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ABSTRACT

We present a Bayesian approach for segmenting a sequence
of gray-scale images to obtain a binary sketch. We extend a
2-D algorithm to video sequences. The 2-D algorithm is an
adaptive thresholding scheme that uses spatial constraints
and takes into consideration the local intensity characteris-
tics of the image. We model the segmentation distribution
as a 3-D Gibbs Random Field. We add temporal constraints
and temporal local intensity adaptation to ensure a smooth
transition of the segmentation from frame to frame. For
computational efficiency as well as performance we use a
multi-resolution approach. We also consider several subop-
timal implementations to reduce the delay as well as the
amount of computation. We tested the performance of the
algorithm on head and shoulders video sequences. The algo-
rithm achieves accurate rendering of the lip and eye move-
ments and preserves the main characteristics of the face, so
that it is easily recognizable.

1. INTRODUCTION

We consider the problem of obtaining a binary sketch of a
sequence of gray-scale images. We use a Bayesian approach
to segment the gray-scale images into black and white re-
gions. Each segmented image preserves significant features
while discarding unimportant detail. We extend the 2-
D adaptive clustering algorithm of [1] to video sequences.
The 2-D (still image) algorithm is an adaptive thresholding
scheme that uses spatial constraints and takes into con-
sideration the local intensity characteristics of the image.
We model the segmentation distribution as a 3-D Gibbs
Random Field. We add temporal constraints and temporal
local intensity adaptation to ensure a smooth transition of
the segmentation from frame to frame. Similar approaches
have been considered for segmentation of 3-D medical image
data in [2] and [3]. However, there are significant differences
between video sequences and 3-D still images.

For computational efficiency as well as performance we
use a multi-resolution approach. We also consider several
suboptimal implementations to reduce the delay as well as
the amount of computation.

We tested the algorithm on several video sequences and
showed that the sketches it creates move smoothly in time
without limiting the temporal resolution. In contrast, when
the 2-D algorithm [1] is applied to each frame indepen-
dently, it results in unpleasant temporal artifacts. For head
and shoulders sequences, the algorithm achieves accurate
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rendering of lip and eye movements and preserves the main
characteristics of the face, so that it is easily recognizable.

The moving sketches can be displayed using a simple
binary display device with limited spatial resolution. Also,
since the raw data rate for each frame is low, the mov-
ing sketches make it possible to achieve high frame rates
when the overall data transfer rate is limited. Finally, the
sketches may be compressed efficiently using a number of
techniques [4].

2. MODEL

A spatio-temporal 3-D volume is constructed from a se-
quence of gray-scale images, where each image is a 2-D slice
in the volume. We model this stack of gray-scale images as
a collection of regions of uniform or slowly varying intensity.
Each region varies in shape and size and extends through-
out the sequence of images. The only sharp transitions in
gray level occur at the region boundaries.

Let y be the 3-D volume of images and y: be the ob-
served gray-scale image at time t. Each 2-D slice consists
of a grid of sites s and the intensity of a pixel at site s is
denoted by ys,:. The pair (s,t) can index each location in
the 3-D volume. A segmentation of the image sequence into
regions will be denoted by x, where x; is the segmentation
of the image y: into regions. Let zs,; = i mean that the
pixel at site s and time ¢ belongs to region ¢. The number
of different region types is K. We set K = 2 to obtain
binary images.

We develop a model for the a posteriori probability den-
sity function p(x|y). By Bayes’ theorem

p(x|y) o p(y|x) p(x)

where p(x) is the a priori density of the region process and
p(y|x) is the conditional density of the observed sequence of
images given the distribution of regions. We model the re-
gion process by a 3-D Gibbs random field (GRF). It satisfies
the Markovian property, that is, if N, is a neighborhood
of the pixel at site s and time ¢, then

P(Ts t|Tq,r,all (q,7) # (5,1)) = p(Ts,t]Tq,r, (g,7) € Nosyt)

We consider each image defined on the Cartesian grid
and a neighborhood consisting of the 8 nearest pixels in the
same 2-D slice and the two adjacent pixels at the identical
site s in the surrounding frames. The Gibbs density for x
has the following form

P = e { P Vet }
C
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Figure 1: Clique types for Gibbs density

where Z is a normalizing constant, Vo (x) are the clique
potentials, and the summation is over all cliques C. A clique
is a set of points that are neighbors of each other. A clique
potential V¢ is a function that depends only on the pixels
that belong to a clique C.

