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Abstract

This paper presents a methodology for using varying sample sizes in batch-type op-
timization methods for large scale machine learning problems. The first part of the
paper deals with the delicate issue of dynamic sample selection in the evaluation of the
function and gradient. We propose a criterion for increasing the sample size based on
variance estimates obtained during the computation of a batch gradient. We establish
an O(1/ε) complexity bound on the total cost of a gradient method. The second part of
the paper describes a practical Newton method that uses a smaller sample to compute
Hessian vector-products than to evaluate the function and the gradient, and that also
employs a dynamic sampling technique. The focus of the paper shifts in the third part of
the paper to L1 regularized problems designed to produce sparse solutions. We propose
a Newton-like method that consists of two phases: a (minimalistic) gradient projec-
tion phase that identifies zero variables, and subspace phase that applies a subsampled
Hessian Newton iteration in the free variables. Numerical tests on speech recognition
problems illustrate the performance of the algorithms.
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1 Introduction

In optimization for supervised machine learning, there exist two regimes in which popular
algorithms tend to operate: the stochastic approximation regime, which samples a small
data set per iteration, typically a single data point, and the batch or sample average ap-
proximation regime, in which larger samples are used to compute an approximate gradient.
The choice between these two extremes outlines the well-known tradeoff between inexpen-
sive noisy steps and expensive but more reliable steps, and has given rise to a myriad of
optimization algorithms for machine learning and stochastic programming. The availabil-
ity of parallel computing environments however, has developed a fairly different tradeoff,
namely the value of inexpensive sequential steps of stochastic gradient methods versus that
of batch steps in which function and gradients are computed in parallel.

In the first part of this paper, we consider the delicate issue of sample selection in the
evaluation of function and gradients. We present a practical algorithm for unconstrained
stochastic optimization that operates in a mini-batch framework, and that dynamically
increases the size of the training sample during the course of the algorithm’s progression.
The decision to increase the size of the training sample is based on sample variance estimates
of batch gradients. By initially selecting a small sample and gradually increasing its size,
the algorithm is able to keep overall costs low, while still managing to obtain the desired
level of accuracy. In this paper, we study the theoretical properties of a simplified steepest
decent method that incorporates this dynamic sample size technique, and we present results
pertaining to convergence in expectation, as well as complexity bounds for the total cost of
the algorithm.

Sample selection also plays a crucial role in the incorporation of curvature information
in a Hessian-free Newton method for machine learning [7, 21]. In this so-called subsampled
Hessian Newton-CG method, the step computation is obtained by applying the conjugate
gradient (CG) method, which only requires Hessian-vector products and not the Hessian
matrix itself. Within this context, the central question is how to select a useful training
sample for computing Hessian-vector products that is significantly smaller than the sample
used for function and gradient computations. In the second part of the paper, we discuss
a Newton-CG method that uses dynamic sampling for the evaluation of the function and
gradient as well as for the incorporation of Hessian information. The computational advan-
tages of the proposed dynamic method, over more traditional techniques, are illustrated on
a speech recognition problem provided by Google.

The third part of the paper considers optimization problems in which the objective
function is the sum of a convex loss function and an L1 regularization term. We propose
a two-phase method consisting of an active-set prediction phase and a subspace phase. A
minimum norm subgradient is employed to predict the zero components of the solution, and
a subsampled Hessian Newton-CG method is applied in the subspace phase. We compare
the performance of the algorithm with that of the orthant-wise L-BFGS method [2] on a
speech recognition problem, and observe that the subspace phase plays an important role
in generating sparse solutions quickly.

This paper can be seen as a continuation of the work in [7], which dealt with Hessian
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sampling techniques for a Newton-CG method. Here we take this work further, first by
considering also sample selection techniques for the evaluation of function and gradients,
and second, by studying the extension of Hessian sampling techniques to nonsmooth L1

regularized problems.

2 Preliminaries

The optimization problems analyzed in this paper have their origin in large-scale machine
learning, and with appropriate modifications, are also relevant to a variety of stochastic
optimization applications.

Let X × Y denote the space of input output pairs (x, y) endowed with a probability
distribution P (x, y). The objective is to determine the values of the parameters w ∈ Rm of
a prediction function f(w;x), which we assume to be linear in w. That is, given a training
point x ∈ Rm, we have that

f(w;x) = wTx.

The discrepancy between the predicted value ŷ
def
= f(w;x) and the known output y, for

a given input x, is measured by a convex loss function l(ŷ, y). Ideally, the optimization
algorithm computes the parameters w of the prediction function f(w;x) so as to minimize
the objective ∫

l(f(w;x), y)∂P (x, y). (2.1)

However, since the distribution P (x, y) is unknown, we use the data set that is at our
disposal and minimize instead the convex empirical loss function

J(w) =
1

N

N∑
i=1

l(f(w;xi), yi), (2.2)

which is defined over the entire data set {(xi, yi)}i=1,...,N . (In section 6, we consider the
case when the objective (2.2) also contains a regularization term of the form ‖w‖1.) We
assume that the size the data set, indicated by N , is extremely large, numbered somewhere
in the millions or billions, so that the evaluation of J(w) is very expensive.

Stochastic gradient algorithms, such as the Robbins-Monro method [26], its averaging
variant proposed by Polyak and Juditsky [25], and Nesterov’s dual averaging method [22],
have both low computational costs and fast learning rates, and have found a great deal of
success in solving large scale machine learning problems where the sheer volume of data
makes a full batch approach prohibitively expensive. These methods must, however, perform
a vast number of iterations before an appreciable improvement in the objective is obtained,
and due to the sequential nature of these iterations, it can be difficult to parallelize them; see
[23, 1, 10] and the references therein. On the other hand, batch (or mini-batch) algorithms
can easily exploit parallelism in the function and gradient evaluation, and are able to yield
high accuracy in the solution of the optimization problem [30, 2, 31], if so desired. Motivated
by the potential of function/gradient parallelism, the sole focus of this paper is on batch
and mini-batch methods.
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3 The Dynamic Sample Size Gradient Method

In this section, we describe a gradient-based mini-batch optimization algorithm in which
the size of the training sample used in the evaluation of the function and gradient increases
throughout the progression of the algorithm. At every iteration, the method chooses a
subset S ⊂ {1., ..., N} of the training set, and applies one step of an optimization algorithm
to the objective function

JS(w) =
1

|S|
∑
i∈S

l(f(w;xi), yi). (3.1)

At the start, a relatively small sample size |S| is chosen, and if it is judged that the opti-
mization step is likely to produce improvement in the “target” objective function J given
in (2.2), the sample size is kept unchanged, a new sample is selected, and a new optimiza-
tion step is computed. Otherwise, the algorithm chooses a larger sample size, selects a
corresponding sample S, and computes the next step. The benefit of this approach is that
the use of a small initial sample allows rapid progress in the early stages, while a larger
sample yields high accuracy in the solution, if so desired. The two crucial ingredients in
this sampling strategy are the condition that triggers an increase in the sample size and the
rule for choosing the new sample. We must therefore devise a measure of the quality of the
sample S, and for this purpose, we use the variance in the gradient ∇JS .

