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Abstract—We consider a wireless network in which multiple
users share a common spectrum band, modeled as a Gaussian
interference network. Our objective is to choose the transmit
power spectral density of each user to maximize the sum
rate, subject to individual power constraints at each transmit-
ter. This includes frequency-orthogonal transmissions and full-
spreading with power control as special cases. Assuming single-
user receivers and treating interference as noise, the resulting
optimization problem is non-convex. Nevertheless, for a two-user
model with flat-fading we completely characterize the optimal
solution. In particular, we show that the optimal power allocation
consists of each user using a piecewise constant power allocation
over at most 3 frequency bands, where at most one band is
shared by the two users. Extensions to more than two users and
a distributed algorithm to implement the optimal allocation are
also presented.

I. INTRODUCTION

Managing interference is critical to enable multiple trans-
mitters to operate in a common frequency band. This is
becoming more challenging as wireless devices proliferate
and are deployed in a more ad hoc manner (for example in
unlicensed bands). Judiciously allocating the power spectral
density of each transmitter is one of the key techniques for
mitigating interference in such settings. Indeed, most common
spectrum sharing approaches can be viewed as special types of
spectrum allocation, including frequency division multiplexing
(FDM) and full spreading (FS) with power control.

In this paper, we consider the optimal allocation of power
spectral densities to maximize the sum-rate of a set of disjoint
transmitter-receiver pairs operating in a common spectrum
band. We focus on a continuous formulation of this problem,
in which each user can choose an arbitrary power spectrum
across frequency. The underlying channel is modeled as a
Gaussian interference network with flat fading and each user
is assumed to use Gaussian signaling and treat interference as
noise!, so that each user’s rate depends on the received signal-
to-interference plus noise (SINR) ratio across the spectrum
band. The resulting problem is non-convex; however, for two-
users in a flat-fading environment we are able to completely
characterize the optimal power allocation. In particular, we
show that each user will have a piecewise constant power
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'From an information theoretic perspective, treating interference as noise
may not be optimal except in the case of very weak interference (see e.g. [1}-
[31); however, this is a common assumption in current practice.
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allocation over at most three frequency bands and that the
two users will share at most one of these bands.

Our approach is based in part on extending a result in [4],
which shows that in an M user network with flat fading, each
user employs a frequency flat power allocation over at most
2M sub-bands. We refine this to show that in fact M +1 bands
are sufficient and then use this to reformulate the problem as
one of finding a convex combination of a finite set of signal-
to-noise ratios (SNRs) to optimize a corresponding convex
combination of a sum-rate per unit bandwidth function. We
briefly discuss the extension of this to more than two users and
also present a distributed algorithm, where users alternately
update bandwidth and power allocations to approach the
optimal solution. This algorithm is based in part on work
in [5], [6], which studies distributed power allocation for
OFDMA-based networks.

In related work, spectrum management has been studied
for OFDMA-based wireless networks as well as for wire-
line digital subscriber line (DSL) networks. For example,
in [7], the iterative water-filling algorithm is proposed for
distributed spectrum management in Gaussian interference
channels. In general this algorithm may not converge or may
converge to a sub-optimal solution. In [8]-[10] properties
of centralized spectrum optimization are studied using dual-
based approaches. It is shown that in certain cases there is
zero duality gap despite the non-convexity of the problem.
Also [10] shows that many instances of this problem are
NP-hard. Much of this work applies to the case where each
channel exhibits frequency selective fading. In such a setting,
in addition to mitigating interference, spectrum allocation is
used to exploit frequency diversity. Here, to focus on the
frequency sharing aspects of spectrum allocation, we assume
frequency flat fading.

