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ABSTRACT
A major challenge facing content-based image retrieval is bridging the gap between low-level image primitives and high-
level semantics. We have proposed a new approach for semantic image classification that utilizes the adaptive perceptual
color-texture segmentation algorithm by Chen et al., which segments natural scenes into perceptually uniform regions. The
color composition and spatial texture features of the regions are used as medium level descriptors, based on which the
segments are classified into semantic categories. The segment features consist of spatial texture orientation information
and color composition in terms of a limited number of spatially adapted dominant colors. The feature selection and the
performance of the classification algorithms are based on the segment statistics. We investigate the dependence of the
segment statistics on the segmentation algorithm. For this, we compare the statistics of the segment features obtained using
the Chen et al. algorithm to those that correspond to human segmentations, and show that they are remarkably similar. We
also show that when human segmentations are used instead of the automatically detected segments, the performance of the
semantic classification approach remains approximately the same.
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1. INTRODUCTION
A major challenge for content-based image retrieval (CBIR) is bridging the semantic gap between low-level image prim-
itives and high-level semantics. Several approaches have been proposed in the recent literature that attempt to bridge this
gap. Many of these approaches use an image segmentation scheme as an intermediate step, and then rely on the content
of the segmented regions as well as their context within an image to obtain semantic information. However, the segmenta-
tion problem is quite challenging, and the unavailability of semantically meaningful segmentations has been cited (e.g., in
Ref. 1) as a significant obstacle to the success of CBIR systems, and it is one of the reasons that they are still a long way
from matching the performance of the human visual system (HVS). In this paper, we consider a new approach for seman-
tic classification of images of natural scenes2, 3 that relies on automatic segmentation into perceptually uniform regions.
Our goal is to test the sensitivity of the approach to the performance of the segmentation algorithm. We show that when
human segmentations are used instead of the automatically detected segments, the performance of the approach remains
approximately the same. We also show that the segment statistics that result from the automatic and human segmentations
are remarkably similar.

As we argued above, the choice of the segmentation technique is critical to the success of the CBIR system. To avoid the
problems with image segmentation, several approaches partition the image into fixed-size rectangular blocks, and use the
features (typically color and texture) of these blocks for semantic analysis. Such approaches range from codebook-based
approaches4, 5 to probabilistic approaches,6 to high-dimensional feature extraction and discriminative classifier learning.7
Others rely on more sophisticated segmentation techniques. Carson et al.8 model the distribution of pixel features with
a mixture of Gaussians and use an expectation-maximization algorithm to group the pixels into regions. Barnard et al.9

rely on the normalized cut algorithm10 to segment the image into blobs. Li and Wang11 segment images based on color
and texture features using a K-means algorithm. Finally, some authors attempt to link low-level image features directly to
image semantics (e.g., in Ref. 12).

In Ref. 2 we proposed a new approach for semantic image classification that utilizes the adaptive perceptual color-
texture segmentation algorithm by Chen et al.,13 which segments natural scenes into perceptually uniform regions. The
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Figure 1. Color-texture image features and segmentation. (a) Original color image. (b) Adaptive dominant colors. (c) Texture classes
(smooth regions shown in black, horizontal in gray, and complex in white). (d) Final segmentation

color composition and spatial texture features of the regions are used as medium level descriptors, based on which the
segments are classified into semantic categories. The segment features consist of spatial texture orientation information
and color composition in terms of a small number of spatially adapted dominant colors. The feature selection and the
performance of the classification algorithms are based on the segment statistics.

In this paper, we investigate the dependence of the segment statistics on the segmentation algorithm. For this, we
extract and compare the statistics of segment features obtained using the Chen et al. algorithm13 to those that correspond
to human segmentations, and show that there is a remarkable similarity in the two sets of segment statistics. We also show
that the algorithm performance does not change significantly when human segmentations are used instead of automatic
segmentations. This indicates that perhaps there is not much to be gained from further improvements in the segmentation
algorithm, and also, that it is not critical to closely match the semantic classification technique to the technique used for
image segmentation. In our experiments, we used a database of approximately 3300 images of natural scenes, which
were segmented using the algorithm in Ref. 13. We also used a database of 400 images, obtained from the University of
California at Berkeley (UCB),14 segmented by 30 human subjects.

The paper is organized as follows. In Section 2, we review the feature selection for both the adaptive perceptual color-
texture segmentation algorithm and the semantic classification algorithms. In Section 3, we review the basic elements of
the semantic analysis approach. The statistics of automatic and human segmentations are presented in 3, while in Section 5,
we compare classification performance based on automatic and human segmentations.

2. COLOR-TEXTURE FEATURE SELECTION
The selection of appropriate color-texture features is critical for both image segmentation and segment classification. The
segmentation approach proposed in Ref. 13 is based on two types of spatially adaptive texture features, color composition
and spatial texture.

