
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

AdaBoost-based face detection for embedded systems

Ming Yang a,*, James Crenshaw b, Bruce Augustine c, Russell Mareachen c, Ying Wu d

a NEC Laboratories America, Cupertino, CA 95014, United States
b Dolby Laboratories, Burbank, CA 91505, United States
c Motorola Inc., Schaumburg, IL 60196, United States
d EECS Dept., Northwestern Univ., Evanston, IL 60208, United States

a r t i c l e i n f o

Article history:
Received 9 January 2009
Accepted 17 March 2010
Available online 21 April 2010

Keywords:
Face detection
AdaBoost
FPGA
Genetic Algorithm

a b s t r a c t

Face detection is a widely studied topic in computer vision, and recent advances in algorithms, low cost
processing, and CMOS imagers make it practical for embedded consumer applications. As with graphics,
the best cost-performance ratio is achieved with dedicated hardware. In this paper, we design an embed-
ded face detection system for handheld digital cameras or camera phones. The challenges of face detec-
tion in embedded environments include an efficient pipeline design, bandwidth constraints set by low
cost memory, a need to find parallelism, and how to utilize the available hardware resources efficiently.
In addition, consumer applications require reliability which calls for a hard real-time approach to guar-
antee that processing deadlines are met. Specifically, the main contributions of the paper include: (1)
incorporation of a Genetic Algorithm in the AdaBoost training to optimize the detection performance
given the number of Haar features; (2) a complexity control scheme to meet hard real-time deadlines;
(3) a hardware pipeline design for Haar-like feature calculation and a system design exploiting several
levels of parallelism. The proposed architecture is verified by synthesis to Altera’s low cost Cyclone II
FPGA. Simulation results show the system can achieve about 75–80% detection rate for group portraits.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Computer vision technology has experienced steady progresses
both in theoretical study and practical applications in recent years.
Many workable software and hardware systems have been pro-
posed for video-based security surveillance [1,2], human–com-
puter interaction (HCI) [3,4], intelligent traffic control [5],
autonomous vehicles and robotic navigation [6], medical image
processing [7], and machine vision in industrial control [8]. Besides
conventional vision applications, popularity of handheld devices
with cameras creates potential for new applications [9] in PDA’s,
cell phones [10], or any small battery driven devices. Meanwhile,
the design methodologies [11] and computational capacity of
embedded systems are soaring [9]. So, it is exciting from both a
technical and commercial perspective to tailor algorithm develop-
ment to the needs of low cost embedded vision systems.

For handheld cameras, human faces are a very common target
of interest [12]. In addition, frontal face detection is usually the
first step to initialize many computer vision tasks like tracking, rec-
ognition and image enhancement. In this paper we investigate the

parallelism in the state-of-the-art AdaBoost-based face detection
algorithm and port it to an embedded system for handheld cam-
eras. The challenges mainly lie in efficient hardware architecture
design, since most published vision algorithms do not take into
consideration hardware characteristics and parallel processing
which involves pipeline design, data flow arrangement, and paral-
lel acceleration. For the algorithm, we improve the AdaBoost-based
face detection on two aspects: in training stage, in order to fully ex-
ploit the given hardware resources, we propose to incorporate the
Genetic Algorithm (GA) into the AdaBoost training to minimize the
false positive rate given the number of Haar features; while in
detection stage, for a hard real-time design we propose a new com-
plexity control scheme in which unlikely candidate windows are
skipped based on spatial correlation between successive scales.

We verify the cost of the hardware system by synthesizing for a
low cost field programmable gate array (FPGA), suitable for inte-
gration in moderately-priced handheld cameras. Simulation results
show this real-time detection system achieves 75–80% detection
rate for group portraits.

The AdaBoost-based face detection algorithm and the Genetic
Algorithm will be briefly reviewed in Section 2, as well as some
other hardware face detection systems. In Section 3 we propose
a new Genetic Algorithm based optimization for AdaBoost training
and the hard real-time complexity control scheme. The system
architecture design and complexity analysis are presented in

1077-3142/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2010.03.010

* Corresponding author. Fax: +1 408 863 6099.
E-mail addresses: myang@sv.nec-labs.com (M. Yang), james.crenshaw@dolby.

com (J. Crenshaw), Bruce.Augustine@motorola.com (B. Augustine), Russell.
Mareachen@motorola.com (R. Mareachen), yingwu@ece.northwestern.edu (Y. Wu).

Computer Vision and Image Understanding 114 (2010) 1116–1125

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

Author's personal copy

Section 4. The experimental results are given in Section 5. Conclud-
ing remarks are presented in Section 6.

2. Related work

2.1. AdaBoost-based face detection

The purpose of face detection is to locate any faces present in
still images. This has long been a focus of computer vision research
and has achieved great successes [13–16]. Comprehensive reviews
are given by Yang [17] and Zhao [18].

Among face detection algorithms, the AdaBoost [19] based
method proposed by Viola and Jones [20] has gained great popular-
ity due to a high detection rate, low complexity, and solid theoret-
ical basis. The fast speed of AdaBoost method is mainly due to the
use of simple Haar-like features and a cascaded classifier structure,
which excludes most of the image window hypotheses quickly.