The paper is organized as follows. We first formulate the
optimization problem for M users in terms of each user’s con-
tinuous power spectral density and then give a reformulation
in terms of a finite number of SNRs. Next, we turn to the
case of M = 2 users and characterize the complete solution.
Extensions to the multiple-user case are briefly discussed,
followed by the alternating bandwidth and power algorithm.
Technical proofs are omitted due to page limitation; the reader
is referred to the extended version of this paper for more
details.
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II. PROBLEM FORMULATION

Consider an M-user Gaussian interference channel with
flat fading. Without loss of generality we assume that the
available spectrum corresponds to the frequency-band [0, B].
The set of users is denoted by M = {1,...,M}, where
each user indicates a distinct transmitter/receiver pair. For each
1 € M, there is associated a transmit power spectral density
pl : [0,b] — RT, which must satisfy the power constraint
fo pi(f)df < P,. For a given choice of power spectra for
each user j, each user 4 receives a rate given by 2

_ B hiipi(f)
R, = /0 log (1 T S df,

where h;;, denotes the direct channel gain from the transmitter
of user 7 to the receiver of user 5 and Ny denotes the noise
power spectral density.

Our objective is to determine the power spectral densities
which maximize the sum-rate across all users. This is given
by the following optimization problem:

B hiipi(f)
max E log { 1+ df,
{pe(F)Yiem £ M/o ¢ < No +3 ;2 hjip;(f) d

B
.. /0 pif) < By pi(f) 20, i€ M.

¢y

It was proved in [4] that any point in the achievable rate
region for this model can be obtained with power allocations
that are piece-wise constant in at most 2M disjoint frequency
sub-bands in [0, B]. Using a similar argument, this can be
refined to yield the following lemma which characterizes the
optimal power allocation for (1).

Lemma 1. There exists an optimal solution to (1) in which
each user employs a piece-wise constant power allocation in
at most M + 1 disjoint frequency sub-bands in [0, B].

Using Lemma 1, the optimization in (1) can be reformulated
as optimizing over the bandwidth By, and each user i’s power
allocation p¥ for each of M + 1 sub-bands (k € K =
{1,..., M + 1}).® This results in the following optimization

hupic
maxlchk iezj; log <1 + NoBr ZJ;&’I, o > 2)
> Bx=B; Bp>0, keKk;
ke
k<P, pf>0ieM, kek.
keK

Furthermore, if we define o, = By /B, which is the fraction
of the total bandwidth that is allocated to the kth sub-band,
and =¥ = p¥ /(N By), which is the SNR of user i in sub-band

2For ease of analysis, we assume that all logarithms are natural logarithms
in the following.

3Note if fewer than M 4+ 1 bands are used, then some of the By’s will be
zero and by continuity we assume that the corresponding rate on those bands
is also zero.

k, then (2) can be rewritten as optimizing over {ay, x*}rex,
where x* = (z%,...,2%)), ie.,

max B Z apF(x*),
keK

Zakzl; ar >0, ke K;
ke

> gk < ’B,

kex

3

m >0,ieM, kek.

Here, F' indicates the sum-rate per unit bandwidth over a given
band and is given by

hllzl
log { 1+
Z < 1+ Z];ﬁz 3113])

1EM
This can be interpreted as saying that the optimal spectrum
allocation is given by finding a convex combination of the
SNR vectors on each band k, which satisfies each user’s
power constraint and maximizes the corresponding convex
combination of the sum-rate per unit bandwidth on each band
k (given by F(x*)).

III. TWO USER MODEL

Now, we we turn to the two-user case, in which case K =
{1,2,3}. In this case, for each k € K, we simply write the
SNR of user 1 as zx = p¥/(NoBg), the SNR of user 2 as

vk = pk /(NoBy), and replace (4) with
huz ) ( ha2y )
F(z,y) =1 1+ — 1 1+—=—.
@,9) og( + 14 hory Tlog 1T 1+ hioz
Then, (3) becomes
max B Y  axF(zk, yi), ®)

keK

Zak=1; ar >0, ke kK,

kek

Py
Z Tk < )
keK NoB

> akyk <

keK

F(x) = “

>0, k€K,

7yk)>0 k:GIC

A. Main Result

In the following, we completely characterize the optimal
solution to (5). Specifically, we show that for a given set
of fixed channel gains, there are five possible scenarios for
the optimal spectrum allocation, which depend on the power
constraints of each user. In each scenario, both users transmit
at their full power. This illustrated in Fig. 1, which shows an
example of the range of power constraints that correspond to
each scenario (indicated by the numbers 1-5). When the power
constraints are large, as represented by scenario 1, it is optimal
to divide the total bandwidth into two sub-bands, with one sub-
band for each user’s exclusive use (i.e. to employ FDM). On
the other hand, for small power constraints, as represented by
scenario 2, full-spreading (FS) at full powers for both users is
optimal.
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Fig. 1. Example of the scenarios for the optimal spectrum allocation.