Our model assumes that the only nonzero potentials
are those that correspond to the one- and two-point cliques
shown in Fig. 1. Notice that in this simple case the cliques
are either spatial (S) or temporal (T). The two-point clique
potentials are defined as follows:
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The parameters 5, and 32 are positive, so that two neigh-
boring pixels are more likely to belong to the same class
than to different classes. The clique potentials are intended
to control the interaction between pixels within a single
frame as well as across frames. We arbitrarily chose the to-
tal weight of the interaction within each frame to be equal
to the total weight of the interaction across frames. Thus,
2032 = 8031. Increasing the value of 31 has the effect of in-
creasing the size of the regions in each frame and smooth-
ing their boundaries. We further assume that the one-point
clique potentials are zero, which means that all region types
are equally likely.

The conditional density is modeled as a white Gaussian
process, with mean pi)t and variance o®. Each region i is
characterized by a different pi,t which is a slowly varying
function of s and ¢.

The combined probability density has the form

pixly) ocexp {= 30 51 o — 1231 = Yo Ve } ()
t,8 C

We observe that the probability density function has two
components. One constrains the region intensity to be close
to the data; the other imposes spatial and temporal continu-
ity. Note also that increasing o2 is equivalent to increasing
B1 and B2. Thus, we fix £1 and B2 and estimate the noise
variance o2, In [1] it is shown that the performance of the
algorithm is reasonable over a wide range of noise variances.
In fact, the noise variance controls the amount of detail in
the segmentation.

3. ALGORITHM

‘We now consider an iterative algorithm for estimating the
distribution of regions x and the local intensity functions
pi,t throughout the 3-D volume. At each frame ¢, the al-
gorithm alternates between estimating x; and the intensity
functions ui,t. Note that the functions ui,t are defined on
the same 3-D grid as the original gray-scale sequence y and
the distribution of regions x.

First, we consider the problem of estimating the local
intensity functions in a frame at time ¢ (denoted by ui).
Given the region labels in the frame x; and the two sur-
rounding frames z:—1 and z:y1, we estimate the intensity

ui,t at each pixel s in the frame by averaging the gray lev-
els of all the pixels that belong to region 7 and are inside a
window of width W centered at pixel s in three consecutive
frames.

As we saw in [1], when the total number of pixels of
type ¢ inside the windows centered at s in the three frames
is too small, the estimate of ui,t is not reliable and hence
pi,t is undefined. In such a case, zs,; cannot be assigned
to level i. The algorithm specifies the minimum number
of pixels Tnin that are necessary for estimating p’ ;. The
higher this threshold, the more robust the computation of
ts - A reasonable choice for this parameter is Trin = 3W,
the sum of the window widths in the three frames. This
value of the threshold guarantees that long one-pixel wide
regions will be preserved.

The estimates of ,ui,t must be obtained for all region
types ¢ and all pixels s in each frame. As in [1], to reduce
computation, we obtain the estimates p ; only on a grid of
points in each frame, and use bilinear interpolation to ob-
tain the remaining values. The spacing of the grid points in
a frame is a function of the window size. We chose the spac-
ing equal to half the window size in each spatial dimension
(50% overlap). Since the functions !, are smooth, this is
a good approximation. It also guarantees that the amount
of computation is independent of window size.

Second, we consider the problem of estimating the dis-
tribution of regions. Given the intensity functions pi,t, we
must maximize the a posteriori probability density (1) to
obtain the MAP estimate of x. As in [1], we use the Iterated
Conditional Modes (ICM) approach proposed by Besag [5]
to obtain a local maximum. That is, we maximize the con-
ditional density at each point x;,; given the data y and the
current segmentation x at all other points.

P(2s,t|Y, Tq,r, all (q,7) # (s,t))
= p(®s,t|Ys,t, Tq,r> (@,7) € N t)
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The equality on the left follows from the Markovian prop-
erty and the whiteness of the noise. The maximization is
done at every point in the 3-D volume and the cycle is re-
peated until convergence.

Now we consider the overall adaptive clustering algo-
rithm. A direct extension of the algorithm proposed in [1]
would obtain an initial estimate of x by the K-means algo-
rithm. With this initial segmentation, the algorithm would
alternate between estimating x and the intensity functions
ws .- However, for computational efficiency as well as delay
we consider several suboptimal algorithms.

Method A attempts to reduce the amount of computa-
tion while retaining the advantage of joint segmentation of
all the frames in the 3-D volume. First, we obtain an initial
estimate of x by the K-means algorithm applied to each
frame individually. Given the region labels at some frame
z¢ and the two surrounding frames z:—; and x:y1, we esti-
mate the intensity ui,t at each pixel s in the frame. Then we
update the estimate of z; using the ICM approach. The seg-
mentation of the surrounding frames z:—1 and x4 is fixed.
The algorithm then moves to the next frame and updates
the estimates of p; and z;, and so on, until all the frames
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Figure 2: Adaptive clustering algorithm, Method A