In a pre-processing stage, an auxiliary image Ii, called the inte-
gral image or summed-area table [21] is calculated from the origi-
nal image Io, where the value Ii(i, j) is the sum of pixels above or to
the left of position (i, j) in Io. Using Ii, the sum of pixel intensities in
any rectangle in Io can be calculated in constant time. Afterwards,
each candidate image window w, at all positions and all scales, is
fed into a cascaded classifier. At each stage, the classifier response
h(w) is the sum of a series of feature responses hj(w).

hðwÞ ¼
Xni

j¼1

hjðwÞ; hjðwÞ ¼
aj1 fjðwÞ < tj

aj2 otherwise

�
; ð1Þ

where fj(w) is the feature response of the jth Haar feature and aj1

and aj2 are the feature weight coefficients. If h(w) is less than a
threshold t, the candidate window w is regarded as non-face and
thrown away, otherwise it proceeds to the next classifier. Multiple
detections for one face are pruned by non-maximum suppression at
the last step. Fig. 1 shows the block diagram. Please refer to Viola
and Jones [16] and Lienhart [21] for the details.

Besides superior performance, the popularity of AdaBoost-
based face detection also originates from low average execution
time. As will be shown, it can be modified to allow for steady data
flow and an efficient hardware implementation. However, there
are challenges for an embedded system in that the algorithm as-
sumes random access of the large integral image and considerable
processing for multiplication and floating-point operations.

2.2. Genetic Algorithm optimization

Although the computational capabilities of chips are much
more powerful than before and the transistors may be regarded
free in general, given a specific hardware platform the resources
including the computation units and storage are fixed and limited,
which is one primary issue for hardware systems. It is always
desirable to enhance the system performance given the available

resources. For the AdaBoost-based face detection algorithm, the re-
sources for integral image calculation and the imaging are deter-
mined by the image resolution, while the detection performance
and the worst-case latency mainly depends on the number of Haar
features used in the cascaded classifier as in Eq. (1). However, the
optimization problem to minimize the expected number of Haar
features N given a target false positive rate F and detection rate
D is ‘‘tremendously difficult” [16], so in Viola and Jones’s original
algorithm they employed a greedy search scheme to select Haar
features and build the classifier. In this paper we employ the Ge-
netic Algorithm as an optimization tool to minimize the false posi-
tive rate given the number of Haar features while maintaining
similar detection rate.

The Genetic Algorithm (GA) or Evolutionary Algorithm (EA) pro-
posed by Holland [22] is an analog to creature population evolu-
tion, which can be viewed as a function optimizer [23]. In
genetic algorithms, a sample point in the solution space of an opti-
mization problem is often encoded as a binary string called ‘‘chro-
mosome” or ‘‘genotype”. A large population of ‘‘chromosomes”
evolves according to the ‘‘fitness” or ‘‘reproductive ability” deter-
mined by a problem dependent evaluation function. During the
evolution, mutation and crossover operations are performed on
the population to generate new sample points in the solution
space, which may be viewed as hyperplane sampling in the huge
solution space. The typical usages of the Genetic Algorithm are
concerned with nonlinear problems in which parameters cannot
be treated as an independent variable and solved separately. Gen-
erally speaking, GA can be viewed as a global search method that
does not rely on gradient information. A detailed discussion about
GA is given in Whitley [23].

Recently, there have been some attempts to apply the GA in
AdaBoost-based detection. In Treptow [24], evolutionary search
was employed to select one feature in an enlarged Haar feature
pool. The advantage is that instead of exhaustive search over all
features evolutionary search can speed up the training and effec-
tively find one good Haar feature in a quite large feature pool in
reasonable time. Chen [25,26] used the GA to generate new posi-
tive training samples for AdaBoost face detector. Since the Haar
features selected in the stage classifier are dependent on each
other and there is no analytic relation between the number of fea-
tures in classifier and its detection performance, this optimization
problem to minimize the false alarm rate given the number of Haar
features is nonlinear and hard, so well suitable for GA optimization.
In addition, the classifiers which are a combination of Haar features
can also be described as hyperplanes, as will be further explained
in Section 3.

2.3. Hardware systems for face detection

In the literature, there have been some attempts on hardware
implementations of diverse face detection algorithms where the

Stage 1 Stage 2 Stage n
Prune

multiple
detections

T

FF F

TT

Haar feature pool

Integral image

Cascaded classifiers Post-processing

Fig. 1. Block diagram of AdaBoost-based face detection.

M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125 1117

Author's personal copy

data flow is regular and parallelism can be easily identified, for
example, tone color detection based methods [27,28] or Neural
Networks based methods [29]. For skin-color methods, in the train-
ing stage a statistical skin-color model in a certain color space is
learned with labeled skin pixels. During detection, skin pixels are
extracted with this model, and then heuristics based on face edge
templates [27] or connected component analysis [28] are applied
to determine face regions. Generally, skin-color methods are effi-
cient and robust to geometric transformation. Nevertheless, no
matter what color space is used, skin-color models are not reliable
in unconstrained environments since illumination conditions and
variation among individuals cause considerable face color changes.
Synthesis results were shown for the Neural Network method [29].
This Neural Network method is not computationally efficient. It
took several hundred cycles to process one image window, there-
fore only 965 candidate windows were evaluated in each
300 � 300 image, which may considerably compromise the detec-
tion performance.

Recently, hardware implementations of the AdaBoost-based
face detection algorithm were investigated in [30–33] with some
preliminary results reported. A parallel architecture for AdaBoost
algorithm was very briefly discussed in [31] and was synthesized
using a commercial library targeted for a 500 MHz clock cycle. Big-
deli et al. [32] studied the effects of replacing certain software bot-
tleneck operations by custom instructions on embedded
processors, especially the image resizing and floating-point opera-
tions, but did not fully implement the entire algorithm in hard-
ware. Lai et al. [33] presented a fairly complete design for
network-on-chip (NoC) architecture that was verified on a Xilinx
Virtex-II Pro FPGA, but no face detection performance was system-
atically evaluated. In this paper, we identify several practical issues
arising from the hardware design and present a detailed investiga-
tion of reasonable solutions for detection algorithm design and
hardware implementation.