To motivate our approach, we note that the optimization algorithm, which enforces
descent in JS at every iteration, must also make progress on the target objective function J
sufficiently often to achieve convergence to the solution. It is easy to verify that the vector
d = −∇JS(w) is a descent direction for J at w if

δS(w)
def
= ‖∇JS(w)−∇J(w)‖2 ≤ θ‖∇JS(w)‖2, where θ ∈ [0, 1). (3.2)

The quantity δS(w) is, however, not available, since the evaluation of ∇J is prohibitively
expensive in applications involving very large training sets. Therefore, we propose approxi-
mating δS(w) by an estimate of the variance of the random vector ∇JS(w). This will allow
us to select the sample S so that the inequality (3.2) holds sufficiently often.

Before proceeding, it is convenient to simplify the notation. Let us write the prediction-
loss function for a given data point i, with respect to the variable w, as

`(w; i)
def
= l(f(w;xi), yi).

As a result, we have

JS(w) =
1

|S|
∑
i∈S

`(w; i) and ∇JS(w) =
1

|S|
∑
i∈S
∇`(w; i). (3.3)

For a given w ∈ Rm, the expected value of ∇JS(w) over all possible samples S ⊂ {1, . . . , N}
equals ∇J(w), so that the quantity δS(w) we wish to estimate satisfies

E[δS(w)2] = E[‖∇JS(w)−∇J(w)‖22] = ‖Var(∇JS(w))‖1, (3.4)
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where Var(∇JS(w)) is a vector of the same length as w. Therefore we need to estimate
the variance of ∇JS(w), where S is a sample chosen without replacement. Following [16,
p.183], we have

Var(∇JS(w)) =
Var(∇`(w; i))

|S|
(N − |S|)
N − 1

. (3.5)

Since the population variance Var(∇`(w; i)) is too expensive to compute, we approximate
it with the sample variance,

Vari∈S(∇`(w; i)) =
1

|S| − 1

∑
i∈S

(∇`(w; i)−∇JS(w))2 , (3.6)

where the square is taken component wise. In other words, by (3.4) and (3.5) we are making
the approximation

E[δS(w)2] ≈ ‖Vari∈S(∇`(w; i))‖1
|S|

(N − |S|)
N − 1

. (3.7)

Therefore, we replace the deterministic condition (3.2) by the inequality

‖Vari∈S(∇`(w; i))‖1
|S|

(N − |S|)
N − 1

≤ θ2‖∇JS(w)‖22. (3.8)

Since we are interested in the case when the training set is very large, we take the limit as
N →∞ and replace (3.8) with the stronger condition

‖Vari∈S(∇`(w; i))‖1
|S|

≤ θ2‖∇JS(w)‖22, (3.9)

which also corresponds to the case of sampling with replacement.
In our algorithm, if inequality (3.9) is not satisfied, we increase the sample to a size

that we predict will satisfy the descent condition. The heuristic for doing so is as follows.
Suppose we wish to find a larger sample Ŝ, and let us assume that change in sample size is
gradual enough that, for any given value of w,

‖Var
i∈Ŝ(∇`(w; i))‖1 ' ‖Vari∈S(∇`(w; i))‖1 and ‖∇JŜ(w)‖2 ' ‖∇JS(w)‖2. (3.10)

Under these simplifying assumptions, we see that condition (3.9) is satisfied if we choose
|Ŝ| so that

1

|Ŝ|
‖Vari∈S(∇`(w; i))‖1 ≤ θ2‖∇JS(w)‖22. (3.11)

Therefore, in the algorithm we select the new sample by means of the rule

|Ŝ| = ‖Vari∈S(∇`(w; i))‖1
θ2‖∇JS(w)‖22

. (3.12)

We can now describe the algorithm for minimizing the convex objective function J given
in (2.2).
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Algorithm 3.1: Dynamic Sample Gradient Algorithm

Initialize: Choose an initial iterate w0, an initial sample S0, and a constant θ ∈ (0, 1).
Set k ← 0. Evaluate JSk(wk) and ∇JSk(wk).

Repeat until a convergence test is satisfied:

1 Compute dk = −∇JSk(wk)

2 Line Search: compute step length αk > 0 such that

JSk(wk + αkdk) < JSk(wk)

3 Define a new iterate: wk+1 = wk + αkdk.

4 Set k ← k + 1.

5 Choose a sample Sk such that |Sk| = |Sk−1|.

6 Compute the sample variance defined in (3.6).

7 If condition (3.9) is not satisfied, augment Sk using formula (3.12).

The description of the line search in step 2 is deliberately vague to allow for the fixed
steplength strategy used in the next section, as well as the line search procedure of sec-
tion 5 that enforces a sufficient decrease condition. To highlight the theoretical advantages
of Algorithm 3.1, in the next section we present a complexity analysis for a gradient-based
dynamic sample size algorithm with fixed step length, under both deterministic and stochas-
tic conditions.

4 Complexity of a Dynamic Batch Gradient Method

In many optimization methods, the cost of each iteration is the same, and it is therefore
appropriate to establish complexity results that estimate the maximum number of iterations
needed to obtain an ε-accurate solution. In the dynamic sample size methods discussed in
this paper, however, the cost of the iteration varies greatly during the progression of the
algorithm. Therefore, in this context it is appropriate to measure the total amount of work
required to obtain an ε-accurate solution.

Bottou and Bousquet [6] give complexity estimates of this kind for steepest descent
and Newton methods, both in the deterministic and stochastic settings. They argue that,
when accounting for both the estimation and the optimization errors, the most rapidly
convergent optimization algorithms are not the best learning algorithms. Specifically, they
note that the complexity bound on the total computational cost for the stochastic gradient
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descent method of Robbins-Monro [26] is generally better than for the batch steepest descent
and Newton methods, as well as for an idealized stochastic Newton method. The overall
conclusion of [6] is that in the context of large-scale learning, the stochastic gradient descent
method is to be preferred over the other methods they consider.

The analysis of Bottou and Bousquet does not, however, cover dynamic batch algorithms
such as the one described in Algorithm 3.1. In this section, we study the complexity of a
gradient method that employs the described variable sample size strategy and show that
its complexity estimate is as good as that of the stochastic gradient descent method. The
savings accrued by increasing the sample size in an appropriate manner lead to measurable
improvements in the complexity of the algorithm, compared to the batch gradient method
studied in [6].

Our analysis is organized in two parts. First, we assume that the sample size is large
enough to ensure that the algorithm produces descent directions for the target objective J
at every iteration. In practice, this would require that ∇J be computed at every iterate,
which is prohibitively expensive. Therefore, in the second part of this section we extend
the analysis to the case when ∇J is never computed and the algorithm produces descent
directions with high probability.

4.1 Complexity in the Deterministic Case

We consider the minimization of a (deterministic) convex function J : Rm → R by means
of the following fixed-steplength steepest descent algorithm

wk+1 = wk − αgk, (4.1)

where α is a constant steplength, and gk is an approximation to ∇J(wk). As is common
in complexity studies, we consider an algorithm with a fixed steplength α instead of one
that performs an Armijo line search because the latter is more difficult to analyze. The
goal of this section is to give conditions on gk that guarantee convergence of the algorithm,
and provide a complexity bound for algorithm (4.1). Our main interest in this analysis is
to provide motivation for the approach presented in section 4.2.

