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Abstract—We consider a network of K interfering transmitter-
receiver pairs, where each node has N antennas and at most one
beam is transmitted per user. We investigate the asymptotic per-
formance of different beamforming strategies, as characterized
by the slope and y-axis intercept (or offset) of the high signal-to-
noise-ratio (SNR) sum rate asymptote. It is known that a slope
(or multiplexing gain) of 2N − 1 is achievable with interference
alignment. On the other hand, a strategy achieving a slope of
only N might allow for a significantly higher offset. Assuming
that the number of fully aligned beamformer sets that achieve
a slope of 2N − 1 is finite for a given channel realization, we
approximate the average offset when the best out of a large
number L of these sets is selected. We also derive a simple
large system approximation for the sum rate of a successive
beam allocation scheme when K = N . We show that both
approximations accurately predict simulated results for moderate
system dimensions and characterize the large-system asymptotes
for different relationships between L and N .

I. INTRODUCTION

In a MIMO interference network with constant channel
coefficients, the optimal high-SNR sum rate scaling (or
equivalently, the degrees of freedom, multiplexing gain, or
asymptotic slope) is achieved by alignment of the received
interference subspaces. That is, the transmit strategies are
designed so that the dimension of the subspace spanned by
the signals of the interfering transmitters at each receiver is
as low as possible [1], [2], [3]. While the asymptotic slope
ultimately is the dominant characteristic at very high SNRs, in
this work we also examine the y-axis intercept (or rate offset)
of the high-SNR sum rate asymptote. The rate offset indicates
how well the transmit strategies and receive filters, which were
designed to remove all interference, match the direct channels
between the transmitters and their intended receivers.

We analyze properties of aligned solutions (sets of beam-
formers and linear receivers) for MIMO interference networks
with K users and N antennas at each node (transmitter or
receiver). Each user is assumed to transmit a single beam. We
focus on the fully aligned scenario with K = 2N − 1, which
achieves the maximum high-SNR sum rate scaling [3]. We
start with a small system with K = 3 and N = 2 for which
there are generally two solutions fulfilling the interference
alignment conditions. The solutions can be expressed in closed
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form and do not depend on the direct channels. For larger
systems (K and N ) there is in general a finite number of fully
aligned solutions. This is because the alignment conditions
form a system of polynomial equations where the number of
variables matches the number of equations. The exact number
of solutions is not known, but is observed to grow very rapidly
with K and N . Again, the solutions do not depend on the
direct channels. All aligned solutions therefore have the same
asymptotic slope, but can give different rate offsets.

Exhaustively computing all fully aligned solutions for mod-
erate to large systems is likely to be infeasible. We therefore
assume that we can compute a subset such solutions. If
we choose the best solution with the largest offset, then
the performance clearly depends on how large this subset
is. We approximate the performance of this strategy in the
large system limit in which K and N tend to infinity with
asymptotic ratio K/N = 2. In this limit it is reasonable to
assume that the rate offset follows a Gaussian distribution over
the aligned solutions. Taking the aligned solutions with the
largest rate offset then corresponds to taking the maximum of
a set of samples of the Gaussian random variable. The resulting
rate offset can be analyzed via extreme statistics.

When K < 2N − 1 the set of aligned solutions spans a
subspace. Again the objective is to choose an aligned solution
in this subspace that best matches the direct channels, and
thereby maximizes the rate offset. We compare the perfor-
mance of fully aligned solutions with the performance of a
system in which K = N . In that scenario zero interference
can be achieved with any set of beams for which the associated
received signals are linearly independent. Although the high-
SNR slope is N , as opposed to 2N − 1 for the fully-aligned
scenario, the rate offset can be significantly larger. This is
because choosing the beams to be matched to the direct
channels gives a much higher sum rate than full alignment at
low SNRs. We compute a simple approximation for the rate
offset of a particular strategy in which the users’ beams are
successively optimized. Comparisons with simulations show
that this analysis accurately predicts the performance with
numerically optimized beams and receivers.

Because of the different rate offsets and slopes for K = N
and K = 2N −1, the two high-SNR asymptotes intersect at a
finite SNR, which depends on how many aligned solutions are



sampled. The preceding analysis is used to characterize this
intersection and shows that when L increases exponentially
with N , the corresponding SNR increases with system size.
Furthermore, for moderate-size systems alignment achieves the
larger sum rate for SNRs greater than about 10 dB.

II. SYSTEM MODEL

The channel matrix between transmitter j and receiver k is
Hkj ∈ CN×N and remains constant over time. Each user k
is assumed to transmit a single unit variance data stream bk,
precoded with the beamforming vector vk, which is subject
to a unit power constraint ‖vk‖2

2 ≤ 1. The signal received by
user k is

yk = Hkkvkbk +
∑
j �=k

Hkjvjbj + nk (1)

where the additive Gaussian noise nk ∈ CN at each receiver
has the covariance E[nknH

k ] = σ2I, i. e., it is uncorrelated over
the receive antennas. Receiver k is interested in decoding bk

so that the portion of the received signal originating from the
transmitters j �= k is interference.