3. Motivation and algorithm design

To port the AdaBoost face detection algorithm to an embedded
system, tailoring the algorithm to efficiently and effectively utilize
the hardware resources is critical. Given a specific hardware plat-
form, the computational capability is fixed. Then, for an AdaBoost
face detector the computational efficiency is mainly determined
by the number of Haar features can be implemented on this hard-
ware platform and the number of candidate image windows eval-
uated at run-time. Besides the computational capability, the
bandwidth constraint between off-chip memory and processing
engines are often the bottleneck for the entire system. Unlike a
desktop implementation, which includes a large and expensive
cache memory hierarchy, the random access of memory could be
expensive for an embedded system. Therefore, finding of a regular
data flow will greatly enhance the efficiency of RAM access and
facilitate a pipeline arrangement.

The number of Haar features implemented on the hardware
mainly determines the silicon area of the design and the worst-
case latency. Given the available hardware resources on a specific
platform, the maximal number of Haar features is bounded. The
original feature selection method in [16] is a greedy approach,
searching for the current best Haar feature in the feature pool
and adding it into the classifier, then testing if the pre-defined
requirements of detection rate and false positive rate are satisfied,
if not it continues to search for the next best Haar feature. To im-
prove the selection of Haar features in the classifier, we introduce
the GA optimization method in the AdaBoost training stage.

In practice, in addition to the discrimination power of classifi-
ers, the number of candidate image windows evaluated also plays

a significant role in detection accuracy. The number of features
examined at run-time is a data dependent variable. So, a complex-
ity control scheme is indispensable to meet hard real-time dead-
lines of the hardware platform. We propose a complexity control
method that exploits the spatio-temporal correlation between
the image windows, to skip some unlikely image windows and in-
crease detection rate when computational resources are
overloaded.

In addition, to reduce hardware complexity and abide by
real-time restrictions, we make some modifications to the
AdaBoost-based algorithm. In the following, we will introduce
the GA optimization method in the AdaBoost training stage, the
hard real-time control scheme in the detection stage, and the algo-
rithmic modifications, respectively.

3.1. Haar feature selection with the Genetic Algorithm

Generally speaking, appearances of faces can be regarded as a
nonlinear manifold in a high dimensional space, e.g., a 400-dimen-
sional space for 20 � 20 image windows. Each Haar feature with a
threshold in Viola–Jones’s detector can be regarded as a hyper-
plane in this space, hence one classifier with ni Haar features splits
the space into 2ni hypercells. One stage classifier describes a hyper-
object that contains the face manifold, and the next classifier fur-
ther cuts off non-face hyperregions from this hyperobject to
delineate a more accurate approximation to the face manifold.
The total number of features in the Haar feature pool is usually
quite large, e.g., 43,844 in our training, so finding the optimal clas-
sifier with ni features is a quite hard optimization problem. The GA
is essentially a hyperplane sampling process in the huge solution
space, which is a natural choice to solve this complicated optimiza-
tion problem.

We employ the GA to further improve the AdaBoost classifier
obtained by the greedy scheme. For a classifier with ni features,
we first generate the initial populations of S ‘‘chromosomes”,
where each chromosome is a classifier with ni Haar features
ff11; . . . ; f1ni

g. We will use the term chromosome and classifier
alternately in this section. The evaluation function of the ‘‘fitness”
of each chromosome is the false positive rate on the training set,
since this is the variable we intend to optimize. Another choice is
the expected error on the entire training set. Note if the detection
rate is below a pre-defined value this ‘‘chromosome” loses the
chance to survive, which guarantees the similar detection rate as
the original training. After performing mutation and crossover
operations with certain probability on each chromosome, the chro-
mosomes whose fitness are below the average are replaced by the
best chromosome, while the others survive to the next generation.
In this simple GA scheme, the best chromosome in each generation
always has the dominant populations and greater chance to further
evolve into a better classifier with higher ‘‘fitness”. The one with
the lowest false positive rate in the last generation is returned as
the final classifier. The mutation and crossover operations for one
chromosome are defined as:

� Mutation. With the probability Pm = 0.1, one of the Haar fea-
tures in the classifier is replaced by the best feature in the
remaining feature pool.

� Crossover. With the probability Pc = 0.5, half of the Haar fea-
tures in the classifier are exchanged with another randomly
selected classifier.

The entire GA procedure is summarized as follows:

� Initialization. The initial set of chromosomes are generated by
the greedy scheme in the original AdaBoost training.

1118 M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125

Author's personal copy

� One generation evolution. For each generation, do the follow-
ing operations to each chromosome:
– Mutation and crossover. Perform mutation and crossover

operations with certain probability to each chromosome.
– AdaBoost learning. AdaBoost learning to determine the

optimal threshold for each classifier.
– Chromosome evolution. Evaluate the fitness of each chro-

mosome and replace those whose fitness lies below the
average by the best one.

� Final classifier selection. Select the best classifier from chro-
mosomes at the last generation.

As shown in the experiments, as more generations are used in
the GA optimization, the false positive rate drops from the order
of 10�6 to 10�7.

3.2. Hard real-time complexity control

There may be hundreds or even thousands of features in a
detector. Although, according to [16], 80–90% of candidate image
windows are skipped after the first 2 stage classifiers, the provable
upper bound on number of Haar features evaluated at run-time for
one frame is very high. For a hard real-time success, a complexity
control mechanism is indispensable to guarantee that every frame
can be processed in the exact designated time interval.

The straightforward solution is to truncate processing at given
deadlines no matter how many image windows are processed.
However, then faces present in latter candidate windows may be
missed. Our scheme to control the run-time complexity meets hard

real-time deadlines and has graceful degradation when the time
budget is critical, at a cost that the detection rate may drop about
5%.