We assume that J is twice continuously differentiable and uniformly convex, i.e., there
exist constants 0 < λ < L such that

λ‖d‖22 ≤ dT∇2J(w)d ≤ L‖d‖22, for all w. (4.2)

Thus, J has a unique minimizer that we denote by w∗.
Since ∇J(w∗) = 0, we have that

∇J(wk) = Hk(wk − w∗), where Hk =

∫ 1

0
∇2J((1− τ)w∗ + τwk)dτ. (4.3)

Combining this relation with (4.2) we have

∇J(wk)
T∇J(wk) = (wk − w∗)TH2

k(wk − w∗)
≥ λ(wk − w∗)THk(wk − w∗). (4.4)
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By convexity of J and (4.3) we have

J(w∗) ≥ J(wk) +∇J(wk)
T (w∗ − wk)

= J(wk) + (wk − w∗)THk(w∗ − wk),

and hence
(wk − w∗)THk(wk − w∗) ≥ J(wk)− J(w∗).

Substituting this in (4.4) we obtain

∇J(wk)
T∇J(wk) ≥ λ[J(wk)− J(w∗)]. (4.5)

Also, note that by (4.2),

J(wk) ≥ J(w∗) + λ
2‖wk − w∗‖

2
2

≥ J(w∗) + λ
2L2 (wk − w∗)TH2

k(w∗ − wk),

and thus
J(wk)− J(w∗) ≥ λ

2L2 ‖∇J(wk)‖22. (4.6)

We are now ready to analyze iteration (4.1). For convenience, we assume that J(w∗) = 0.

Theorem 4.1 Suppose that J is twice differentiable and uniformly convex, satisfying (4.2),
and that J(w∗) = 0. Let {wk} be the sequence of iterates generated by iteration (4.1) with

α = (1− θ)/L and θ ∈ (0, 1). (4.7)

If at an iteration k the approximate gradient gk satisfies

‖gk −∇J(wk)‖ ≤ θ‖gk‖, (4.8)

then

J(wk+1) ≤
(

1− βλ

L

)
J(wk) with β =

(1− θ)2

2(1 + θ)2
. (4.9)

Moreover, if condition (4.8) holds at every iteration we have that

{wk} → w∗, (4.10)

and the number of iterations, j, required to obtain J(wj) ≤ J(w∗) + ε is at most

L

βλ
[log(1/ε) + log(J(w0))]. (4.11)

In addition,

‖gk‖2 ≤
1

(1− θ)2

2L2J(w0)

λ

(
1− βλ

L

)k
. (4.12)
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Proof. Suppose that condition (4.8) holds at iteration k. Then we have both

‖∇J(wk)‖ ≤ (1 + θ)‖gk‖ and ‖∇J(wk)‖ ≥ (1− θ)‖gk‖. (4.13)

The second inequality and (4.8) yield

‖gk −∇J(wk)‖ ≤ θ
(1−θ)‖∇J(wk)‖.

Squaring (4.8) and recalling (4.13) we obtain

2∇J(wk)
T gk ≥ (1− θ2)‖gk‖2 + ‖∇J(wk)‖2

≥ [1− θ2 + (1− θ)2]‖gk‖2,

and thus
∇J(wk)

T gk ≥ (1− θ)‖gk‖2, (4.14)

implying that −gk is a descent direction for the objective function J . It follows from Taylor’s
theorem (4.1), (4.2), (4.7), (4.13) and (4.14) that

J(wk+1) ≤ J(wk)− (1−θ)
L ∇J(wk)

T gk + L
2 (1−θ

L )2‖gk‖2 (4.15)

≤ J(wk)− (1−θ)2
L ‖gk‖2 + L

2 (1−θ
L )2‖gk‖2

≤ J(wk)− (1−θ)2
2L ‖gk‖

2

≤ J(wk)− (1−θ)2
2L(1+θ)2

‖∇J(wk)‖2.

This can be summarized as

J(wk+1) ≤ J(wk)−
β

L
‖∇J(wk)‖2, (4.16)

where β is given in (4.9). Combining this relation with (4.5) we obtain

J(wk+1) ≤ J(wk)− βλ
L (J(wk)− J(w∗)),

and since we assume that J(w∗) = 0, we have

J(wk+1) ≤ (1− βλ
L )J(wk),

which proves (4.9).
Suppose now that condition (4.8) holds at every iteration. Then, we have from (4.9)

that
J(wk) ≤ (1− βλ

L )kJ(w0), (4.17)

and since the term inside the brackets is less than 1, we have that J(wk) → J(w∗) = 0.
Furthermore, since J is uniformly convex, this implies (4.10).

To establish (4.12), we combine (4.17), (4.6), (4.13) and the assumption that J(w∗) = 0.
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In order to obtain a complexity estimate, we need to bound the percentage of decrease
in J at every iteration. It follows from (4.17) that

log J(wk) ≤ k log(1− βλ
L ) + log J(w0)

≤ −k βλL + log J(w0),

where we used the bound log(1− x) ≤ −x, which follows by concavity of the log function.
Thus, for all k we have that

k ≤ L
βλ [log J(w0)− log J(wk)].

We now reason indirectly and suppose that J(wk) ≥ ε. This implies from the above relation
that k satisfies

k ≤ L
βλ [log J(w0)− log ε].

Conversely, if the last relation does not hold, i.e.,

k > L
βλ [log J(w0) + log(1/ε)], (4.18)

then we must have that J(wk) < ε. In summary, the number of iterations to reduce J(w)
below J(w∗) + ε is at most (4.11). 2

In proving this result, we have assumed that J is uniformly convex, which may be
seen as a limitation since some loss functions, such as logistic functions, are only convex.
Nevertheless, it is common in practice to add a regularization term of the form 1

2γw
Tw to

the objective (2.2), which guarantees uniform convexity. Moreover, uniform convexity is
useful in our setting since it allows us to highlight the effect of the condition number L/λ
of the Hessian on the complexity bound of the iteration.

4.2 Stochastic Analysis

We now consider the case when the objective function J is given by the expectation (2.1)
and the approximate gradient is defined as

gk = ∇JSk(wk) =
1

nk

∑
i∈Sk

∇`(wk; i), (4.19)

where from now on nk denotes the sample size at iteration k, i.e.,

nk
def
= |Sk|.

Given the stochastic nature of the problem, we could try to derive conditions of the sam-
ple size under which the gradient accuracy condition (4.8) is satisfied in expectation. As
discussed in section 3 (see (3.9)), it would then be appropriate to impose the condition

‖Vari∈Sk(∇`(w; i))‖1
nk

≤ θ2‖gk‖22, where θ ∈ [0, 1). (4.20)
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However, because of sample variation, it is not possible to guarantee that (4.20) is satisfied
at each iteration. Therefore, in our analysis we follow a different approach in which we
impose a minimal rate of increase in nk, rather than basing the choice of the sample size
on (4.20). To motivate this strategy, we make the following observations.

By (4.12), satisfaction of condition (4.20) at every iteration leads to

‖Vari∈Sk(∇`(w; i))‖1
nk

≤ θ2

(1− θ)2

2L2J(w0)

λ

(
1− βλ

L

)k
. (4.21)

Let us assume the existence of a constant ω such that,

‖Var(∇`(wk, i))‖1 ≤ ω ∀ wk. (4.22)

For the sake of the discussion, let us assume that this bound applies also to the sample
variance that appears on the left hand side of (4.21). Then, from that relation we obtain
the following bound on the sample size:

nk ≥ O
(

(1− βλ
L )−k

)
.

