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Abstract— Transmitter precoding is a crucial technique for
harnessing the potential of multiple-input multiple-output
(MIMO) fading channels. In many practical wireless systems, a
limited amount of feedback from the receiver is available at the
transmitter, which can be used to direct the choice of the precoder
from a codebook to match the channel state. Assuming noiseless,
limited-rate feedback, this work studies the design of simple,
efficient quantization and feedback schemes which achieve near-
optimal ergodic channel capacity. In the case the precoder takes
the form of a beamforming vector for modulating a single
symbol stream, it is found that simple scalar quantization of
the elements of the vector is nearly optimal over a wide range of
feedback rates; it typically costs a fraction of a dB higher SNR to
achieve the same capacity as that of far more sophisticated vector
quantization schemes. In the case a precoding matrix consisting
of multiple beams is used to modulate multiple symbol streams,
separate encoding of the beams using scalar quantization also
performs well. Roughly speaking, the rate loss due to separate
encoding of the beams increases linearly with the number of
beams but appears to be constant over a wide range of SNRs.
The loss can be reduced substantially by more sophisticated
encoding of each beam, e.g., two-state trellis coded quantization.
The complexity of such quantization schemes is linear in the
number of antennas and the number of feedback bits.

I. INTRODUCTION

It is well-known that with full channel state information
(CSI) at the transmitter, precoding in the form of water-
filling across the eigenstates of a multiple-input multiple-
output (MIMO) channel can improve its capacity. In many
wireless systems, the channel state can only be measured
by the receiver, which then directs the transmitter’s precoder
through a limited amount of feedback. With limited-rate feed-
back, which can be less than one bit per channel coefficient,
the design of the precoding codebook is crucial for exploiting
the potential of the MIMO channel.

Suppose B bits of noiseless feedback are available at the
beginning of each coherent block; the precoding problem can
be simply formulated as follows. A codebook consisting of
2B precoders is designed and made available to both the
transmitter and the receiver. The receiver selects the precoder
from the codebook which best matches the channel matrix
and sends its index (B bits) to the transmitter. Clearly, the
problem can also be regarded as quantization of the channel
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state. Ideally, the codebook should be designed to maximize
the ergodic capacity of the MIMO channel averaged over the
fading statistics.

The design and analysis of codebooks for MIMO precoding
has been studied extensively [1]-[5]. In the special case of
a single receive antenna, the precoder reduces to a beam-
former. It has been shown that codebook optimization can
be interpreted as maximizing the minimum distance between
points in a Grassmannian space [2]. The optimal Grassmannian
codebook [2] and an asymptotically optimal scheme known
as random vector quantization (RVQ) [3] have been proposed.
With multiple receive antennas, the precoder may consist of
multiple beams for modulating multiple symbol streams to
exploit the dimensions of the received signal space. In such
cases, the codebook design is discussed in [5], where a metric
for distance between two matrices is proposed and the Lloyd
algorithm is used to compute the optimal codebook iteratively.

The aforementioned feedback schemes are impractical when
the codebook is relatively large (e.g., when B > 8) because the
codebook is not designed with simple structures to facilitate
search and storage at the receiver. To find the optimal precoder,
the computational complexity is in general exponential in
the number of feedback bits. The difficulty is magnified in
multicarrier systems where a precoder has to be selected for
each sub-channel.

This work addresses the following question: Can much
simpler feedback coding schemes be designed to approach
the channel capacity achieved by RVQ? The answer is shown
to be positive by introducing specific schemes. In particular,
we first investigate scalar quantization (SQ), namely, separate
quantization of the coefficients of the beams corresponding to
the maximum eigenstates of the MIMO channel using phase-
shift keying (PSK) alphabets. In the case of beamforming,
the performance is found to be surprisingly good. Numerical
results suggest a loss of merely a fraction of a dB in signal-to-
noise ratio (SNR) compared to the far more complicated RVQ
scheme. In the case of multiple beams, scalar quantization still
delivers a competitive trade-off in terms of performance and
complexity. Roughly speaking, the loss in terms of capacity
is multiplied by the number of beams, but otherwise stays
essentially constant for all moderate to high SNRs.