Given a clock frequency, a desired frame rate, throughput of
classifier pipeline, and overhead of integral image calculation, we
can estimate how many features can be evaluated in one frame, de-
noted as Fframe. For a specific image resolution and scaling factor,
we know the maximal number Wframe of candidate image windows.
The goal of complexity control is to make the best use of Fframe in
case not all Wframe windows can be examined. Basically, we exploit
the spatio-temporal correlation of image windows to make predic-
tions to guide the classifiers and skip unlikely windows. This is
based on the observation that if one image window passes all the
tests of classifiers on a certain scale, it is very likely that the same
region at the smaller scale passes more stage classifiers than aver-
age. An example is illustrated in Fig. 2 where the spatial distribu-
tions of the number of stage classifiers passed by the candidate
image windows are drawn for the rightmost portrait image. In
the 3 graphs on the left of Fig. 2, the X–Y axis indicates the spatial
locations of candidate windows at three successive scales and the Z
axis shows the number of stage classifiers that the candidate win-
dows have passed. We can observe that around the true position of
the face, i.e., the highest peaks of the three graphs on the left, the
spatial distributions of the number of classifiers one candidate
window pass are quite similar at different scales. Another observa-
tion is that for most video sequences, for portraits in particular,
there is strong temporal correlation between frames.

Assume one window wfsig at scale si is rejected at the kth classi-
fier, we denote it as nðwfsigÞ ¼ k (if wfsig passes all N stages,

10 20 30 40 50 60 70 80 90 100 110

10
20
30
40
50
60
70
80

0

2

4

6

8

10

10 20 30 40 50 60 70 80

10

20

30

40

50

60

0

2

4

6

8

10

10 20 30 40 50 60

5
10
15
20
25
30
35
40

0

2

4

6

8

10

Fig. 2. The spatial distributions of the number of stage classifiers the candidate windows pass at three successive scales for a portrait image.

M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125 1119

Author's personal copy

nðwfsigÞ ¼ N þ 1). Our idea is to use the average of n(w) at the smal-
ler scales to guide the search at the larger scale. If we run out of the
time budget at a frame and have to omit some scales, we intention-
ally make up these scales in the next frame. Specifically, for scale si

an integral table, a summed-stage table (SST) of nðwfsigÞ which re-
cords the accumulated sum of nðwfsigÞ, namely the number of stage
classifiers at which candidate windows are being rejected, is built
during the evaluation process. From the position of larger window
wfsiþ1g, we can determine the set of windows Oðwfsiþ1gÞ that have
overlapped regions with wfsiþ1g at the scale si and calculate the
average nðwfsigÞ in constant time with the SST which is just like cal-
culating the Haar feature responses with the integral image Ii. If
nðwfsigÞ is below a certain threshold Tn, this window is skipped
without being tested by the rest of stage classifiers, and nðwfsiþ1gÞ
is set to Tn, which means it plays no role at the next scale. The en-
tire procedure is summarized in Fig 3.

The detection rate may drop 5% if some face windows are
skipped erroneously. However, all face candidate windows still
pass all stage classifiers in the cascade, which implies that false
positives do not increase. This is a desirable result, since usually
applications prefer sacrifice of detection rate over more false pos-
itives to avoid showing regions which are incorrectly classified as
faces. The experimental results of the complexity control scheme
will be presented in Section 5.

3.3. Detection algorithm modifications

Some modifications and simplifications are applied to the algo-
rithm to facilitate hardware implementation. Specifically, we re-
scale the integral image on the fly; fixed-point numbers are used
instead of floating-point ones for the coefficients and thresholds
in the AdaBoost classifiers; the Haar feature pool is reduced; and
we approximate the normalization factor for lighting condition
correction.

Although [16] suggested that re-scaling a frame is more expen-
sive than re-scaling the features, this is not always so. For an
embedded system without a large cache, the loss of data locality
incurred by the larger re-scaled features is worse than the cost of
including a small re-scaling block, because loss of locality implies
the main memory is accessed for each use of integral image data
– beyond the bandwidth affordable in a low-cost device. But a
re-scaler runs in parallel, takes little logic, and not much band-
width. We re-sample a 25 � 25 block to a 20 � 20 and write back
to the integral image store as shown in Fig. 4. Thus, only Haar fea-
tures for 20 � 20 window need to be stored and applied, which
greatly reduces the bandwidth since data brought in is re-used
for adjacent windows. Another benefit of scaling factor 1.25 is that
only shift and add operations are required.

Although simple Haar features enable fast lighting correction by
maintaining another integral image of sum of squared pixels, this is
expensive in terms of storage and bus traffic. Here we approximate
the normalization factor r of image window w by the average sum

r ¼ f ðwÞ
AðwÞ, where f(w) is the sum of pixels in w and A(w) is the area of

w. With this approximation, every feature response only involves
one multiplication, fi(w) < ti�f(w) instead of division.

Other modifications include the conversion from floating-point
to fixed-point for thresholds, ti, and coefficients, aj. Specifically, we
use 30 bits for ti and 15 bits for aj. For simplicity, only the six types
of Haar features shown in Fig. 1 are implemented instead of the en-
hanced 45� tilted Haar feature set described in [21], which have no
fundamental difference from the rectangular features. Empirically,
these approximations work well (less than 1% loss in detection
rate) for the majority of portrait images tested.

4. System design

Four instances of parallelism are considered. At task-level, a
pipeline can be formed between acquiring frames, computing inte-
gral frames, and detecting faces within frames. Detecting faces at
two different positions is parallelizable. Feature calculations can
be overlapped. Lastly, feature calculation and image re-scaling
can run in parallel.