Thus the gradient accuracy condition (4.8) leads to linear convergence and suggests that the
sample size nk should grow geometrically with k. In our analysis we will therefore require
that the sample size satisfies

nk = ak for some a > 1, (4.23)

This will allow us to show linear convergence in expectation and to estimate the total cost
of achieving a specified accuracy.

We consider the dynamic batch steepest descent iteration

wk+1 = wk − 1
Lgk, (4.24)

where L is defined in (4.2) and the sample size changes at every iteration according to the
rule (4.23). We have omitted the term (1 − θ) used in (4.7) because it has no effect on
the expected value analysis presented in this section (i.e., shortening the steplength by the
factor (1− θ) is only needed for the deterministic Theorem 6.1 that imposed (4.8) directly).

We have by Taylor’s theorem and (4.2) that

J(wk+1) ≤ J(wk)− 1
L∇J(wk)

T gk + 1
2L ||gk||

2.

If we condition on wk, the only random quantity in this expression is gk, which is the
sample mean of the gradients ∇`(w; i), for i ∈ Sk. Taking expectations, and using the
equality E[gk] = ∇J(wk), we have

E[J(wk+1)] ≤ J(wk)− 1
L ||∇J(wk)||2 + 1

2LE[||gk||2]

= J(wk)− 1
L ||∇J(wk)||2 + 1

2L(||∇J(wk)||2 + ‖Var(gk)‖1), (4.25)
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where Var(gk) is the true variance of the sample mean gk, and we have used the fact that
for each component gik of the vector gk we have that Var(gik) = E[(gik)

2] − (E[gik])
2. From

(3.5), we note that

||Var(gk)||1 =
||Var(∇`(w; i))||1

nk

(N − nk)
N − 1

≤ ||V ar(∇`(w; i))||1
nk

As a result, the conditional expectation satisfies

E[J(wk+1)] ≤ J(wk)−
1

2L
||∇J(wk)||2 +

1

2Lnk
‖Var(∇`(w, i))‖1. (4.26)

Now, using (4.5) and (4.22) we have that, for all k,

E[J(wk+1)− J(w∗)] ≤
(

1− λ

2L

)
(J(wk)− J(w∗)) +

ω

2Lnk
. (4.27)

We can now establish convergence in expectation for the algorithm given by (4.23), (4.24).

Theorem 4.2 Suppose that for all k the sample size nk = |Sk| used in the definition (4.19)
of gk satisfies the relation nk ≥ ak for some a > 1, and that there is a constant ω such that
(4.22) holds for all wk. Then the sequence {wk} generated by the dynamic batch algorithm
(4.24) satisfies

E[J(wk)− J(w∗)] ≤ Cρk, (4.28)

for all k, where

ρ = max{1− λ/(4L), 1/a} < 1 and C = max{J(w0)− J(w∗), 2ω/λ}. (4.29)

Proof. Note that since E[J(w0) − J(w∗)] ≤ C, inequality (4.28) holds for k = 0. Now,
suppose that (4.28) holds for some k. Then by (4.27), the condition nk ≥ ak, the inequality
ρa > 1, and (4.29) we have,

E[J(wk+1)− J(w∗)] ≤
(

1− λ

2L

)
Cρk +

ω

2Lnk

≤ Cρk
(

1− λ

2L
+

ω

2LC(ρa)k

)
≤ Cρk

(
1− λ

2L
+

ω

2LC

)
≤ Cρk

(
1− λ

2L
+

λ

4L

)
≤ Cρk

(
1− λ

4L

)
≤ Cρk+1.

2

This result shows that E[J(wk) − J(w∗)] → 0 sufficiently rapidly, which allows us to
establish a bound on the total computational work required to obtain an ε-optimal solution.
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Corollary 4.3 The total number of evaluations of the gradients ∇`(w; i) needed to obtain
an ε-optimal solution is O(L/λε), and the total amount of work of algorithm (4.23)-(4.24)
is

O

(
Lm

λε
max{J(w0)− J(w∗), 2ω/λ}

)
, (4.30)

where m is the number of variables.

Proof. From (4.28) we have that the number of iterations k to achieve

E[J(wk)− J(w∗)] ≤ ε

satisfies
Cρk ≤ ε,

or equivalently,
k log ρ ≤ log ε− logC.

This is satisfied if k is as large as

log(ε−1) + logC

log(ρ−1)
. (4.31)

To estimate the cost of k steps, we recall that the sample size satisfies nk = ak, so that at
iteration k the computation of the batch gradient gk requires ak evaluations of the gradients
∇`(wk, i). Now, for k given by (4.31), we have

ak = a
log ε−1+logC

log ρ−1

= exp

(
log(a)

log ε−1 + logC

log ρ−1

)
=

(
exp(log ε−1 + logC)

) log a
− log ρ

=

(
C

ε

)τ
,

where τ = log a
− log ρ . Therefore, the total number of sample point gradient evaluations for the

first k iterations is
k∑
j=0

aj =
ak+1 − 1

a− 1
=

(
C
ε

)τ
a− 1

a− 1
≤

(
C
ε

)τ
1− 1/a

.

Note that by (4.29) we have that τ = log a
− log ρ ≥ 1. If we choose a so that a ≤ (1 − λ

4L)−1,

we have that ρ = 1/a, and hence τ = 1. In particular, if we let a = (1 − σ λ
4L)−1 for some

scalar σ ≤ 1, then τ = 1 and we have

k∑
j=0

aj =
4L

σλ

C

ε
.
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If we assume that the cost of evaluating each gradient∇`(w; i) is O(m), and by the definition
(4.29), we obtain (4.30). 2

The complexity result (4.30) holds if the constant a in the rule nk ≥ ak is chosen in the
interval (1, (1 − λ

4L)−1]. We can therefore select an appropriate value of a if the condition
number κ = L/λ is known. But it is not necessary to know this condition number exactly;
any overestimate will do. Specifically, the complexity bound will be valid for a = (1− 1

4κ′ )
−1

where κ′ ≥ κ.
Let us compare (4.30) with the complexity bounds computed by Bottou and Bousquet

[6] for a fixed sample gradient method and a stochastic gradient method, which are described
as follows:

Fixed Sample Gradient Method: wk+1 = wk −
1

L

∑Nε
i=1∇`(wk, i)

Nε
(4.32)

Stochastic Gradient Method: wk+1 = wk −
1

λk
∇`(wk; ik), (4.33)

where Nε specifies a sample size such that |J(w∗) − JS(w∗)| < ε. The complexity bounds
presented in [6] ignore the effect of the initial point w0, so to make a comparison possible,
we also remove the effect of the initial point from the bound (4.30).

Algorithm Name Bound Algorithm Description

Dynamic Sample Gradient Method O (mκω/λε) (4.23), (4.24)

Fixed Sample Gradient Method O(m2κε−1/ᾱ log2 1
ε ) (4.32)

Stochastic Gradient Method O(mν̄κ2/ε) (4.33)

Table 4.1: Complexity Bounds for Three Methods. Here m is the number of variables,
κ = L/λ is the condition number, ω and ν̄ are defined in (4.22), (4.34), and ᾱ ∈ [1/2, 1].