We note that the design of structured codebooks is also
considered in [6]-[8]. Reference [6] considers MIMO beam-



forming with no less than one bit of feedback per complex
coefficient, where noncoherent sequence detection is used to
search over the codebook, which is more complicated than
scalar quantization. A similar approach is considered in [7].
Reference [8] considers codebook based on Kerdock codes
which consists of multiple mutually unbiased unitary matrices
with quaternary entries and the identity matrix. The reduction
of search complexity with this codebook comes from the
fact that the entries of the codebook are scaled version of
{1,-1, j, —j}, and the multiplication operation reduces to flip-
ping signs and/or swapping real and imaginary components.
However, the search complexity is still exponential in the
number of feedback bits.

In order to reduce the gap between scalar quantization and
RVQ, we also consider encoding of each beam using trellis
coded quantization (TCQ), which is analogous to trellis coded
modulation [9], [10]. Using the Viterbi algorithm to search
the codebook, the TCQ scheme entails only linear complexity
in the number of feedback bits per coherent block. TCQ was
first proposed for quantization in [11] and has recently been
independently proposed for beamformer design in [7]. The
trellis considered here consists of only two states and has much
lower complexity than the code presented in [7].

This paper also presents a simple large-system analysis of
the performance of SQ and TCQ. Specifically, we consider the
case where the number of symbol streams (i.e., the number of
beams, which is also the rank of the precoding matrix) is fixed
while the number of feedback bits and transmit antennas goes
to infinity with fixed ratio. It is shown that in the beamforming
case there is a constant capacity gap per beam between SQ
(or TCQ) and the case with prefect CSI at transmitter. With
multiple beams the gap is equal to that constant multiplied by
the rank of the precoding matrix.

II. MIMO PRECODING

Consider a single-user, narrowband wireless MIMO system
with V; transmit antennas and NN, receive antennas. Consider
precoding of K < min{N,, N;} independent symbol streams.
That is, during any symbol interval, the symbol from the k-th
stream, denoted by xy, is weighted by a complex vector vy,
of dimension N; x 1 with power constraint ||9||?> = 1, where
[| || is the vector two-norm. Let V = [& ... ©g] be referred
to as the precoding matrix. Let H denote the N, x [Ny matrix
of channel coefficients, which are assumed to be independent
and identically distributed (i.i.d.) with circularly symmetric
complex Gaussian (CSCG) distribution of unit variance per
complex dimension. Let * = [z1 ... xx]T. The received
signal of dimension N, X 1 can be expressed as

y=pHVz+n (1)

where p denotes the SNR gain of the channel, and n denotes
the noise vector consisting of CSCG elements of unit variance
per complex dimension.

Assume that the time-average of |z|? does not exceed 1/K,
so that the transmitted vector signal is constrained to unit

power. The capacity of the channel is then
C(V) = log det (I + %HVVTHT) 2)

in bits', where (-) denotes Hermitian transpose. Suppose K B
bits of noiseless, zero-delay feedback is available per coher-
ence block. Let V = {V'q,..., Vyxz } denote the quantization
codebook. With full CSI at the receiver, the precoding matrix
is choosen to be V' € V which maximizes the rate C'(V').

To find the optimal precoding matrix, the computational
complexity of the brute force search increases exponentially
with K B, namely O(255), if there is no inherent structure
in the codebook to simplify the search. Motivated by the
prohibitive computational complexity of unstructured code-
books, we propose two types of simple structured codebooks
with corresponding encoding schemes of linear complexity,
while the codebook performance is nearly optimal in terms of
ergodic capacity.