are processed. Then the process is repeated. We define an
iteration to consist of one update of x in all frames in the
sequence. The window size for the intensity function esti-
mation is kept constant until the procedure converges. Our
stopping criterion is that the update of x; at each frame in
the volume converges in one cycle for all the frames. Weaker
convergence criteria can be used to reduce the number of
iterations. The whole procedure is then repeated with a
smaller window size. The window depth (three consecutive
frames) remains constant throughout the algorithm. The
assumption is that scene characteristics remain fairly con-
stant over time. A flowchart of the algorithm is given in
Fig. 2. The algorithm stops when the minimum window
size is reached. Typically we keep reducing the window size
by a factor of two, until a minimum size of W = 7 pixels.
In many applications, it is desirable to eliminate the
delay that is necessary for the joint segmentation of all the
frames in a sequence. Method B obtains the segmentation of
each frame z; successively, using only information from pre-
vious frames (i.e. it is causal). It is similar to the sequential
method proposed in [2]. The GRF model is approzimated
by a truncated asymmetrical neighborhood since no infor-
mation from future frames is available. The segmentation
x; for the starting image frame is determined using the 2-D
algorithm [1]. The remaining frames are processed one at
a time, using the K-means algorithm as an initial estimate
of z;. The algorithm alternates between estimating the lo-
cal intensity functions p{ and the segmentation z;, using
the segmentation of the previous frame ;1 as a boundary

condition. Only information from the current and previous
frames is used. An iteration consists of one update of pi
and z; at a given frame. The window size for the intensity
function estimation is kept constant until convergence. The
whole procedure is repeated with a new window size until
the minimum window size is reached. The final estimate of
x+ is used as a boundary condition for the next frame.

Method Cis a compromise between the first two meth-
ods. It segments the image frames successively, as in meth-
od B, while maintaining the joint estimation of z; for con-
secutive frames, resulting in smoother motion, as in Method
A. Method C estimates z; using information from the pre-
vious, current, and next frame. It uses a symmetrical 3-D
GRF model and a symmetrical window for the local inten-
sity estimation. The segmentation z; for the starting im-
age frame is determined using the 2-D algorithm [1], as in
Method B. For each of the remaining frames, z; is obtained
jointly with z¢41, using z+—1 as a boundary condition. The
initial estimates of z+ and x;y1 are obtained by the K-means
algorithm. An dteration of the algorithm consists of an up-
date of pu}, followed by updates of x4, then pi;, and finally
Z¢+1. The window size for the intensity function estimation
is kept constant until convergence. Then the whole proce-
dure is repeated with a new window size until the minimum
window size is reached. The final estimate of z; is used as
a boundary condition for the next frame and the estimate
of x¢4, is disregarded.

Finally, as in [1], we use a multi-resolution approach
to improve algorithm performance and computational effi-
ciency. For each method, we construct a pyramid of images
at different resolutions. For Method A, the algorithm as
described above is performed on the images of the lowest
resolution in the pyramid. When the minimum window size
is reached, it moves to the next level in the pyramid and
uses the current segmentation for all frames, expanded by
two, as a starting point. As in [1], the starting window size
for each level in the pyramid is twice the minimum window
size of the previous level. For Methods B and C, the multi-
resolution implementation is applied when segmenting each
frame.

4. EXPERIMENTAL RESULTS

We tested the algorithm on several video sequences. The
spatial resolution is 180 x 120 pixels (QCIF) and the tem-
poral resolution is 30 frames/second. The gray-scale res-
olution is 8 bits. We compared the performance of the
different versions of our algorithm to a scheme that uses
the adaptive clustering algorithm of [1] to segment each
frame independently. We found that our algorithm creates
binary sketches that move smoothly in time. In contrast,
the independent scheme results in a lot of temporal arti-
facts (segments flashing on and off) that are unpleasant to
watch. Some of these artifacts can be seen in Fig. 4 which
shows two successive frames of the sequence processed by
the independent scheme. Observe the discontinuity in the
shadow under the chin and the sudden appearance of a
white patch in the jacket. Such discontinuities are quite
annoying when the sketches are displayed at 30 frames per
second. The corresponding frames of the original gray-scale
sequence are shown in Fig. 3. The results of the full 3-
D adaptive clustering algorithm with symmetric temporal
constraints (Method A) are shown in Fig. 5. Notice that the



Figure 3: Gray-scale sequence

Figure 5: 3-D adaptive clustering algorithm with symmetrical temporal constraint (Method A)

discontinuities have now disappeared. We also found that
the temporal constraints do not limit the temporal reso-
lution of the moving sketches in any significant way. The
lip and eye movements are very accurate. Only spurious
transitions are eliminated.

The difference in performance between methods A and
B is significant. Method A gives the best results but re-
quires the whole sequence (or long segments thereof) at
once, while method B requires only past frames. Method C
requires only one look-ahead frame and its performance is
very close to that of method A.
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