The scalar ᾱ ∈ [1/2, 1], called the estimation rate [6], depends on properties of the loss
function; the constant ν̄ is defined as

ν̄ = trace(H−1G), where H = ∇2J(w∗), G = E
[
∇`(w∗; i)∇`(w∗; i)T

]
. (4.34)

From this definition, we see that ν̄ is roughly comparable to the quantity ω/λ, where ω is
given in (4.22). Under this approximation, we have from the third line of Table 4.1 that
the bound for the stochastic gradient method is O

(
mωκ2/λε

)
, which is very similar to the

bound for the dynamic gradient method — the main difference is in the presence of the
term κ2 instead of κ. We thus conclude that the dynamic sample gradient method enjoys
a complexity bound that is competitive with the one for the stochastic gradient method.

So far in this paper, the discussion and analysis of the dynamic sampling strategy has
focused on pure gradient methods. We can, however, extend this strategy to more powerful
optimization methods. This is the subject of the next section.
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5 A Newton-CG Method with Dynamic Sampling

As is well known, the steepest descent method can be slow to converge, and algorithms that
incorporate curvature information about the objective function can be more efficient. In
this section we describe a Hessian-free Newton-CG method that employs dynamic sampling
techniques to compute the function and gradient, as well as Hessian-vector products. The
focus of this section is on the development of a practical algorithm, not on establishing
complexity bounds, and therefore our method is an extension of Algorithm 3.1 and not of
the idealized variant given by (4.23)-(4.24).

This paper goes beyond [7] in two respects. In [7] it is assumed that the sample Sk
used to evaluate the function and gradient is fixed, and here we incorporate the dynamic
sampling techniques of Algorithm 3.1. In addition, we propose a termination test for the
inner CG iteration that is suitable for a dynamic sample size algorithm, whereas in [7] the
number of CG iterations is fixed.

At every iteration, the subsampled Newton-CG method chooses a samples Sk and Hk
such that |Hk| � |Sk|, and defines the search direction dk as an approximate solution of
the linear system

∇2JHk(wk)d = −∇JSk(wk). (5.1)

The solution is computed by the Hessian-free conjugate gradient method in which∇2JHk(wk)
is never formed; instead the product of this Hessian times a vector is coded directly. The
requirement that the sample Hk be much smaller than the sample Sk is crucial, for it al-
lows the Hessian-vector product to be inexpensive enough to make the Newton-CG method
affordable. In order to avoid having too many parameters to tune, we assume henceforth
that the ratio

R = |Hk|/|Sk| (5.2)

is constant throughout the progression of the algorithm. Thus, although the sizes of Sk and
Hk may change, their ratio remains constant. A guideline in the choice of R is that the
total cost of Hessian-vector products in the CG algorithm should not be larger than the
evaluation of one gradient ∇JSk . In other words, the cost of one iteration of the Newton-CG
algorithm will be less than twice the cost of a steepest descent step that uses the gradient
∇JSk .

5.1 The Conjugate Gradient Iteration

We propose an automatic criterion for deciding the accuracy in the solution of the system
(5.1). It is based on the observation that the residual,

rk
def
= ∇2JHk(wk)d+∇JSk(wk), (5.3)

need not be smaller than the accuracy with which ∇2JHk(wk) approximates ∇2JSk(wk).
To be more precise, let us write

∇2JSk(wk)d+∇JSk(wk) = rk +
[
∇2JSk(wk)−∇2JHk(wk)

]
d. (5.4)
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The term on the left hand side is the residual of the standard Newton iteration in which
the (larger) sample Sk is used both for the Hessian and the gradient computations. The
last term on the right hand side,

∆Hk(wk; d)
def
=
[
∇2JSk(wk)−∇2JHk(wk)

]
d, (5.5)

measures the error in the Hessian approximation, along the direction d, due to the use of a
smaller sample Hk. It is apparent from (5.4) that it is inefficient to require that the residual
rk be significantly smaller than the Hessian approximation error ∆Hk(wk; d), as the extra
effort in solving the linear system may not lead to an improved search direction for the
objective function JSk(w). In other words, our goal is to balance the two terms on the right
hand side of (5.4) and to terminate the CG iteration when the residual rk is smaller than
∆Hk(wk; d), in norm.

The vector ∆Hk(w; d), like δS(w) in (3.2), is, however, not readily available. The CG
algorithm effectively computes the product ∇2JHk(wk)d at every iteration, but computing
the term ∇2JSk(wk)d would defeat the purpose of the Hessian sub-sampling approach.
Therefore, in a similar fashion to the gradient estimation technique of section 3, we use the
variance of ∇2JHk(wk)d to approximate (5.5).

Specifically, as in (3.7) we make the approximation

E[∆Hk(wk; d)2] ≈
‖Vari∈Hk

(
∇2`(wk; i)d

)
‖1

|Hk|
(|Sk| − |Hk|)
|Sk| − 1

≈
‖Vari∈Hk

(
∇2`(wk; i)d

)
‖1

|Hk|
, (5.6)

where the second approximation follows from the condition |Hk| � |Sk|.
Now, since the vector d is itself generated by the CG iteration, one, in principle, needs

to recompute the variance at every CG iteration. This may not be particularly expensive in
some settings, but in our implementation we employ a simpler strategy, where the variance
calculation is performed only once, at the beginning of the CG algorithm.

If we initialize the CG iteration at the zero vector, we have from (5.3) that the initial
CG search direction is given by p0 = −r0 = −∇JSk(wk). We compute the last term in (5.6)
at the beginning of the CG iteration, for d = p0. The stop test for the j + 1 CG iteration
is then set as

‖rj+1‖22 ≤ Ψ
def
=

(
‖Vari∈Hk

(
∇2`(w; i)p0

)
‖1

|Hk|

)
‖dj‖22
‖p0‖22

,

where dj is the jth trial candidate for the solution of (5.1) generated by the CG process
and the last ratio accounts for the the length of the CG solution. We describe this method
in Algorithm 5.1.
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Algorithm 5.1: Modified Conjugate Gradient Method for Problem (5.1)

Set d0 = 0, Ψ = 0. Compute r0 = ∇JSk(wk), set p0 = −r0, j = 0
While Residual Convergence Test has not been met, i.e. ||rj ||22 > Ψ

1. Compute sj = ∇2JHk(wk)pk

If j = 0, compute γ =
‖Vari∈Hk(∇2`(w; i)p0)‖1

|Hk|‖p0‖22
.

2. Perform CG iteration

αj = rTj rj/p
T
j sj

dj+1 = dj + αjpj

rj+1 = rj + αjsj

βj+1 = rTj+1rj+1/r
T
j rj

pj+1 = −rj+1 + βj+1pj

j = j + 1

3. Update stopping tolerance:

Ψ = γ||dj ||22
End

We note that, in Algorithm 5.1, we have scaled the tolerance Ψ by the length of the solution
vector computed by CG, thereby incorporating some aspect of its scale into the stop test.
An additional benefit of this approach is that if the sample size is quite small, and the
Hessian matrix for the sample Hk is nearly singular, then the revised CG algorithm will
terminate before the direction vector becomes too long.

