, too. The initial block size does

not seem to have a strong effect.

Post PLC for extra boundary conditions: One of bene-

fits with adaptive lighting correction algorithm available for

the coder is that it can use all of the available information.

Thus, if an image block is encoded with MTC and the adja-

cent blocks to the right or below are encoded with the base-

line coder, then the lighting of the block can be updated to

incorporate the additional boundary information. This does

not cost any bits, only computation time.

4. MODIFIED MTC (MTC-2)

As we discussed, the incorporation of APLC requires a new

SM algorithm. Given the L-shaped boundary Bt of the target

block, we find the candidate boundary Bc in the previously

encoded region that minimizes the function:

min
Bc

{

min [||Bt−Bc||2/t1, 1]+λmin[log

∣

∣

∣

∣

vc
vt

∣

∣

∣

∣

/t2, 1]

}

(6)

where vt and vb are the variances of Bt and Bc, respectively,

and t1 and t2 are thresholds. The first term in (6) represents a

pixel-based quality measurement and the second a structural

quality measurement. The normalization and clipping are

JPEG Original MTC MTC with APLC

Fig. 8: Comparison with previous results at 0.34 bpp

used to compare c and t in the same dimension. The param-

eter λ controls the effectiveness of the structural constraint.

Typical values are in [0.1, 1]. When λ is large, SM empha-

sizes texture similarity and deemphasizes the macro structure

such as strong edges. We found that λ = 0.5 is a reasonable

option. Moreover, in order to find more candidates, the first

term in (6) can be computed after the mean is subtracted.

To fully utilize the advantages of adaptive lighting correc-

tion, we must also modify the luminance term L of STSIM-2

[2], which is sensitive only to big illumination differences.

Instead, we use the following:

L = min
{

|µx − µy|
2/t3, 1

}

(7)

where µx and µy are the means of the target and candidate

coding units, respectively, and t3 is a clipping threshold. The

smaller t3 is, the more sensitive L is to illumination change.

Typical values of t3 are 1 to 4.

Our experimental results show a significant reduction in

lighting discontinuity artifacts when APLC is incorporated in

MTC compared to the previous approach [10], which used a

combination of SM and direct block matching (DBM). More

importantly, the proposed scheme comes at considerably

lower computational complexity (10 minutes versus 4 hours).

Figure 8 shows the new coding result using APLC with con-

strained SM and modified STSIM-2, and compares it with the

result of [10] and JPEG at the same bit rate. It can be seen

that the proposed algorithm works much better in the regions

where texture and texture edges are present, demonstrating

the advantages of the new lighting correction approach. In

addition, in texture regions, e.g., the sweater and hair, the pro-

posed method reuses more texture blocks than [10]. On the

other hand, in smooth regions, the proposed approach may

introduce artifacts near weak edges, as can be seen around

the chin and thumb. This is due to incorrect matches, not

the lighting correction. Compared to JPEG, the proposed

approach provides better overall visual reconstruction quality

at the same bitrate.

5. CONCLUSIONS

We have proposed a new adaptive Poisson lighting correction

algorithm for MTC. It is based on the solution of a Poisson

equation with a new boundary condition that consists of coded

and interpolated image values that save bits while maintaining

perceptual quality. We also introduced a new side matching

algorithm and a modification to the lighting term of STSIM-

2. The experimental results show a significant increase in the

perceptual quality of the resulting MTC.
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