4.1. System architecture

One goal for this design is to ensure the hard real-time deadline
of providing a list of face locations once per image capture time.
Another goal is suitability for use as a block in a chip. Fig. 5 shows
the system block diagram, and illustrates how our design can be
situated with a CPU, external memory, image sensor, and image
sensor interface. It is assumed that the internal bus and memory
interface provide bandwidth and latency guarantees to the Integral
Image Computer and the Face Detection Engine (Fig. 6).

Top level tasks for face detection and a resolution of their data
dependence is shown in Fig. 7. Two frames can be overlapped since
there is no data dependence between them. Exposure time will be
overlapped, so that the total time per frame, Tf, are Tr + Td millisec-
onds, where Tr is the readout time for the frame, and Td is the time

Fig. 3. The pseudocode for the complexity control procedure.

a b

c d

a b
c d

e

e = a + (b-a)/4 + (c-a)/4 + [(d-a) – (b-a) – (c-a)]/16

Fig. 4. The re-scaling procedure for an integral image.

1120 M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125

Author's personal copy

during which detection is done. The exposure time, Te can exceed
Tf, but this case only makes detection deadlines easier.

Rather than moving image data out to main memory and then
back in for integral image computation, a small hardware block
is connected directly to the Imager Interface. This is shown in
Fig. 5 as the Integral Image Computer. With two more line store
RAMs, the block could also compute rotated integral images such
as those in [21].

At the top level of the Feature Detection Engine, the tasks of
fetching integral data from main memory, computing the classifi-
ers on the current windows, re-scaling the integral image, and

writing results to main memory run in parallel. Fig. 6 shows the
top level design.

Use of a block RAM is illustrated in Fig. 8. Each external memory
location is loaded twice: first as the bottom part of the block of
windows, and then again in the top when the next block RAM
row is brought in. As shown, the internal RAM has four read ports,
which limits throughput to 1 feature per 2 cycles.

To understand the Classifier Pipeline design, it is necessary to
have an idea of the procedure for computing a feature detection,
which is shown as pseudocode in Fig. 9. The Classifier Pipeline de-
sign uses the integral image data to find weighted image areas for
comparison. Overlapping execution of the pipeline for three suc-
cessive feature calculations, A, B, and C, is shown in Fig. 10. Latency
of the pipe is 5 cycles, but throughput is 1 feature per 2 cycles. The
example shows the hardest feature type, requiring eight values
from the integral image data. It is easy to modify the pipeline to
find the rotated features in [21].

4.2. Performance analysis

Image sensor frame rate and pixel rate set the overall system
deadlines and integral image processing times, respectively. How-
ever, these are not limiting factors. External memory bandwidth, B
(in MB/s) and feature calculation throughput, C (in cycles per fea-
ture) are the critical values. Several second order effects are ig-
nored, including latencies of feature response calculation and
integral image computation, which are hidden by overlapped
execution.

From B and C, two related values can be derived, which make
the overall discussion clearer. The first is the rate at which blocks
of integral image data are delivered to the detection engine. This
is determined by the height of the block RAM in Fig. 8 which is
32 high, so each integral frame data value is loaded twice, for total
external bandwidth of 2 � 310K pixels/frame � 4 bytes/pixel � -
frame rate fps, which for a frame rate of 10, would be 24 MB/s
(note that the 4 bytes/pixel comes from the size used for the inte-
gral data).

The second derived value is cycles per integral block. For the
example with block height 32, there are four 20 pixel-high win-
dows per block, so cycles per block are 4 � window_rate cycles/
window. Window_rate is not constant, so here we use an average
of 20 features per window. For the described feature pipeline, we
have 40 cycles per window. The average is thus 160 cycles per
block. Since the next block to the right overlaps by 16 out of 20 pix-
els, during the 80 cycles of computation we must bring in 4 � 32
integral frame values.

The minimum time spent on a block is thus governed by the
rate at which blocks are brought in, so even if the classifier termi-
nates the testing early in only one feature per window, the system
still takes at least 128 cycles for the block. It would be nice to gain

Face Detection Engine

Classifier
Pipeline

Image
Rescaler

Current
Window

Next
Window

Block RAM

Classifier Feature
ParamaterRAM

Control
FSM

Write
Queue

Internal Bus

Fig. 6. The face detection engine.

Exposure Time Frame Readout
Integral Image Calc

Store Integral Data Read Integral Data

Compute Classifiers
Resize Image

Read Feature Parameters
Write Rescaled Integral Data
Write Face Detection Results

TaskResource

Image Sensor
Integral Frame Calculator

System Bus

Face Detection Engine

Tfms
Te ms Trms Td ms

Fig. 7. Resource usage for each task and data dependence among tasks in a given frame. Note that exposure time will be overlapped with the previous frame’s computation.

Integral
Image

Computer

General
Purpose

CPU

Memory
Interface

External
Memory

Face Detection Chip

Block
RAM

Classifier
Pipeline

Image
Rescaler

Face Detection Engine

Internal Bus

Imager
Interface

Image
Sensor
Chip

Fig. 5. The system architecture.

M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125 1121

Author's personal copy

back extra cycles, but it is not crucial since the rate per block is still
better than average. The complexity control scheme covers this.

More generally, the maximum throughput of the system can be
limited by the speed at which data can be delivered by main mem-
ory, or by the rate of computation in the feature detector (or both
in actual operation due to data variation). Since feature detector
throughput is a function of internal clock rate, and memory band-
width depends on the number and speed of external RAM chips, a
set of curves can be constructed showing system throughput as a
function of internal clock rate for different external bandwidth val-
ues (see Fig. 11). In the graph, all values assume an average of 12
features per detection window. Adjusting the block RAM size alters
these values.