5.2 Specification of the Newton-CG Algorithm

We can now describe the subsampled Hessian Newton method for minimizing the target
objection function (2.2), that employs the dynamic sample strategy discussed in section 3.
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Algorithm 5.2: Newton-CG Method with Dynamic Sampling

Initialize: Choose an initial iterate w0, initial samples H0 ⊆ S0, and a sampling ratio
R such that |H0| = R|S0|. Choose constants θ ∈ (0, 1), 0 < c1 < c2 < 1. Set k ← 0.

Repeat until a convergence test is satisfied:
1 Compute the search direction dk by means of Algorithm 5.1.

2 Compute a step length αk that satisfies the Wolfe conditions:

1. JSk(wk + αkdk) ≤ JSk(wk) + c1αk∇JSk(wk)
Tdk

2. ∇JSk(wk + αkdk)
Tdk ≥ c2∇JSk(wk)

Tdk.

3 Define the new iterate: wk+1 ← wk + αkdk.

4 Increment the counter k ← k + 1.

5 Choose a sample Sk such that |Sk| = |Sk−1|.

6 If condition (3.9) is not satisfied, augment Sk using formula (3.12).

7 Select a sample Hk ⊆ Sk, such that |Hk| = R|Sk| .

5.3 Numerical Results

To illustrate the benefits of dynamic sampling, we report results of Algorithm 5.2 on the
supervised learning speech recognition problem described in [7], which was modeled using
a multi-class logistic function. The objective function J is represented as a negative log-
likelihood function of the form

J(w) = − 1

N

N∑
h=1

log
exp(wTyhxh)∑
i∈C exp(wTi xh)

(5.7)

The goal in this speech recognition problem is to determine the parameter w that maxi-
mizes the probability of correct classification over the training set, and this is achieved by
minimizing (5.7). In this expression, C = {1, 2, · · · , 128, 129} denotes the set of all class
labels; yh ∈ C is the class label associated with data point h; xh is the feature vector for
data point h; and w is a parameter vector of dimension |C| × |F | = 10, 191, where |F | = 79
is the number of feature measurements per data point. In (5.7) wi denotes the parameter
sub-vector for class label i. The number of training points is N = 168776, and the number
of parameters, is m = 10191. The training set was provided by Google.

This problem is small enough to be run on a workstation, but sufficiently complex to be
representative of production-scale speech recognition problems. We tested Algorithm 5.2
against a variant that we call Algorithm 5.2-Static, in which |Sk| is constant for all k, i.e.,
the same sample size is employed at every iteration for function and gradient evaluations.
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In both variants, the Hessian ratio (5.2) is R = 0.1. Algorithm 5.2 employs an initial sample
S0 of size 1% of the total training set, and the parameter in (3.9) is θ = 0.5. In summary,
both variants implement a subsampled Hessian Newton-CG method; Algorithm 5.2-Static
is the method proposed in [7], using a fixed CG limit of 10 iterations, whereas Algorithm 5.2
is a refinement that allows a dynamic increase in the sample Sk, in addition to the dynamic
CG control.

Figure 5.1 displays the results of the comparative experiments in which Algorithm 5.2-
Static is run with two values for the (fixed) sample size |Sk|, namely |Sk| = N and
|Sk| = 0.05N . The horizontal axis plots the number of accessed data points, which is a
representative measure of total computing time on a single machine; it takes into account
function, gradient, and Hessian-vector products (see [7]). Instead of plotting the objective
function J , which is a negative log likelihood function, the vertical axis plots the corre-
sponding probability of correct classification, defined as exp(−J(w)), so that the problem is
presented in Figure 5.1 as a maximization problem. The gains obtained by using a dynamic
sample size strategy are apparent in this experiment.

Figure 5.1: Comparison of Algorithm 5.2 (Dynamic) and Algorithm 5.2-Static, the latter
with |Sk| equal to 100% and 5% of the training set size N

Next, we present data to measure the accuracy of the sample variances used in Algorithm 5.2,
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for this test problem. In Table 5.1, we report the values of the following quantities:

A :
‖Vari∈S(∇`(w; i))‖1

|S|
B : ‖∇JSk(w)−∇J(w)‖22

Y :
‖Vari∈Hk

(
∇2`(wk; i)∇JSk(wk)

)
‖1

|Hk‖‖∇JSk(wk)‖22

Z :
‖[∇2JSk(wk)−∇2JHk(wk)]∇JSk(wk)‖22

‖∇JSk(wk)‖22
.

In the light of the discussion in Section 3, we would like to observe whether the sample
variance A is a reasonably good estimator for the error in the gradient, denoted by B.
Similarly, based on the discussion in this section, we would like to compare quantities Y
and Z.

Iter: k A B Y Z

1 0.041798576 0.039624485 0.015802753 0.016913783
2 0.040513236 0.03736721 0.033969807 0.034863612
3 0.036680293 0.035931856 0.027860283 0.019185297
4 0.028538358 0.028526197 0.017811839 0.017687138
5 0.02030112 0.01974306 0.015910543 0.014236308
...

...
...

...
...

13 0.001539071 0.001843071 0.002523053 0.002681272
14 0.000981444 0.001307763 0.0022572 0.002574446
15 0.000613751 0.000929579 0.000793887 0.001335829
16 0.000190385 0.00052025 0.000516926 0.00049049
17 0.000048608 0.000381851 0.00059497 0.0005979

Table 5.1: Analysis of Error Estimations

The table indicates that, for this test problem, the sample variances computed in the
algorithm are reasonably accurate measures of the errors they estimate. We report only 17
iterations in Table 5.1 because at that point the dynamic sample strategy of Algorithm 5.2
has set |Sk| = N . It is worth noting that, at that iteration, the objective function value
exp(−J(w17)) ≈ 0.123, is close to its optimal value of 0.136. Therefore, as can be seen from
Figure 5.1, most of the improvement in the objective function occurred while Algorithm 5.2
was operating in a dynamic sample regime.

In Figure 5.2, we report the effect of the parameter θ (see (3.9)) on the performance
of Algorithm 5.2. In this experiment we set R = 0.1, and tested four values of θ. Note
that as θ increases, the algorithm becomes more tolerant to larger variances in the batch
gradient ∇JS , and will tend to keep a sample size longer. We observe from Figure 5.2
that larger values of θ lead to an overall improvement in performance since they allow
smaller sample sizes at the early iterations of the algorithm. The plots for θ = 0.5 and
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Figure 5.2: Comparison of varying θ values for Algorithm 5.2

0.75 are almost identical, but the behavior becomes more erratic as θ increases, as observed
in the jagged line for θ = 0.75. This is to be expected; although the increased flexibility
allowed for accelerated performance in the early iterations, tolerating larger deviations in
the approximate gradient is more likely to result in steps that do not yield progress in the
target objective J(w).