III. SCALAR QUANTIZATION (SQ) FOR BEAMFORMING

In the case of single receive antenna (N, = 1), the pre-
coded MIMO system reduces to a multiple-input single-output
(MISO) beamforming system. The channel matrix and the
precoding matrix reduce to two vectors (h, a row vector, and
© respectively), so that the received signal can be expressed
as

y = /phvz +n. 3)
A. The SQ Scheme

The optimal beamformer from the codebook is chosen as

b= arg max |hv |2 4)

LetB2 B /N, which denotes the number of feedback bits per
complex coefficient of the precoding matrix. Suppose B > 1
for a moment. SQ quantizes the channel vector element-by-
element, i.e., for each element h;, choose an element ¥; from
a finite-size scalar reproduction alphabet 4 according to some
criterion. We choose A to be a certain set of PSK symbols
depending on the number of feedback bits per coefficient
(normalized by 1/4/N;) and the quantization rule is to pick
0; € A, so that the real part of h;0; is maximized, i.e.,

0; = argmax Re{h;v}, i=1,..., N;. (5)
veA

It is straightforward to see that this criterion is equivalent to
choosing ©; which is best aligned with the phase of h;r

In the case B < 1, it is impossible to quantize the channel
vector element-by-element. To generalize the SQ method to
this case, we can combine multiple elements into one element
and quantize the sum of multiple elements with SQ. Take for
example the case B = N;/2, i.e., B = 1/2. Let ©; be chosen
to maximize the real part of 9;(ho;—1 + ho;), ie.,

’01' = sgn(Re{hzi_1 + hgi}), 1= 1, ey B, (6)

! All logarithms are of base 2 and the units of all information measures are
bits throughout the paper.



where sgn(-) takes the sign of a real number. The beam is thus
quantized as

f):\/LNit[f)l U1 Vg V2 ...

Note that for B that is neither an integer nor the inverse of
an integer, for instance, 1 < B < 2, SQ can be done in the
following way: a fraction (B — 1) of the channel coefficients
are quantized with QPSK symbols and the remaining fraction
(2 — B) are quantized with BPSK symbols.

It should be noted that although we discuss SQ based on
the MISO channel vector h, it is essentially equivalent to
implement SQ (or TCQ to be discussed in section IV) on
its phase h/||h||, which is isotropic over the N;-dimensional
complex unit hyper-sphere.

op 0p]" . @)

B. Performance Analysis

The ideal beamformer in this case is the normalized channel
vector h'/||h||. As pointed out in [3], hh'/N, — 1 almost
surely as N; — 0o, so that log(1 + phh') — log(pN;) —
0. This implies that with perfect CSI at the transmitter,
the ergodic channel capacity increases as log(pN:). To gain
more insight into the performance of the proposed structured
codebooks, we adopt a similar analytical approach as in [3],
which considers the asymptotic rate loss w.r.t. the case with
perfect CSI. Similar to the definition in [3], we define the rate
loss for SQ with the MPSK symbols 12 as

15 =log(pNy) — I (8)

where [ é\flt is the ergodic capacity of SQ with N, transmit
antennas. It is difficult to quantify the rate loss analytically
for finite number of antennas. Some insights can, however, be
gained by considering a specific large-system limit where B
and N; tend to infinity with their ratio B fixed.

Proposition 1: In the large-system limit, the rate loss due
to SQ ISA(I almost surely converges to a deterministic constant
a. For integer-valued B (B > 1), it is given by a =
—210g(%sinc(2_37r)), and for B that is the inverse of an
integer (B < 1), a = log(7/B).

Proof: See Appendix A.

The expressions for « are also accurate approximations for
arbitrary B. For finite-size systems, the quantization rule can
be modified to take advantage of the differences in the real and
imaginary parts. To be specific, two SQs can be done, one to
maximize the real parts as in (5), and the other to maximize
the imaginary parts. Afterwards, we can choose one based on
the quantization rule in (4).