5. Empirical results

5.1. Training settings

The training program is based on the implementation of
OpenCV library [21]. The training data set employs 857 frontal

faces and 3000 negative images. The minimal detection rate is
0.997 and the maximal false positive rate is 0.5 for each stage clas-
sifier. The AdaBoost detector trained for 20 � 20 windows includes
15 stage classifiers. The test set includes 133 upright frontal faces
obtained from short portrait video chips and images on internet.

5.2. The GA optimization

We incorporate the GA optimization into the AdaBoost training
and test the performance for different number of chromosomes
and the total number of generations. Fig. 12 compares the false po-
sitive rate of the AdaBoost classifiers obtained by different training
schemes, i.e., the original greedy search scheme and the GA optimi-
zation method. The dot line shows the false positive rate of the
classifier using the original greedy search method implemented
by [21]. The solid black line draws the false positive rate of each
stage classifier before the GA optimization in our approach. The
dash line illustrates the false positive rate of our approach using
the GA optimization. The three figures from left to right in
Fig. 12 show the performance using 5, 30, and 60 generations in

/* set RAM address lines */
/* data is ready next cycle */
1: RAM_port1_addr<-a
2: RAM_port2_addr<-b
3: RAM_port3_addr<-c
4: RAM_port4_addr<-d
/* step 5 finds sum of pixels *
* in rect 1 by integral image */

5: Rect1_sum = RAM_port4_data
-RAM_port3_data
-RAM_port2_data
+RAM_port1_datav

6: RAM_port1_addr<-e
7: RAM_port2_addr<-f
8: RAM_port3_addr<-g
9: RAM_port4_addr<-h
/* step 10 finds sum of pixels *
* in rect 2 by integral image */

10:Rect2_sum = RAM_port4_data-RAM_port3_data
-RAM_port2_data+RAM_port1_data

11:window_weight = window_sum
* feature_weight

/* step 12 finds value to use for comparison */
12:decision = Rect2_sum - Rect1_sum - window_weight

Fig. 9. The pseudocode for feature calculation.

A1
A2
A3
A4

A6
A7
A8
A9
A5 A10

A11

A11
A11

B1
B2
B3
B4

B6
B7
B8
B9
B5 B10

B15

B13
B14

C1
C2
C3
C4

C5

C6
C7
C8
C9

C10

C15

C13
C14

Block RAM Port 4
Block RAM Port 3
Block RAM Port 2
Block RAM Port 1

Multiply Stage 2
Multiply Stage 1
Rectangle Sum

Multiply Stage 3

cy1 cy2 cy3 cy4 cy5 cy6 cy7 cy8 cy9

Multiply Stage 4
Threshold compare A12

A11
B17

B16
C17

C16

Fig. 10. The feature calculation pipe.

Th
ru

pu
t

(w
in

/s
)

Internal ck freq (MHz)

B = 400 MB/s312.5K

62.5

B = 200 MB/s

B = 300 MB/s

B = 100 MB/s

3.13 9.6415.6

234.4K

156.3K

78.1K

Fig. 11. Performance curves for different external bandwidth values.

32 rows high,
4 window positions

20 columns wide,
execute classifiers from
this portion of the RAM

While classifiers
run on data to
left, load next here.

Block RAM is loaded
in steps across a row.
Overlap from row to row
is 16 rows. So each data
element is brought in from
main memory exactly twice.

Full integral image in external RAM

Previous row of
blocks.

Current row of
blocks.

Fig. 8. Use of the Block RAM.

1122 M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125

Author's personal copy

the GA, where our approach lowers the false positive rate consis-
tently. At the 15th stage classifier of the cascaded AdaBoost classi-
fier, the false positive rate drops one order from 10�6 to 10�7 with
the same number of Haar features. The detailed quantitative re-
sults of the false positive rate (FP) and the detection rate (DR) using
different number of generations (# of gene.), number of chromo-
somes (# of chrom.), and number of selected features (# of feat.),
are shown in Table 1. The improvement keeps increasing with
the number of generations in the GA, which shows the effective-
ness of our method.

The lower false positive rate of our approach is achieved at the
cost of additional training efforts after obtaining the AdaBoost clas-
sifier using the greedy search scheme. The most computationally
expensive module in training the AdaBoost classifier is to select
the optimal Haar feature in the feature pool at each iteration,
which involves testing the classification performance of each fea-
ture on the whole training data set and finding the threshold. Thus,
the training time of the greedy search scheme is approximately
proportional to the number of Haar features in one stage classifier,
in contrast the training time of the GA method can be estimated
from the number of generations since a stage classifier evolves as
a chromosome. If 60 generations are used in the GA, the training
time is about 60/212 = 28.3% more than that of the original greedy
search.

5.3. Hard real-time control

In our proof-of-concept implementation, we use an FPGA chip
with 50 MHz system clock. The overhead of integral image calcula-
tion and image capture is approximately 1 M cycles per frame. At
10 fps, 4 M cycles per frame are available, which yields Fframe = 2M.
The total number of windows, Wframe = 320K, so the average budget
is F ¼ 6:25, which is only slightly larger than the number of fea-
tures in the first classifier. Without any control scheme, the actual
number of features evaluated in run-time ranges from 3.5M to 4M,
which amounts to 10–12 features evaluated per window.

We compared our complexity control approach with the trun-
cation scheme (where the detector moves on to the next frame if
the hard real-time deadline is reached) in terms of the number of
detected faces (# of DF), the number of false positive (# of FP),
the detection rate (DR), and the average ratio (skipped ratio) of
windows skipped to Wframe in our method. The detection result
when no deadline is enforced is listed to demonstrate the detec-
tor’s performance. The detection results are shown in Table 2.

Some representative detection results on portraits with diverse
face sizes are shown in Fig. 13.