The color composition feature consists of a small number of spatially adaptive dominant colors and the corresponding
percent occurrence of each color in the vicinity of a pixel:

fc(x,y,Nx,y) = {(ci, pi), i = 1, . . . ,M, pi ∈ [0,1]} (1)

where ci is a 3-D color vector and pi is the corresponding percentage. Nx,y denotes the neighborhood of the pixel at (x,y)
and M is the number of dominant colors in Nx,y; a typical value is M = 4. The spatially adaptive dominant colors are
obtained using the adaptive clustering algorithm (ACA).15 An example is shown in Fig. 1(b). The perceptual similarity
between two color composition feature vectors is based on the “Optimal Color Composition Distance (OCCD)”.16

The spatial texture feature extraction is based on a steerable filter decomposition with four orientation subbands (hor-
izontal, vertical, +45o, -45o).17 In this paper, we use a one-level steerable filter decomposition. The local energy of the
subband coefficients is used, first to classify the image pixels into smooth and non-smooth classes, and then to further clas-
sify the non-smooth pixels on the basis of dominant orientation, as horizontal, vertical, +45o, -45o, and complex (i.e., no
dominant orientation). A median filtering operation boosts the response to texture within uniform regions and suppresses
the response resulting from to transitions between regions. An example is shown in Fig. 1(c).

The segmentation algorithm combines the color composition and spatial texture features to obtain segments of uniform
texture. It is a fairly elaborate algorithm that relies on spatial texture to determine the major structural composition of the
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Figure 2. Segment-wide feature extraction. (a) Segmented image. (b) Selected segment. (c) Its color composition. (d) Its texture
composition.

image and combines it with color, first to obtain a crude estimate of the major segments, and then to refine it in order to
obtain accurate and precise localization of the border between regions. Several critical parameters of the texture features
and segmentation algorithm can be determined by subjective tests.18

2.1. Segment Wide Feature Extraction
We now review the selection of segment-wide color composition and spatial texture features. These are derived from
the features we described above, once the segments have been obtained. They are calculated on a segment by segment
basis, using only information from within the segment. An example is shown in Fig.2, where Fig.2(a) shows a segmented
image, Fig.2(b) shows a selected segment, and Fig.2(c) shows the color composition of the segment (dominant colors and
percentages). The texture features of the segment can be similarly described by the percentage of smooth, horizontal,
vertical, +45o, -45o, and complex pixels as shown in Fig.2(d)

The spatial texture features are represented as a six-dimensional vector that consists of the percentages for each texture
category. For the color composition features, we have considered two possibilities.

The first19 uses a perceptually quantized color space, whereby a relatively small number of perceptually distinct rep-
resentative colors (color names) are selected (e.g., Boynton’s “eleven colors which are almost never confused”20), and the
feature vector consists of the percentage of each color for the segment. One justification for this approach is that humans
use a few color names to describe the color composition of a scene. Note that this representation provides a symmetry
between the two types of features,19 in that they both consist of percentages that correspond to a fixed set of categories.
The procedure we use to assign color names to the dominant colors of a region is described in Ref. 21. The color names
(labels) are consistent with a National Bureau of Standards recommendation for color names. The syntax, shown in Table
1, contains names for 267 regions in color space, and employs English terms to describe colors along the three dimensions
of the color space: hue, lightness and saturation. Of these, we select a basic set of twelve prototypical hues and three
achromatic colors to end up with 15 labels. Thus, we obtain a 15-dimensional color feature vector. Note, however, that the
feature vector of each segment will have up to M = 4 nonzero components.

The second approach is to use only one or two dominant colors, the ones with highest percentages, and to represent
them by their (unquantized) L*a*b* coordinates. We will refer to these as the first and second dominant colors. In our
implementation, we used the first dominant color and the difference between the first and second dominant color. In Ref. 2
we showed that this representation results in better classification performance than the color naming approach. To explain
this result, we looked at the segment statistics and found that, for the majority of segments, the percentages of the third and
fourth dominant colors were insignificant. We also found that, for the majority of segments, the second dominant color is
similar to the first.

In Section 4, we compare the statistics that correspond to the automatic segmentations to those that are obtained when
human segmentations are used.