Fig. 1 shows the performance of SQ in terms of ergodic ca-
pacity in a MISO beamforming system with different number
of feedback bits (obtained by simulation). For comparison, the
performance of RVQ (obtained by simulation) is also shown,
which can be regarded as essentially the optimal performance
for the given feedback. Clearly, the performance degradation
due to SQ w.r.t. RVQ is small (less than 1 dB in terms of
SNR) in all the cases with different feedback rates. In addition,
even with a finite number of transmit antennas (/N; = 8), the
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rate loss is more or less a small constant (independent of the
SNR) though it is not equal to (actually less than) the constant
given in Proposition 1 derived in the large-system limit. The
inconsistency observed is due to the finite size of the system
and the fact that we exploit the differences between the real
and imaginary parts of the channel. The percentage rate loss
is small for moderate to large p and vanishes as p — oo.

IV. TRELLIS CODED QUANTIZATION FOR BEAMFORMING
A. The TCQ Scheme

By exploiting the duality between digital modulation and
source coding, a modified trellis coded modulation [9] tech-
nique, namely, TCQ was proposed in [11] for source coding
of memoryless and Gauss-Markov sources with mean squared
error (MSE) distortion metric. The key feature of the TCQ
approach is the use of a structured codebook with an expanded
set of quantization levels compared with SQ. The trellis
structure then prunes the expanded number of quantization
levels down to the quantization rate based on set partitioning.

We present only a simple example that is quite straightfor-
ward and intuitive to illustrate the benefits of TCQ compared
to SQ. Suppose the quantization/encoding rate is B = 1.
With TCQ, the two PSK symbols per channel coefficient are
doubled to four PSK symbols and then partitioned into two
subsets, Dy = {1, —1} and Dy = {j, —j}. We use the simplest
trellis which only has two states {0, 1} (one memory register).
If in state “0”, the output is chosen from D according to the
current input, and if in state “1”, the output is chosen from D,
according to the current input. One stage of the corresponding
trellis diagram is shown in Fig. 2 (a) with transitions labeled
[m, ¢], where m is the input bit that triggers the transition
and c is the output. 27 binary vectors of length B are passed
through the shift register, and all the valid paths in the B-stage
trellis diagram form the TCQ codebook. Shown in Fig. 2 (b)
is one stage of the trellis diagram used for B = 1/2 in the
numerical results.
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Fig. 2. One stage trellis diagram of TCQ with: (a) B =1 and (b)
B = 1/2. The binary state of the register is denoted by 1.

If MSE is chosen as the branch metric in the trellis,
the Viterbi algorithm is the optimal quantizer/encoder. The
quantization rule in that case is to find the minimum Euclidean
distance between the received vector and the valid paths in the
trellis. And the Euclidean distance can be decomposed as the
sum of the metrics in each branch, which is a precondition to
applying the Viterbi algorithm. In the beamforming problem,
however, the optimal quantization rule in (4) is to find the
maximum magnitudes of the inner products between the
channel vector and the codewords, which is not an additive
metric. Thus, it is suboptimal to perform per-element operation
in a trellis at each stage and the Viterbi algorithm cannot be
applied with this quantization rule.

Similar to the SQ case, the quantization rule we choose
for TCQ is to maximize Re{hv,} instead of |hv|? despite
the fact that it is suboptimal. Since Re{hv;} = 3(||h|* +
vkl|2 = [[hT — vil2), ||h||? remains the same for any vy,
and ||vg||?> = 1, then maximizing Re{hwv;} is equivalent
to minimizing the Euclidean distance between h' and vy,
which is amenable to low-complexity implementation using
the Viterbi algorithm.

B. Performance Analysis

A quick observation to the trellis in Fig. 2 (a) is that with
MSE as the quantization rule, the performance of TCQ is at
least as good as SQ. The reason is that the outputs on the two
diverging branches (£1 or +75) at each state have opposite
signs and the distributions of the real and imaginary parts
of the channel coefficient are identical. Similarly, we can get
some insight into TCQ by considering its asymptotic rate loss
with respect to (w.r.t.) the case with perfect CSI. Define the
rate loss of TCQ ItAcq as

Lioy £ 10g(pNe) — Iy ©)
where It]Z; is the ergodic capacity of TCQ with NV, transmit
antennas.