6 A Newton-CG Method for L1 Regularized Models

Statistical learning models involving a very large number of parameters often benefit from
the inclusion of an L1 regularization term that forces some of these parameters to be zero.
In this section, we describe a subsampled Hessian Newton-CG method for problems of this
kind, in which the objective function (2.2) is replaced by

F (w) =
1

N

N∑
i=1

l(f(w;xi), yi) + ν‖w‖1 = J(w) + ν‖w‖1, (6.1)

where ν > 0 is a (fixed) penalty parameter. Our mini-batch method chooses a subset
S ⊆ {1., ..., N} of the training set, and applies an optimization algorithm to solve the
related problem

min
w∈Rm

FS(w) = JS(w) + ν‖w‖1, (6.2)
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where JS is defined in (3.1).
A variety of first-order methods have been proposed for problem (6.1) (see for example

[32, 15, 12, 4, 33, 14, 13]) and have proven to be very effective for many online applications.
In keeping with the main theme of this paper, however, we consider only methods that
incorporate second order information about the objective function and operate in a mini-
batch setting. For simplicity, we assume in this section that the sample size |S| is fixed,
so that we can focus on the challenges that arise in the design of a Hessian-free Newton
method for the nonsmooth problem (6.1). (An extension of our method to the case when
the sample size |S| changes at every iteration is the subject of a future paper.)

The proposed algorithm consists of two phases: an active-set prediction phase and a
subspace minimization phase. The prediction phase estimates the variables that are zero
at the solution, and identifies an active orthant where the subspace minimization is to take
place. (Note that the objective (6.1) is smooth when restricted to any orthant in Rm.)
The subspace phase then minimizes a quadratic model of the objective function over the
variables that are not active, to determine a direction along which progress in the objective
can be made. A projected backtracking line search is performed to ensure that the new
iterate remains in the same orthant as the current iterate, and yields a reduction in the
objective FS . The subspace phase plays the dual role of accelerating convergence toward
the solution while promoting the fast generation of sparse solutions.

There are several ways of implementing the two phases of the algorithm. One could
employ iterative shrinkage [12] or the gradient projection method [24, 5] for the prediction
phase; in this paper we chose a special form of the latter. For the subspace phase, one could
minimize FS [17, 9] instead of a quadratic model of this function [8, 20], but we choose to
work with a model due to the high cost of evaluating the objective function.

6.1 Derivation of the Algorithm

The active-set prediction phase consists of a gradient projection search based on the subdif-
ferential of the nonsmooth function F (w); more specifically on the steepest descent direction
at the current iterate w. We recall that, at a given a point w, the steepest descent direction
for the non-smooth convex function F is defined as the solution of the problem

min
‖d‖2≤1

dF (w + αd)

dα
|α=0.

For the function FS defined in (6.2), this steepest descent direction, which we denote by
−∇̃FS , is given by

[∇̃FS(w)]i =



∂JS(w)
∂wi

+ ν if wi > 0,
∂JS(w)
∂wi

− ν if wi < 0,
∂JS(w)
∂wi

+ ν if wi = 0, and ∂JS(w)
∂wi

< −ν,
∂JS(w)
∂wi

− ν if wi = 0, and ∂JS(w)
∂wi

> ν,

0 otherwise,

(6.3)

where the superscript i indicates a component of a vector.
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To identify the working orthant at the k-th iteration, we perform an “infinitesimal
search” along the steepest descent direction, starting at the current iterate wk. Let us
define

ŵk(α)
def
= wk − α∇̃FS(wk), for α > 0. (6.4)

The following cases arise: (i) If wik > 0, then ŵik(α) will remain positive for sufficiently
small α in (6.4), and in this case the active orthant is characterized by a positive component
along the ith variable. If, on the other hand, wik < 0, the active orthant corresponds to
a negative component along the ith variable; (ii) When wik = 0 and ∂JS(w)/∂wi < −ν,
we have from (6.4) that ŵik(α) is positive for small α. Alternatively, when wik = 0 and
∂JS(w)/∂wi > ν, then ŵk(α) becomes negative for small α; (iii) Finally, when wik = 0 and
−ν < ∂JS(w)/∂wi < ν, then ŵik(α) = 0, indicating that this variable should be kept at
zero.

Therefore, the orthant identified by an infinitesimal line search along the steepest descent
direction is characterized by the vector

zik =



1 wik > 0,

−1 wik < 0,

1 wik = 0, and
∂JSk (wk)

∂wi
< −ν,

−1 wik = 0, and
∂JSk (wk)

∂wi
> ν,

0 otherwise.

(6.5)

The significance of the vector zk is evidenced by the fact that it defines the orthant

Ωk = {d : sign(di) = sign(zik)}, (6.6)

and in the relative interior of Ωk, the function ‖w‖1 is differentiable, with its gradient given
by zk. Those variables with zik = 0 constitute the active set Ak, and will be kept at zero
during the subspace phase, while the rest of the variables are free. Thus,

Ak ,
{
i| zik = 0

}
. (6.7)

Having identified the working orthant, the subspace minimization phase computes a solution
of the following convex quadratic problem

min
d∈Rm

mk(d)
def
= FSk(wk) + ∇̃FSk(wk)

Td+ 1
2d

T∇2JHk(wk)d (6.8)

s.t. di = 0, i ∈ Ak. (6.9)

As in the previous section, the sample Hk used for the Hessian is chosen to be much smaller
than the sample Sk used for the function and gradient. The minimization of the model
mk(d) is performed by means the Hessian-free Newton-CG method, i.e., by applying the
CG method to the linear system[

Y T
k ∇2JHk(wk)Yk

]
dY = −Y T

k ∇̃FSk(wk), (6.10)
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where Yk is a basis spanning the space of free variables, and dY is a vector of length n−|Ak|.
Specifically, we define Yk to be the n × (n − |Ak|) matrix where each column has a 1 in
the position of a given free variable and a 0 elsewhere. Given the approximate solution of
(6.10) dY , we define the search direction of the algorithm to be dk = Ykd

Y .
Next, we perform a projected backtracking line search, as follows. Let P (·) denote the

orthogonal projection onto the orthant Ωk. Thus,

P (wi) =

{
wi if sign(wi) = sign(zik)

0 otherwise.
(6.11)

The line search computes a steplength αk to be the largest member of the sequence 1, 1/2, 1/4, ...
such that

FSk(P [wk + αkdk]) ≤ FSk(wk) + σ∇̃FSk(wk)
T (P [wk + αkdk]− wk), (6.12)

where σ ∈ (0, 1) is a given constant. The new iterate is defined as wk+1 = P [wk + αkdk].
This method is summarized in Algorithm 6.1

While the orthant identified at every iteration of Algorithm 6.1 coincides with that
generated by the OWL method [2], the two algorithms differ in two respects. In the subspace
minimization phase, OWL computes a limited memory BFGS step in the space of free
variables, while Algorithm 6.1 employs the subsampled Hessian Newton-CG method. The
second difference between the two algorithms, is that the OWL algorithm performs an
alignment of the subspace step dk with the steepest descent direction (6.3) by resetting

[dk]
i ←

{
[dk]

i if sign([dk]
i) = sign([−∇̃FSk(wk)]

i),

0 otherwise
(6.14)

at every iteration. The alignment is motivated by the need to achieve global convergence
properties, but our computational experience indicates that it slows down the iteration.
Moreover, the convergence proof given in [2] is not correct, due to an invalid assumption
made in Proposition 4. A simple counter-example can be constructed that contradicts this
assumption, based on the non-expansive property of projections and the realignment step.
Since there are more appropriate mechanisms for guaranteeing convergence, as we explain
at the end of section 6.2, we have omitted the alignment procedure (6.14) in our algorithm.