The more interesting cases are the other three scenarios,
with moderate power constraints. In scenario 3, there are three
sub-bands: one shared by both users and one used exclusively
by each. For scenarios 4 and 5, the optimal solution has two
sub-bands; one shared by both users and one used exclusively
by the user with the larger power constraint. The boundaries
separating these scenarios are functions of the channel gains.
We explicitly derive the boundaries for region 3; the remaining
boundaries we can numerically determine.

B. Optimal Sum-Rate: Tight Power Constraints and Optimal-
ity Criteria

Given fixed channel gain parameters, we define the optimal
sum-rate as a function of the power constraints and derive
some properties of this function. Note that the analysis in this
section holds for M > 2 users as well.

First, it can be shown that the power constraints must be
tight for all users at the optimal solution to (3). Thus, (3) can
be rewritten as

max B ZakF(xk), 6)
ke
s.t. Zakzlg a, >0, ke K,
kek
k P k .
Zakwi =NB x; >20,ieM, kek.
keK 0

Given fixed channel gains, denote the optimal sum-
rate (normalized by B) given by the solution to (6) as
F* '1'\71%11?7 RN —1%\%— . It is not hard to see that the following
holds for F™*:

Lemma 2. F* > F and F* is concave.

Furthermore, any function* that is no less than F and is
concave provides an upper bound on F™*.

Lemma 3. For any function F such that F > F and F is
concave, we have F' > F*,

Proof: If we replace F' in the objective of (6) with F,
then the resulting maximum becomes BF', since F' is concave,

4Unless otherwise stated, all functions are defined in the same domain as
F.

which is clearly no less than the original maximum BF* from
the fact FF > F. ]
An upper bound is tight if feasibility also applies.

Lemma 4. Suppose that F > F and F is concave. If F
is feasible at some x, i.e., there exist x;’s and «;’s with
o > 0and Y, 05 = 1, such that x = Y, 0;%; and
F(x) =Y, aiF(x;), then F*(x) = F(x).

Proof: Obviously, F*(x) > F(x). On the other hand, by
Proposition 3, F((x) > F*(x). Therefore, F*(x) = F(x). ®
Lemmas 2 and 4 directly imply the following theorem:

Theorem 1. A sufficient and necessary condition for a func-
tion Ij’ to be optimal, i.e., F = F* is F' > F, F is concave,
and F is feasible everywhere.

In other words, to determine the optimal sum-rate, Theorem 1
implies that it is sufficient to search for a concave upperbound
to F' which is feasible everywhere. Concavity also implies the
following useful properties of F'*:

Proposition 1. If F* = F on a convex set, then F' must be
concave on this set.

Proposition 2. For any finite set of points in the M-
dimensional space, {x;}, if there exist some o;’s, where o; >
0 and ), 05 = 1, such that F*(3_, oux;) = >, ou F*(xy),
then for all B;’s satisfying 3; > 0 and > ,3; = 1,
Fr (32 Bixi) = 33 BiF™ (xs).

C. Bounds on the Optimal Sum-Rate

Next, for the two-user case, we discuss lower and upper
bounds on F*, based on which we determine the optimal
spectrum allocation achieving F™*.

1) Lower Bound (Optimal FS/FDM): First we consider the
optimal sum-rate when the spectrum allocation is restricted
to one of two special cases: FS and FDM. In this restricted
setting, the optimal sum-rate can be achieved as indicated in
the following Theorem:

Theorem 2. For the two-user Gaussian interference channel,
when only FS and FDM are considered, the sum-rate maxi-
mizing spectrum allocation satisfies the following: (i) If

hinPi hoaPa _ hithys  hiy ha

NoB ' NoB ~ highsi  hia  hai’

then FS is optimal with both users transmitting with full power.