Hue-primary Hue-secondary Saturation Lightness Achromatic
Red Reddish Grayish Blackish Black

Orange Brownish Moderate Very-dark Gray
Brown Yellowish Medium Dark White
Yellow Greenish Strong Medium
Green Bluish Vivid Light
Blue Purplish Very-light

Purple Pinkish Whitish
Pink
Beige
Violet

Magenta
Olive

Table 1. Color Naming Syntax

3. SEMANTIC ANALYSIS
3.1. Semantic Labeling
The assignment of semantic labels to segments is based on the subjective experiments described in Refs. 12, 22–24, which
were conducted in order to identify important semantic categories that humans use for image organization and retrieval.
We have assembled a vocabulary of labels consistent with their findings, and also, those used in annotation of the NIST
TRECVID 2003 development set.25 The set of labels we selected is a subset of NIST lexicon, and is shown in Table 2. The
labels are arranged in a hierarchical manner, with natural, man-made, human, and animal at the top. In our classification
algorithms, we use only leaf nodes; the higher order categories are then derived from the leaves.

The main focus of our experiments was on natural vs. man-made classification. The human detection problem, and
especially face detection, is well-studied in the literature,26 and the existing techniques can easily be combined with
the proposed approach. The problem of animal detection is more complicated because of natural camouflage. Scenes
containing animals could be handled by our current approach as natural scenes without any explicit detection of animals.

Natural Man-made Human Animal
Vegetation Sky Landform Water

Grass Day-sky Snow Building/House Face
Trees/bushes Night-sky Mountain/Hill Bridge Person

Forest Sun Ground Car People
Flowers Clouds Pavement/Road∗ Boat

Sunrise/Sunset Airplane
Other

Table 2. Segment Labels

3.2. Learning and Classification
For the training and classification we considered both unsupervised (clustering) and supervised learning techniques. Among
unsupervised techniques we experimented with K-means, K-nearest neighbors, agglomerative, and conglomerative cluster-
ing methods, while in the supervised learning experiments we used Gaussian Mixture Models (GMM),27 Support Vector
Machines (SVM),28 and Linear Discriminant Analysis (LDA).29 It quickly became clear that supervised techniques are

∗While “pavement/road” is man-made, its features are almost identical to those for “ground.”



best suited for the problem at hand, primarily because of the complexity of the cluster configurations. Supervised tech-
niques require the existence of ground truth for a large database of segments.

After performing several sets of experiments using supervised learning techniques, and comparison of the recall and
precision rates, we concluded that LDA is best suited for the problem at hand because it works better with noisy data and is
less sensitive to data redundancies than the other two approaches.30 Furthermore, LDA is not critically dependent on the
correct choice of the kernel function like the SVM approach. GMM achieved lower recall and precision rates than LDA
due to inherent limitations in the mixture approach and the fact that the EM algorithm is only locally convergent.

We now summarize the basics for the Linear Discriminant Analysis (LDA) method.29 LDA belongs to the class linear
classifiers, which try to find a subspace projection such that samples from the different classes are well separated, i.e., to
find directions in the data space that facilitate data classification. This is done by finding a direction that maximizes the
variance between the class means and at the same time minimizes the variance within each class.

The measure of separation between the class means is defined as:

SB = ∑
c

Nc(µc − x̄)(µc − x̄)T (2)

where,
µc =

1
Nc

∑
i∈c

xi (3)

and
x̄ =

1
N ∑

c
Ncµc (4)

The measure of within class variance is defined as:

SW = ∑
c

∑
i∈c

(xi −µc)(xi −µc)
T (5)

SB is usually referred to as the “between the classes scatter matrix,” while SW is known as the “within the classes scatter
matrix.”

Using these measures, the objective function can be represented as:

J(w) =
wT SBw
wT SW w (6)

where w is a transformation matrix. The objective function J(w) is maximized by solving the generalized eigenvalue
problem:

SBw = λSW w (7)

so that the columns of an optimal w are the eigenvectors associated with the largest eigenvalues. One of the underlying
assumptions that are necessary for LDA to work is that the data for each class form a single cluster.

4. SEGMENT STATISTICS FOR NATURAL IMAGES
In this section we compare the segment statistics that are obtained from automatic and human segmentations.

Automatic segmentations were performed on a image database containing approximately 3300 photographs. The
majority of the images were obtained from the Corel Stock Photo Library. Additional images were obtained from a Key
Photos Library and the investigators’ personal repository. The images in the database cover a variety of outdoor scenes,
with a wide range of themes. The images were segmented using the algorithm in Ref. 13 described above. Figure 3 shows
several images segmented using this algorithm. The resulting segments were manually labeled to be used as the ground
truth for collecting statistics and supervised learning. Each segment was assigned exactly one label. Segments whose area
was less than three percent of total image area were not considered.

We also used a database of human segmentation from the University of California at Berkeley (UCB).14 The database
contained approximately 400 images, with approximately 1600 labeled segments. Each image was segmented by an



Figure 3. Adaptive perceptual color-texture segmentation results.

average of seven subjects. There was a total of 30 subjects. For reasons we explained in Section 3.1, we did not consider
segments containing humans or animals. As with the automatic segmentations, the segments were manually labeled; each
segment was assigned exactly one label.