6.2 Numerical Tests

To assess the effectiveness of Algorithm 6.1, we test it on a larger version of the speech
recognition problem described in section 5.2. The new problem has N = 191607 training
points and m = 30315 parameters in w. This problem was chosen to admit a useful sparse
solution: while the training set is only 14% larger than that used in section 5.2, there are
almost 3 times more parameters. We compare the following two methods in Figures 6.1
and 6.2:
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Algorithm 6.1: Newton-CG Algorithm for Solving Problem (6.1)

Initialize: Choose an initial iterate w0, constants η, σ ∈ (0, 1), a CG iteration limit
maxcg, the regularization constant ν > 0 and initial samples H0 and S0 such that
|H0| < |S0|.
for iteration k = 0, · · · , and until a convergence test is satisfied:

1. Determine the active set Ak and the active orthant characterized by zk, as given
by (6.7) and (6.5), respectively.

2. Subspace Minimization Phase.

2.1 Compute ∇̃FSk(wk) = ∇JSk(wk) + νzk, where zk is given in (6.5).

2.2 Apply the conjugate gradient method to compute an approximate solution
dk of the linear system (6.10). The CG iteration is terminated when either
maxcg iterations have been performed or when the residual rk in (6.10)
satisfies

rk ≤ η‖Y T
k ∇̃FSk(xk)‖. (6.13)

3. Perform line search. Determine the largest value αk ∈ {1, 1
2 ,

1
4 , . . .} such that

condition (6.12) is satisfied. Set

wk+1 = P [wk + αkdk]

where P is defined in (6.11)

4. Resample the data sets Hk+1, Sk+1 so that |Hk+1| = |H0| and |Sk+1| = |S0|.

i) The OWL algorithm using two values of the limited memory parameter, namely 5
and 20. We tested the implementation provided in LibLBFGS

http://www.chokkan.org/software/liblbfgs/

ii) The subsampled Hessian Newton L1 method of Algorithm 6.1 with maxcg = 10,
R = |Hk|/|Sk| = 0.05 and |Sk| = N .

For both methods, the initial point is w0 = 0. Figure 6.1 plots the objective function F ,
and Figure 6.2 plots the number of non-zeros in the solution wk, both as a function CPU
time (more precisely, the number of training points accessed). We observe that although
Algorithm 6.1 is only moderately faster than OWL in terms of improvement in the objective
function, it is much more effective at generating a sparse solution quickly.

We have mentioned that Algorithm 6.1 and the OWL method employ the same orthant
identification mechanism at each iteration, but our derivation views the use of the steepest
descent direction to select the orthant as a version of a gradient projection step. This has the
advantage of suggesting variants of the algorithm and mechanisms for establishing global
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Figure 6.1: Comparison of OWL (with memory 5 and 20) and Algorithm 6.1. The vertical
axis plots the objective function, and the horizontal axis, the number of accessed data points

Figure 6.2: Comparison of OWL and Algorithm 6.1. The vertical axis plots the number
of non-zeros in the solution vector, and the horizontal axis, the number of accessed data
points.
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convergence. For example, if the “infinitesimal” line search was replaced by a projected
search in which a quadratic model was minimized, one might obtain a better prediction of
the active orthant, particularly in the early stages, and one could establish convergence.
The design of a more elaborate gradient projection search is, however, not simple, and we
defer an investigation of this topic, as well as the design of a procedure for varying the
sample size |Sk|, to a future paper.

7 Related Work

Variable sample size methods for stochastic optimization have been a subject of previous
research. Due to the dynamic nature of varying sample sizes, the traditional convergence
results developed for sample average approximation require additional conditions. Shapiro
and Wardi [29] present convergence results in the framework of point-to-set mappings,
whereas further examination by Kleywegt et al. [19] and Shapiro and Homem-de-Mello [28]
provide results that show convergence for specific classes of problems.

The premise of our dynamic sample size algorithm is to efficiently generate directions
that decrease the target objective function, sufficiently often. In [27], Shapiro and Homem-
de-Mello follow a similar strategy, presenting a variable sample size methodology where the
determination of the new increased sample size is computed using a confidence ellipsoid for
the stochastic gradient estimate, denoted in this paper as ∇JSk(wk). However, for large
scale problems, this methodology is not computationally feasible given that the sample
covariance matrix is required for the determination of the confidence ellipsoid. Further, if
the sample size is not large enough, the corresponding covariance matrix is poorly estimated
and could result in very large values for the suggested sample size that must be safeguarded.

Alternative strategies have been proposed that are fairly diverse in the implementation
of variable sample size strategies, all of which have proven convergence properties. In
[18], Homem-de-Mello presents a variable sample size method that utilizes only function
values, within the framework of a pure random search method. The iteration progresses,
provided the samples satisfy corresponding statistical t-tests, to ensure that the algorithm
can determine a good sample size. Deng and Ferris [11] construct a variable sample size
methodology for simulation based optimization, where no analytical form for the function
exists. Along the lines of utilizing simulation, Bastin et al. [3] also suggest a varying sample
size methodology that uses Monte Carlo methods. The main strategy of this algorithm is to
adapt the traditional deterministic trust-region approach to handle both stochasticity and
adaptive sample sizes. The strategy for increasing the sample is quite different from the
one presented in this paper; it relies on function values and a system of sample size updates
analogous to update rules for trust region sizes.

8 Final Remarks

In conclusion, we have proposed advancements to the topic of subsampling as presented in
[7]. We firstly presented a dynamic sample size gradient based strategy for solving large
scale machine learning problems, using a batch optimization framework. There are two
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components of this sampling strategy: the first being the condition as to when the sample
size should increase, and the second, being the rule for choosing the new sample size.
The strategic development of this sampling strategy focused on utilizing sample variance
estimates to ensure that the algorithm makes sufficient progress on the target objective
function. We presented convergence results for the deterministic case, as well as competitive
complexity results for the stochastic case. Furthermore, we have presented numerical results
using a speech recognition problem, illustrating the improved performance of our dynamic
sample size strategy, in comparison to the previous sub-sampling algorithm given in [7].

The second contribution of this paper is the extension of the Hessian subsampling strat-
egy to the L1-regularized problem. We present this strategy as a two phase method, com-
posed of an active set identification phase using an infinitesimal line search, and a subspace
minimization phase that utilizes the Hessian subsampling technique. We present numerical
results for a sparse version of the speech recognition problem, and we have shown that
our algorithm is able to outperform the OWL algorithm presented in [2], both in terms of
sparsity and objective value.

Some questions still remain in utilizing sampling strategies for the L1 regularized prob-
lem. The use of a different active set identification mechanism, other than an infinitesimal
line search, could yield a more useful subspace for performing the second minimization step.
Secondly, the design of dynamic sampling techniques for evaluating the function and the
gradient is a challenging endeavor in the L1 context, and remains to be explored. Further
research into these questions could lead to the design of more powerful methods for solving
large scale regularized problems.

Acknowledgments. The authors thank Will Neveitt for many valuable insights and sugges-
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[20] C.J. Lin, J.J. Moré, et al. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.



Dynamic Sample Sizes in a Semi-Stochastic Setting 30

[21] J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

[22] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Math. Program.,
120(1):221–259, 2009.
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