(ii)Otherwise, FDM is optimal, with user 1 exclusively using
a band of Bay Hz and user 2 exclusively using the remaining
band Of Bag = B(l - 0[1) Hz where o = h11P1/(h11P1 +
hoo Py), and both users transmit with full power.

By Theorem 2, the optimal sum-rate (divided by B) from
FS/FDM, defined as FO(TV’%}E, -1\-,1—213-), is as follows:

F(zv), hihos _ h R
Fo(z,y) = if h112 + haoy < Rizha1 ~ hiz #;
’ log(1 + hyix + haoy),
otherwise.
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Clearly, Fy provides a lower bound for F*. Note that Fj
cannot be optimal, since it is not concave.

2) Upper Bound: Next, we construct an upper bound G on
F* from Fy. For ease of analysis, we normalize the Gaussian
interference channel (as in [1], [11]) and define a = Zz
b= , u = h11z, and v = hooy. Note that the assumption
here 1s a+b < 1; otherwise, a + b > 1 is the trivial case
where FDM as in (ii) of Theorem 2 is always optimal.

Along the line u 4- v = ¢ with ¢ being a constant less than
1/(ab) — 1/a — 1/b (which is positive assuming a + b < 1),
we can verify that at the point (ug(c), vo(c)) where

uo(c) = cV/1+ac vo(c) = cv1+be
0 VI+tac+V1I+0bc 0 \/1+ac+\/1+%;

Fy reaches its maximum, defined as

c
9o(c) = 2log (1 i Vireoq +bc)) '
Along the line u +v = ¢ > 1/(ab) — 1/a — 1/b, F, remains
a constant go(c) := log(1 + ¢).
Since g¢ is not concave, we construct a concave function g
such that g > go. It is easy to see that there exists unique c;
and ¢, such that 0 < ¢; < 1/(ab) —1/a—1/b < ¢y and

c2) — go(c
D=0 _ i) =gyl ®
C2 C1
Then, g can be defined as follows:

go(cz) + go(c2)(c — c2) = log(1 +c2) + 72,
if g <c<ey;
go(c), otherwise.

g(c) =

Clearly, g is concave.

Finally, along the line u + v = ¢, let G take the constant
value g(c), i.e., G(z,y) := g(h112 + hay). G is obviously
concave, since g is concave. Also, from the fact that G > F
and by Lemma 3, G provides an upper bound for F*.

Remark: Note that Fy/G provides a lower bound on
efficiency achievable from the optimal FS/FDM scheme, for
which we can verify

EGQ > min log(1+¢) '
(N S c
2log (1 + 1+ (1+ac)(1+bc))

The right-hand side is strictly increasing in a and b, and
is always larger than 1/2. Therefore, the optimal FS/FDM
scheme achieves at least half of the optimal sum-rate, and its
efficiency approaches 1 as a +b — 1.

D. Optimal Spectrum Allocation

Finally, we can determine the optimal spectrum allocation
from G. Fig. 2 shows the triangle with the three corner points
being (c2,0), (0,c2), and (uo(c1),vo(c1)), labeled as A, B,
and C, respectively, for an example with ¢ = 0.1 and b = 0.3.
Note that ¢;, ¢z, and point C, (ug(c1),vo(c1)), are calculated
from (7) and (8). It is worth mentioning that this triangle is

exactly the triangle representing scenario 3 as shown in Fig. 1.
The curve from the origin to point C depicts (ug(c), vo(c)) as
¢ varies from 0 to ¢;, which again is computed from (7).