Since the time budget to calculate Haar responses is only
slightly larger than one half of what is needed, the truncation
scheme skips the majority of windows on large scales. Thus the
detection performance deteriorates dramatically in that scheme.
In our scheme, the threshold Tn is 3, which is fairly conservative.
On average 22% of the total windows are skipped based on the spa-
tial correlations in the hard real-time control scheme in Section
3.2. If some large windows are omitted due to the deadline, they
can be made up in the next frame. Our complexity control scheme
slightly decreases the detection rate and false positive rate simul-
taneously by allocating more computational resources to more
likely windows.

5.4. Synthesis results

To estimate the cost of the design, it was coded in Verilog and
synthesized for the Altera Cyclone II FPGA family. Cyclone is low-
priced with less capability than the Stratix line or Xilinx’s Virtex
line. Cyclones are good because it is feasible to use them directly
in moderate volume applications, and designs which fit this family
are very small in ASICs.

The particular design choices include a 120 � 24 Feature Engine
Block RAM. This gives system bus headroom for transfers ignored
in the earlier discussion. The Integral Computer also includes an
output FIFO of about 30 Kbits, which was expedient but could be
eliminated with further work (so it is not listed in Table 3). The
Feature Engine throughput is 2 cycles per feature, based on 4 data
ports as described earlier.

Table 3 shows the total use of logic. Logic Element count is
based on complex programmable logic blocks found in FPGA chips,
and using a rough rule of thumb, the design has 32 to 45 KGates
logic (nand2 equivalent) and size is dominated by RAM.

The Memory Blocks column refers to Altera’s 4 Kbit RAM blocks,
so the design uses parts of 95 such blocks for a total of 22 KBytes of
storage. Total size of the design is quite small, despite the lack of
several area optimizations omitted due to design time.

5.5. Discussions

The overall detection performance without time constraint is
lower than the results reported in [16] since we have made some

Fig. 12. Comparison of false positive rates.

Table 1
Comparison of the greedy search (GS) and the GA optimization.

of gene. # of chrom. # of feat. FP of GS FP of GA DR of GA

5 10 229 3.51 � 10�6 9.77 � 10�7 0.97780
30 50 218 6.25 � 10�6 4.55 � 10�7 0.97199
60 80 212 3.83 � 10�6 3.79 � 10�7 0.97666

Table 2
Comparison of our approach and the truncation scheme.

Method Total # of faces # of DF # of FP DR Skipped ratio

No deadline 133 107 15 80.5% 0
Truncation 133 68 10 51.1% 0
Our method 133 101 13 75.9% 22%

M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125 1123

Author's personal copy

tradeoffs between performance and implementation complexity.
For example, the modification of lighting correction factor avoids
maintaining another integral image of sum of squared pixels which
generally requires 64-bit floating-point numbers to store. This
modification significantly saves storage and bus bandwidth at
the cost of lower detection rates at some extreme lighting condi-
tions. Other tradeoffs such as using thresholds with low precision
in the boosting classifiers and excluding the tilted Haar feature
set have no major impacts on the performance. Given limited
memory storage and bandwidth constraints, our approach is prac-
tical and suited for hardware implementation of the AdaBoost face
detection algorithm. The Haar features are inherently insensitive to
random image noise.

Handheld embedded architectures are rapidly evolving. We ex-
pect vision specific capabilities will be added in a manner similar
to the evolution that graphics processing has gone through. In this
paper, we have described a target FPGA architecture suitable for
inclusion in a dedicated vision processing unit similar to the image
processing chips found in camera modules or those included with
the camera interface of applications processors. The advantages of
doing an FPGA version include rapid prototyping, early timing clo-
sure, and having a way to quickly iterate and test design improve-
ments. Furthermore, as a case study example, the complexity
control scheme for enforcing the real-time execution, the buffering

scheme utilizing the processor data cache hierarchy, and the paral-
lelism and pipeline designs for the AdaBoost face detection pro-
posed in this paper are also beneficial to other hardware
platforms, e.g., DSP or OMAP.

6. Conclusions and future work

In this paper, we proposed an efficient embedded system design
for AdaBoost-based face detection algorithm which exploits avail-
able parallelism. We identified some practical issues arising from
the hardware design and presented a detailed investigation of rea-
sonable solutions. The proposed GA based optimization of classifi-
ers and the complexity control scheme are beneficial to any hard
real-time implementation, whether hardware or software based.
The proof-of-concept design can be synthesized for an FPGA cost-
ing as little as $20, which supports wide applicability for many
consumer applications. There is still room to further improve the
detection performance, so our future work includes increasing
the throughput of detection engine pipeline to evaluate more im-
age windows.

Acknowledgments

This work was supported in part by National Science Founda-
tion Grant IIS-0347877 and IIS-0916607 and Motorola UPR
Fellowship.

References

[1] W. Hu, T. Tan, L. Wang, S. Maybank, A survey on visual surveillance of object
motion and behaviors, IEEE Trans. Syst., Man, Cybern. C 34 (3) (2004) 334–352.

[2] T.B. Moeslund, A. Hilton, V. Kruger, A survey of advances in vision-based
human motion capture and analysis, Comput. Vis. Image Understanding 104
(2-3) (2006) 90–126.

[3] V.I. Pavlovic, R. Sharma, T.S. Huang, Visual interpretation of hand gestures for
human–computer interaction: a review, IEEE Trans. Pattern Anal. Machine
Intell. 19 (7) (1997) 677–695.

[4] A. Jaimes, N. Sebe, Multimodal human computer interaction: a survey, Comput.
Vis. Image Understanding 108 (1-2) (2007) 116–134.

Fig. 13. Representative detection results.

Table 3
Synthesis results for primary modules.

