Navigating through SNSim’s network stack.

The SNSIim’s network stack, which isillustrated in Figure 1, is a subset of the typical
network stack found in wired networks and a'so in SWANS. Given the specifics of the
wireless sensor network however, the Transport Layer, which was present in the original
JST-SWANS distribution, was not inherited in SNSim.

Application Layer
Network Layer Routing
Mac Layer
% f Sensor Node
Physical Layer

Figure 1. SNSim's network stack

The Network Layer represents a switchboard between packets coming from the upper
layers (Application Layer), lower layers (Mac Layers) and the Routing paradigms, and
based on the destination address of the messages, it forwards the packets accordingly.

Figure 2 illustrates the overall message flow between the Application Layer, Mac Layer,
Network Layer and Routing.

Outgoing Message Flow
Application Layer
Incoming Message Flow
\ 4 \ k\ *——
N s
N
‘ S——
Network Layer \./,
// 1
/
v "4 4 Sensor Node
Mac Layer

Figure 2. Overview of the message flow in the upper layers of the network stack

As it can be observed, most of the messages are flowing through the Routing element.
Imagine that a user’s application may need to send a data-packet to a distant node,
located couple of hops away. The application may know the IP address of the destination
node, but not the means of reaching it (the route). The Network Layer will let the Routing
compute and retrieve the address of one (or more) of the neighboring (1-hop) nodes to
which the message to be sent immediately in its route to the destination. The single
exception to this rule applies to outgoing Broadcast messages, which are detected by the
Network Layer and forwarded directly to the Mac Layer (thereis no need for routing
since broadcasting means transmitting to whoever can hear the message within
communication range). But since routes may be built considering all types of messages,
ALL the incoming messages however (both unicast and broadcast ones) are sent directly
to the Routing algorithm, where they may be used either for updating the routing
information, finding the next-hop node if the packet has not reached its final destination,
or passed up, to the Application Layer, if and only if the message destination is the node
itself.

Figure 3 gives a detailed description of the outgoing flow of messages and the associated
methods that are being called within the corresponding .javafiles.

| Application Layer |

etEntity.send(Message msg, NetAddress
Routing.send(NetMessage.|p msg)

FinalDest, short protocol, byte priority, byte
ttl)

Network Layer
No
If (destlp) (unicast)
etAddress.AN
Sensor Node
Yes
(broadcast)
{ NetEntity.send(NetMessage.lp msg,
\ interfaceld, MacAddress nextHopMac)
| Mac Layer |

Figur e 3. Outgoing message flow in the upper network stack

In order to send a message from the Application Layer, the following parameters are
needed:

Message — a user defined pojo containing the data to be transmitted (the payload)

NetAddress — the | P of the node that represents the FINAL destination of this
packet

Protocol — if there are several routing protocols implemented, thisis used to
specify the routing protocol that isto be used for routing the packet

Priority — indicate if some packets have a higher priority than others

TTL —time to leave: in a congested network, indicate the amount of time a packet
will be held before being dropped if continuous attempts of forwarding the datafail.

The application layer will call Net Entity. send(...) with the above parameters specified.
For example, broadcasting a message can be specified as:

Net Entity. send(myMessage, Net Address. ANY, Constants. My _PROTOCOL, 1, (byte)100)
Or, unicasting to aknown IP (net) address:

Net Entity. send(myMessage, destinati onNet Address, ...)

If the outgoing message represents a broadcast, it will be sent directly to the MAC layer,
bypassing any routing primitives. However, if it is aunicast message, it will be passed to
the Routing algorithm to be handled. In the latter case, the Net Ent i ty will call the
following method member of the Routing class:

Rout i ng. send(Net Message. | p i pMsg)

The user must decide what to do with the message at the routing layer. Most likely, it
needs to find the 1-hop neighbors MAC address to forward the packet toward its final
destination.

Note that the NetEntity will ship awrapped version of the original message the
application layer has sent. To obtain the content, use the .get Pay!l oad() method

MyMessage nyMessage = i pMsg. get Payl oad()

Once the MAC of the next-hop neighbor has been retrieved, the routing layer can proceed
sending the packet down the stack to the MAC layer. However, since it does not have
access directly to the MAC Layer, it must rely on the following method of the Network
Layer

net Entity. send(i pMsg, interfaceld, MacAddress);

Do note that the Network Layer will require the wrapped version of the payload, not the
payload itself (that is, aNet Message. | p formatted message, which will contain also
information about the original source of the message and its final destination). The user
needsto usefor theinterfacel d paraneter the default interface, which isindicated
through Const ant s. NET_I NTERFACE_DEFAULT. The MacAddr ess corresponds to the next-hop
node the packet will be forwarded to.