Recall that for hy1z + hooy > o, G(z,y) = Fo(z,y) =
log(1 + hy1z + hooy). This means that in the area above the
triangle, which corresponds to scenario 1 in Fig. 1, G can
be achieved using FDM. Thus, by Lemma 4, F* = G and
so FDM is optimal in this region, which is summarized as
follows:

Theorem 3. If = —‘L‘- + —1\%% > cg, where cy is obtained
in (8), then the optzmal sum-rate is Blog(1 + Mﬁ—hﬁz)

which is achieved using FDM as in (ii) of Theorem z

Next, since g is linear from c¢; to ¢, G is linear over
the triangle-region, corresponding to scenario 3 in Fig. 2.
Furthermore, at the three corner points A, B, and C, G = F'.
Therefore, G is feasible in this triangle, and is achievable from
a convex combination of F' at the three corner points. Again,
by Lemma 4, F* = G in this region.

Theorem 4. If (hNO’; ,-’iﬁ%%z) = ai(e2,0) + az(0,¢2) +

as(up(cr), vo(er)), where a; > 0, i = 1,2,3, Z =1
and c1, ¢a, Uy, and vg are determined by (7) and (8), then the
optimal sum-rate is

Baj log(1 + ¢3) + Bag log(1 + ¢3) + Bas

{log (1 + ﬁ%%()—cﬁ) + log (1 * %)} ’

which can be achieved by allocating Bay exclusively to user
1 and Baw exclusively to user 2, while letting them share Bas
at the corresponding power levels.

Now for the area below the triangle, note that along the
curve from the origin to point C' as shown in Fig. 2, G = F,
which is feasible by FS. By Lemma 4, F* = G and FS is
optimal along this curve. Along the two lower edges of the
triangle, i.e., from C to A and C to B, G can be achieved
from a convex combination of F' at the two end points of
the corresponding edge, and therefore F* = G by letting two
users share one sub-band and allocating the left band for one
user’s exclusive use. Finally, combining the preceding facts
with Propositions 1 and 2, we argue that for scenario 2 in
Fig. 2, FS at the full powers is optimal, while for scenarios 4
and 5, it is optimal to have the users share one sub-band and
the higher power user to use the remaining band exclusively.
However, the boundary of scenario 2 and the optimal spectrum
allocations for power constraints falling in scenario 4 or 5 need
to be determined numerically, e.g., through a bisection search,
which is omitted due to space considerations.

E. Remark on Multiple Users

We briefly discuss the multiple-user case. Recall that the
analysis in III-B applies to multiple users. That is, the power
constraints must be tight at the optimal solution, and the
same criteria for the optimal sum-rate holds. However, further
extension to multiple users of the preceding method seems
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Fig. 2. Regions illustrating the optimal spectrum allocation for a standard
two-user channel with cross-channel gains 0.1 and 0.3.

difficult. Alternatively, the algorithm presented next can be
applied for numerical computation of the optimal spectrum
allocations for multiple users.

IV. NUMERICAL ALGORITHM

In this section, we present an alternating bandwidth and
power update (ABP) algorithm as follows:

1) Initialize bandwidth and power allocation.

2) Fix the bandwidth allocation. Users update powers si-
multaneously using the gradient projection method.

3) Fix the powers. Users jointly update the bandwidth
allocation using gradient projection.

4) Go to 2 and repeat, until the algorithm converges.

It can be proved that the ABP algorithm converges to a local
optimum for small enough power and bandwidth step sizes.
Details of the algorithm and the proof of convergence will be
presented in the extended version of this paper.

Simulation results for two users always indicate conver-
gence to the global optimum with appropriately chosen step
sizes. For three users, Fig. 3 shows convergence curves and the
resulting spectrum allocations for an example with NoB = 1,
P, = P, = P; = 10, and different channel gains (the channel
gain matrix h is as shown in the figure). We point out that for
the bottom case shown in Fig. 3, the result cannot be optimal
with user 3 using no power instead of full power.

V. CONCLUSION

In this work, we completely characterized the optimal spec-
trum allocation maximizing the sum-rate for a two-user flat-
fading Gaussian interference channel, treating interference as
noise. An alternating bandwidth and power update algorithm
was proposed for multiple users, with guaranteed convergence
to a local optimum.
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