Proposition 2: For the trellis example in Fig. 2 (a), in the
large-system limit, the rate loss due to TCQ It%q is almost
surely no more than a deterministic constant «, where a =~
1.53 bits per channel use.

Proof: See Appendix B.

Compared with the asymptotic rate loss of SQ, log(w) =~
1.65, TCQ can provide about 0.12 bit gain.

Fig. 3 shows the performance of TCQ in terms of ergodic
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Fig. 3. Capacity of trellis coded quantization for MISO beamforming
system with N; = 8.

capacity in a MISO beamforming system with different num-
bers of feedback bits (obtained by simulation). For compari-
son, the performance of SQ and RVQ shown in Fig. 1 is also
included. One can see that TCQ outperforms SQ and the gap
between TCQ and RVQ is negligible.

V. STRUCTURED CODEBOOK WITH ARBITRARY RANK

In this section we consider the structured codebook of a
narrowband single-user precoded MIMO system with multiple
symbol streams (K > 1). Note that K can also be understood
as the number of beams as well as the rank of the precoding
matrix.

Let the singular value decomposition of H be given by

H=UDVT, (10)

where U has dimension N, X N, and V has dimension
N; X N, both are unitary matrices, and D is an N, X Ny
diagonal matrix. According to [5], the ideal precoder with
quantization criterion (2) is V=V K« where Vi is a matrix
constructed from the first K columns of V', which correspond
to its largest singular values.

We propose to quantize each column of V  separately with
SQ or TCQ, so that the search complexity can be reduced
from O(258) to O(K B). Regarding the performance of this
per-vector based quantization, as in the MISO beamforming
case, here we wish to determine the asymptotic rate loss w.r.t.
the case with perfect CSI in the large-system limit, in the
sense that N, and K (K < N,) are fixed, and N, and B
tend to infinity with fixed ratio B. Using heuristic arguments,
we conclude that the rate loss of per-vector based precoding
matrix quantization with multiple transmit rank increases
roughly linearly with the number of beams. Intuitively, if the
number of transmit antennas is much larger than the number
of beams, then the interference caused by one quantized beam
to the others is almost negligible even though the beams are
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Fig. 4. Capacity of per-vector based SQ and TCQ precoding matrix
quantization in a MIMO system with N; =8, N,, =4, B = 4, and
B = 1/2. Rank stands for the number of beams in the precoding
matrix.

quantized separately, which does not maintain orthogonality.
Thus the rate loss can be approximated by the sum of the
rate loss in each beam, so that it increases linearly with the
transmit rank.

In Fig. 4, we plot the ergodic capacity of a precoded
MIMO system with various number of beams (obtained by
simulation). The performance of RVQ (randomly generating
2KB unitary matrices) is also included for comparison. One
can see that in the multiple-beam case, SQ or TCQ based per-
vector quantization of the precoding matrix also works well
and the gap between the unquantized and per-vector based
precoding matrix quantization increases roughly linearly with
the number of beams. This is also true for the gap between
per-vector based SQ (or TCQ) and RVQ.

VI. CONCLUSIONS

To overcome the exponential computational complexity of
unstructured precoding codebooks, we proposed two simple
quantization schemes, namely scalar quantization and trellis
coded quantization for MISO beamfoming, which have lin-
ear complexity while achieving near optimal performance in
terms of ergodic capacity. In particular, to achieve the same
ergodic capacity, the SNR gap between SQ and random vector
quantization is less than 1 dB, whereas the performance gap
between TCQ and RVQ is almost negligible. For precoded
MIMO with arbitrary rank, we propose to quantize the beams
in the precoding matrix separately using SQ or TCQ. The
performance gap w.r.t. the case with full transmitter CSI
remains relatively constant over a wide range of SNRs. We
conclude that simple scalar quantization and trellis coded
quantization may have roles to play in practical precoded
MIMO systems.