Logic
elements

Memory
bits

Memory
blocks

Feature Engine Datapath and
Control

1582 0 0

Feature Engine Data RAMs 45 31,284 10
Feature Engine Block RAM 4173 103,680 64
Integral Computer Datapath and

Control
524 0 0

Integral Computer RAMs 70 34,633 21
Total 6394 197,226 95

1124 M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125

Author's personal copy

[5] Z. Sun, G. Bebis, R. Miller, On-road vehicle detection: a review, IEEE Trans.
Pattern Anal. Machine Intell. 28 (5) (2006) 694–711.

[6] D.G.C. Race. <http://www.darpa.mil/grandchallenge>.
[7] I.N. Bankman, Handbook of Medical Image Processing and Analysis, Elsevier

Inc., 2009.
[8] E.N. Malamas, E.G.M. Petrakis, M. Zervakis, L. Petit, J.-D. Legat, A survey on

industrial vision systems, applications and tools, Image Vis. Comput. 21 (2)
(2003) 171–188.

[9] B. Kisacanin, S.S. Bhattacharyya, S. Chai, Embedded Computer Vision, Springer
Inc., London, 2008.

[10] X. Tang, Z. Ou, T. Su, P. Zhao, Cascade AdaBoost classifiers with stage features
optimization for cellular phone embedded face detection system, in:
International Conference on Advances in Natural Computation (ICNC), vol. 3,
Changsha, China, 2005, pp. 688–697.

[11] M. Sen, I. Corretjer, F. Haim, S. Saha, J. Schlessman, S.S. Bhattacharyya, W. Wolf,
Computer vision on FPGAs: design methodology and its application to gesture
recognition, in: Workshop in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), San Diego, CA, 2005.

[12] H. Nozaki, Y. Motoki, H. Hibino, T. Maeda, T. Ohta, Digital camera, US Patent
Application Publication 0,088,538, 2005.

[13] H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face detection, IEEE
Trans. Pattern Anal. Machine Intell. 20 (1) (1998) 23–38.

[14] K.-K. Sung, T. Poggio, Example-based learning for view-based human face
detection, IEEE Trans. Pattern Anal. Machine Intell. 20 (1) (1998) 39–51.

[15] H. Schneiderman, T. Kanade, Object detection using the statistic of parts, Int. J.
Comput. Vis. (IJCV) 56 (3) (2004) 151–177.

[16] P. Viola, M.J. Jones, Robust real-time object detection, Int. J. Comput. Vis. 57 (2)
(2004) 137–154.

[17] M.-H. Yang, D. Kriegman, N. Ahuja, Detecting faces in images: a survey, IEEE
Trans. Pattern Anal. Machine Intell. 24 (1) (2002) 34–58.

[18] W. Zhao, R. Chellappa, P. Phillips, Face recognition: a literature survey, ACM
Comput. Surveys 35 (4) (2003) 399–458.

[19] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, in: European Conference on Computational
Learning Theory, 1995, pp. 23–27.

[20] P. Viola, M.J. Jones, Rapid object detection using a boosted cascade of simple
features, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, Hawaii, 2001, pp. 511–518.

[21] R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object
detection, in: IEEE Conference on Image Processing (ICIP), vol. 1, New York,
2002, pp. 900–903.

[22] J.H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, 1975.

[23] D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (1994) 65–85.
[24] A. Treptow, A. Zell, Combining AdaBoost learning and evolutionary search to

select features for real-time object detection, in: IEEE Congress on
Evolutionary Computation (CEC), vol. 2, Portland, OR, 2004, pp. 2107–2113.

[25] J. Chen, X. Chen, W. Gao, Expand training set for face detection by ga re-
sampling, in: IEEE Conference on Automatic Face and Gesture Recognition
(FGR), Seoul, Korea, 2004, pp. 73–78.

[26] J. Chen, X. Chen, W. Gao, Resampling for face detection by self-adaptive genetic
algorithm, in: International Conference on Pattern Recognition (ICPR), vol. 3,
Cambridge, UK, 2004, pp. 822–825.

[27] Y. Hori, K. Shimizu, Y. Nakamura, T. Kuroda, A real-time multi face detection
technique using positive–negative lines-of-face template, in: International
Conference on Pattern Recognition (ICPR), vol. 1, Cambridge, UK, 2004, pp.
765–768.

[28] S. Paschalakis, M. Bober, A low cost FPGA system for high speed face detection
and tracking, in: IEEE Conference on Field-Programmable Technology (ICFPT),
2003, pp. 214–221.

[29] T. Theocharides, G. Link, N. Vijaykrishnan, M. Irwin, W. Wolf, Embedded
hardware face detection, in: IEEE Conference on VLSI Design (ICVLSID),
Mumbai, India, 2004, pp. 133–138.

[30] M. Yang, J. Crenshaw, B. Augustine, R. Mareachen, Y. Wu, Face detection for
automatic exposure control in handheld camera, in: IEEE Conference on
Computer Vision System (ICVS), New York City, NY, 2006, p. 17.

[31] T. Theocharides, N. Vijaykrishnan, M. Irwin, A parallel architecture for
hardware face detection, in: IEEE Symposium on Emerging VLSI
Technologies and Architectures (ISVLSI), Karlsruhe, Germany, 2006, pp. 452–
453.

[32] A. Bigdeli, C. Sim, M. Biglari-Abhari, B.C. Lovell, Face detection on embedded
systems, in: International Conference on Embedded Software and Systems
(ICESS), Daegu, Korea, 2007, pp. 295–308.

[33] H.-C. Lai, R. Marculescu, M. Savvides, T. Chen, Communication-aware face
detection using noc architecture, in: IEEE Conference on Computer Vision
System (ICVS), Santorini, Greece, 2008, pp. 181–189.

M. Yang et al. / Computer Vision and Image Understanding 114 (2010) 1116–1125 1125