Figure 4 shows two images from the UCB database segmented by different humans. Observe that there are substantial
differences in the segmentations. Martin et al.14 have shown that, if we allow for mutual refinement, the segmentations by
different humans are consistent. What is of more interest to us is whether the segment statistics for the human segmentations
are significantly different to those obtained from the human segmentations.

The statistics for automatic segmentations using the Chen et al. algorithm13 are shown in the top row of Fig. 5, which
shows histograms for the first, second, third, and fourth dominant color across all segments in the database. The horizontal
axis represents the percentage of the area that the corresponding dominant color occupies in a segment, while the vertical
axis represents the probability of occurrence for each bin. Based on these statistics, the great majority of segments could
be described by the first two dominant colors with very little loss of information. We also looked at the distance between
the dominant colors. The histogram of the distance between the first and second dominant colors is shown at the top left
of Fig. 6, and the distance between the first and third is shown at the right. Observe, in the majority of cases, the second
dominant color is less than twenty units away from the first. Here we should note that colors with L*a*b* distance of 10
units are quite similar. This means that for a great majority of segments the second dominant color is similar to the first.
This explains why using the L*a*b* value of the first dominant color gives better classification results than using the 15
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Figure 4. Human Segmentations

quantized colors, and also why adding the second dominant color improves performance by only a small amount.
The corresponding statistics for the human segmentations are shown in Figures 5 and 6. Note that, with the exception

of the 100% bin for the first dominant color, the statistics are quite similar. A similar observation holds for the distribution
of the distance between the first and second dominant colors and the distance between the first and third dominant colors.
Thus, we can safely assume that ignoring the second and third dominant color will not have any significant effect on
segment classification. Finally, we should point out that the two sets of statistics are quite similar, even though they were
obtained over different sets of images.

5. RESULTS
In addition to the segment statistics, it is interesting to investigate whether the performance of the classification algorithm
can improve if human segmentations are used instead of the automatic ones, or if it degrades due to the fact that the features
we are using are matched to the segmentation algorithm and do not work with the human segments. For this, we compared
the classification performance of the region-wide spatial texture and color composition features described in Section 2 on
both human and automatic segmentations. We applied LDA to the same labeled sets of segmented images that we used for
the segment statistics in Section 4. In both cases we used 80% of the segments for training and the rest for testing.

We evaluated the performance of the classification techniques using the standard measures that are used for evaluating
search strategies in the literature. The recall is the ratio of the correctly labeled segments to the total number of relevant
segments in the database (i.e., those with the particular label). The precision is the ratio of the correctly labeled segments
to the total number of segments that the algorithm assigned to the particular label (both correct and incorrect). Both
performance measures are expressed as percentages. Overall performance can be expressed as the accuracy over the whole
database.

The results are shown in Fig. 7(a) for segment classification using the spatial texture features, the first two dominant
colors and position, and Fig. 7(b) using the same set of features and the K-means preprocessing.31 We should note that
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Figure 5. Statistics of dominant colors. The horizontal axis represents the percentage of the area that the dominant color occupies in a
segment and the vertical axis represents the probability of occurrence for each bin.

”Sunrise/Sunset” category was omitted from the human segmentations results because of insufficient number of samples
for classification. Comparing the recall and precision rates from the two experiments we can see that on the average they
are approximately the same. We also conducted experiments with different sets of features (only one most dominant color,
15 quantized colors, etc.) and got the same conclusion. Finally, we also verified that using a third dominant color does not
increase performance, and that using a fourth dominant color actually reduces the classification ability of LDA.

6. CONCLUSIONS
We considered a new approach for semantic classification of images of natural scenes that relies on automatic segmentation
into perceptually uniform regions, and examined its sensitivity to the performance of the segmentation algorithm. We
showed that when human segmentations are used instead of the automatically detected segments, the performance of the
approach remains approximately the same. We also showed that the segment statistics that result from the automatic and
human segmentations are remarkably similar. These results indicate that there is not much to be gained from further
improvements in the segmentation algorithm, and also, that it is not critical to closely match the semantic classification
technique to the technique used for image segmentation.
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12. A. Mojsilović and B. E. Rogowitz, “Semantic metric for image library exploration,” IEEE Trans. Multimedia 6,
pp. 828–838, Dec. 2004.

13. J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual color-texture image segmentation,”
IEEE Trans. Image Processing 14, pp. 1524–1536, Oct. 2005.

14. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological statistics,” in Proc. Int. Conf. Computer Vision (ICCV),
2, pp. 416–423, (Vancouver, Canada), July 2001.



15. T. N. Pappas, “An adaptive clustering algorithm for image segmentation,” IEEE Trans. Signal Processing SP-40,
pp. 901–914, Apr. 1992.
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