APPENDIX
A. Proof of Proposition 1

We prove this proposition in two different cases correspond-
ing to different values of B.
1) Integer-Valued B: Denote the beamforming vector as
L on,]T. The rate loss is given by
> (1)

Lo ...
2
) (12)

1 Ny 2
—lo + ‘ hile?% ) (13)
e (ot > Ind

By the distribution of h; and the quantization rule of SQ,
we know that |h;| follows Rayleigh distribution and 6; is
uniformly distributed in the interval [—2_3 7,278 7). Then,
E[|hi]] = v/7/2, E[cos ;] = sinc(278n), and E[sin ;] =
Invoking the law of large numbers, the sample mean converges
to the distribution mean almost surely, i.e.,

ISAq =log(pN;) — log (1

1
] B
0g< , +’Nt¥hzvz

1Nthj9i E[lh|(cos 8-+ sin 8,)] = Y sine(2~7
Nti_zl| i|e’%" — E[|h;|(cos 0;+75 sin6;)] = 5 sinc(27% 7).
} (14)
Substituting (14) into (13) and let N; go to infinity, the desired
result follows.

In the case that B is not an integer, by quantizing the
channel coefficients with two different quantization levels, it is
easily shown that o can accurately approximate the rate loss.

2) B Is the Inverse of an Integer: The rate loss in this
case can be derived similarly. Denote B =1/N, where N is
an integer. We view AN £ Zz N(i—1)4+1n as one element
and SQ is done with BPSK symbols. Going through similar
derivation as in (11)—(13), we get

2
), (15)

I% = —log (1 + ’1 i |RN |ed%
sq pr Nt P K2

where ]E[|hN)Q VN7 /2, Elcos 0;] = 2/, and E[sin 6;] = 0.
Thus, & >2,7, |hN|e?% converges to y/1/mN almost surely
as Ny — oo. Then the desired result follows for B = 1/N.
For B that is not the inverse of an integer, by combining the
channel coefficients with two different ways it is easily shown
that the resulting expressions are good approximations.

B. Proof of Proposition 2

To get the exact asymptotic rate loss of TCQ seems quite
challenging even with the simple trellis structure in Fig. 2 (a).
An upper bound on the asymptotic rate loss can be derived by
considering the suboptimal quantization method — sequentially
quantizing the channel vector every two channel coefficients.
The whole trellis is divided into pieces, each with two stages
(since the minimum distance error event spans two stages). In
the ¢-th piece (stage 2¢ — 1 and 27), in state “0”, the metric



Re{hg;_1v2;—1 + hojve;} can take the following four values:
Re{hgi—1+ hoi}, Re{hoi—1 — ha;}, Re{—ho;—1 + jho,;}, and
Re{—hg;—1 — jha;}. Define X; as the maximum of these four
random variables. Since both the real and imaginary parts of
the channel and the trellis are symmetric, in state “1”, the same
random variable X; can be used to represent the maximum
metric. Then the rate loss of TCQ can be calculated as
2N,

Zh 0 ) (16)
Ny

2
1 1
<_1 —3°x 17
= Og(2pNt+‘2Nti:1 ) (4

2
—log (E[;(l]> a.s., as Ny — oo. (18)

Iio, =log(2pNy) — log (1 + TNt

Based on the distributions of hy; 1 and ho;, it is easily shown
that X; can be simplified to

Ximax{|Y1+|n|,m+|Y3|}, (19)

where Y] are i.i.d. Gaussian with mean 0 and variance 1/2.
We resort to Monte Carlo methods to calculate E[X;] and it is
given by E[X;] ~ 1.1771. Therefore, the lower bound of the
asymptotic rate loss of TCQ is given by o ~ 1.53.
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