If the IP address of the neighbor to forward the data-packet is known , you may use the
nei ghbour sLi st (NodesLi st) to retrieve the associated Mac address as follows:

nei ghbour sLi st . get (next HopDest | P) . mac;

where the neighboursList is automatically preloaded by the hearbeat protocol that is
executed in the first hour of simulation time.

WARNING! The following method may be also called from the Routing Layer

Net Entity. send(myMessage, Net Address. ANY, Constants. My _PROTOCOL, 1, (byte)100)

Sinceit isabroadcasting message, it will be send immediately to the Mac layer.
However, if it wouldn’t be a broadcasting message, the Network Layer will NOT send
the packet to the MAC Layer. Instead, since the Network Layer is unaware of the origins
of the call, it will handle the message back to the Routing Layer, just asif the Application
Layer has called it, risking creating an infinite message-passing loop between the Routing
and Network Layer.

Figure 4 represents a detailed illustration of the incoming flow of messages and the
associated methods that are being called in the corresponding .javafiles.

| Application Layer

applinterface.receive(Message msg,
NetAddress src, MacAddress lastHop, byte
macld, NetAddress dst, byte priority, byte

Routing.sendToAppLayer(Messagée
msg, NetAddress src)

Routing.send(NetMessage.lp msg)

Network Layer

Yes
Routin
No Is it for me? 9
Sensor Node
A
A Routing.Receive(Message msg, NetAddress src,
MacAddress lastHop, byte macld, NetAddress dst,
Mac Layer | byte priority, byte ttl)

Figure 4. Incoming message flow in the upper network stack

The Network Layer, upon receiving a message from the Mac Layer, will check to seeif
the hosting node represents the final destination of the packet. If it is not, meaning that
the current node isjust arelay of the packet in its way to the final destination, the
Network Layer will ask the routing protocol to “send” the packet again (aka, forward). If
this node represents the final destination of the packet, it will be treated through the
“receive’” method of the Routing Layer, in which the packet must be treated, and, in most
cases, sent to the application layer aswell. Note that, the Network Layer will not forward
any packet to the application layer by itself. Hereisthe “receive’” method syntax the
Network Layer will call the following method of the Routing class:

Rout i ng. Recei ve(Message nsg, Net Address src, MacAddress | astHop, byte nmcld,
Net Address dst, byte priority, byte ttl)

The “send()” method is the same one called when unicasting a packet from the
Application Layer.

Indicating the content of the message, the IP of the original producer of the message, the
last hop Mac address the message is coming from, the Mac interface it has been received
through and the final destination of the packet. These may be used by the Routing layer
to decide if the packet has reached itsfinal destination.

The routing layer will decide whether the incoming data packet is to be forwarded again,
and/or update its routing information if necessary. If the hosting node does not represent
the final destination (represents just an intermediate node on the route) of the data packet,
the Routing Layer must forward the message to the next node on the route following the
indication for outgoing messages. Otherwise, it should pass the message to the
Application Layer, which can be done directly by calling the following locally defined
method:

Rout i ng. sendToAppLayer (Message nsg, Net Address src)

In turn, the Application Layer will be notified by the incoming message by being called
its local method, which follows:

appl nterface.recei ve(Message nsg, Net Address src, MacAddress |astHop, byte
nmacl d, Net Address dst, byte priority, byte ttl)

APPENDIX

Y ou may add the following lines of code to the Routing Layer implementation to ease the
transmission of the messages to the lower stack layers:

If you have the unwrapped payload, then you can use:

public void sendToLinkLayer(Message msg, NetAddress original Sourcel P, NetAddress final Destinationl P, NetAddress nextHopDestl P)
{
NetMessage.lp ipMsg = new NetMessage.lp(msg, original Sourcel P /* src IP addresss */, final Destinationl P,
Constants.NET_PROTOCOL _INDEX_1, Constants.NET_PRIORITY_NORMAL, (byte)1);

if (nextHopDestIP == NetAddress.ANY)
netEntity.send(ipMsg, Constants.NET_INTERFACE_DEFAULT, MacAddress ANY);
else
{
NodeEntry nodeEntry = neighboursList.get(nextHopDestI P);
MacAddress macAddress = nodeEntry.mac;
netEntity.send(ipMsg, Constants. NET_INTERFACE_DEFAULT, macAddress);
}
}

or, if you have the wrapped payload as a NetMessage.|p you can use:

public void sendToLinkLayer(NetMessage.lp ipMsg, NetAddress nextHopDestI P)

if (nextHopDestIP == NetAddress. ANY)
netEntity.send(ipMsg, Constants.NET_INTERFACE_DEFAULT, MacAddress. ANY);
else

NodeEntry nodeEntry = neighboursList.get(nextHopDestI P);
MacAddress macAddress = nodeEntry.mac;
netEntity.send(ipMsg, Constants.NET_INTERFACE_DEFAULT, macAddress);
}
}