An expression for the achievable rate for user k is obtained
by assuming that all users employ Gaussian codebooks, that
the interference is treated as noise, and that the desired signal
bk is estimated by means of a linear receive filter gk, which
we assume w. l. o. g. to have unit norm, i. e., ‖gk‖2

2 = 1:

Rk = log

(
1 +

|gH
k Hkkvk|2∑

j �=k|gH
k Hkjvj |2 + σ2

)
, (2)

in nats per channel use. The achievable sum rate is

Rsum =
∑

k

Rk. (3)

From (2) the summands Rk of Rsum for which the interfer-
ence power term is zero approach log σ−2 plus some constant
as σ−2 → ∞, i. e., for high SNR. The other summands
of Rsum approach some constant value as σ−2 → ∞. We
can therefore write the high-SNR asymptote of Rsum as
s log σ−2 + r, where s is the number of users k for which
gH

k Hkjvj = 0 holds for all j �= k. The offset r follows from

r = lim
σ−2→∞

Rsum − s log σ−2. (4)

We interpret s as the slope and r as the y-axis intercept (or
rate offset) of the high-SNR asymptote of the achievable sum
rate Rsum plotted versus the SNR in dB, cf. Fig. 1. The slope
s corresponds to the number of users for which the receive
filter is able to cancel all interference completely. It is also
known as the multiplexing gain or degrees of freedom. If all
K users are interference free, then s = K and (4) becomes

r =
∑

k

log
(|gH

k Hkkvk|2
)
. (5)

}
1

r

s

Rsum

log σ−2

Fig. 1. High-SNR asymptote of achievable sum rate

III. INTERFERENCE ALIGNMENT

To maximize the sum rate at high SNR, it is clearly neces-
sary to maximize the slope s, i. e., the number of users that can
be served without interference. In [2], [3], it is shown that if the
channel coefficients are drawn from a continuous distribution,
then it is (almost always) possible to find interference free sets
{vk, gk} if and only if K ≤ 2N − 1.

The rationale behind this result is that the zero-interference
conditions form a system of multivariate polynomial equations,
and that such a system has a solution if the number of
equations does not exceed the number of variables unless
the equations are inconsistent. When the coefficients of the
system of equations (i. e., the cross-channel coefficients) are
independent and drawn from a continuous distribution, the
probability of getting inconsistent equations is shown to be
zero.

One way of viewing this system of equations is that the
variables are the real and imaginary parts of the components
of all vectors vk and gk (4KN variables); the equations
are the unit norm constraints (2K quadratic equations), the
zero-interference constraints of the form gH

k Hkjvj = 0
(2K(K − 1) real-valued bilinear equations), and another 2K
constraints that arbitrarily fix the phase of one component in
the beamformers and receive filters to account for the fact that
the solutions are invariant to multiplication with e jϕ.

Other equivalent ways of expressing the conditions are
possible, e. g., with complex variables instead of the real and
imaginary parts, or with rank constraints or determinants in-
stead of the bilinear zero-interference constraints. It is common
to all, however, that when K ≤ 2N − 1 holds, the number of
variables does not exceed the number of equations.

By the same argument, we will assume that for the fully-
aligned scenario with K = 2N − 1, the set of solutions to
the zero-interference (or interference alignment) conditions is
discrete [3]. Note that each of these solutions has the same
slope s = 2N − 1, but that they generally differ in the offset
r.

We also note that the system of equations for alignment does
not depend on the direct channel gains Hkk. Consequently,
one possible strategy for maximizing Rsum at high SNR is to



find all (or as many as possible) solutions to the interference
alignment conditions and to select the one that ‘matches’ the
direct channels best, i. e., the one with the highest r. In the
following, we attempt to approximate the average performance
of this strategy assuming a Gaussian i. i. d. channel model, in
which the elements of all channel matrices have unit variance.

IV. THREE USERS AND TWO ANTENNAS

To illustrate our analytical approach, which we will subse-
quently extend to large systems, we first examine the smallest
non-trivial scenario, where all terminals have N = 2 anten-
nas. According to the preceding discussion, interference free
solutions exist for up to K = 3 users. In this simple scenario,
the solutions can even be expressed in closed form, as will be
shown in the following.

Proposition 1: Assuming that all cross channels Hkj , for
j �= k, are invertible, zero interference can be achieved with
unit-norm beamformers v1, v2, v3, if and only if v1 is an
eigenvector of the matrix H−1

21 H23H
−1
13 H12H

−1
32 H31, and

v2 ‖ H−1
32 H31v1 and v3 ‖ H−1

23 H21v1, where a ‖ b is
equivalent to a = λb, λ ∈ C.

Proof (Sketch): From the two conditions at the first re-
ceiver, gH

1 H12v2 = 0 and gH
1 H13v3 = 0, and from g1 ∈ C2,

it follows that H12v2 ‖ H13v3. Similarly, H21v1 ‖ H23v3

and H31v1 ‖ H32v2 from the conditions at the second and
third receiver. The proposition follows directly from eliminat-
ing v2 and v3 and solving the system of equations for v1.

Due to the Gaussian i. i. d. channel model, the matrices are
invertible almost surely, so that there are exactly two sets
of beamformers fulfilling the conditions almost surely. For
each set of beamformers v1, v2, and v3, the receive filters
g1, g2, and g3 immediately follow from the zero-interference
conditions.

As discussed in the previous section, the aligned beamform-
ers and receivers do not depend on the direct channels H 11,
H22, and H33. The optimal strategy at high SNR is therefore
to compute both solutions and use the one that results in a
higher value of r.

As a preliminary step to approximating the average rate
offset, fix two arbitrary unit-norm vectors v1 and g1 and let
H11 be a random matrix with unit-variance complex Gaussian
i. i. d. elements.

Proposition 2: The random variable x = log|gH
1 H11v1|2

has the probability density function (pdf)

fx(x) = ex e− ex

(6)

which is a reversed Gumbel distribution. The mean of x is −γ
(where γ is the Euler-Mascheroni constant) and the variance
is π2/6.

Proof (Sketch): The distribution of gH
1 H11v1 is com-

plex Gaussian with unit variance; it is Gaussian since it
is a weighted sum of Gaussians, the proof for unit vari-
ance is omitted, but straightforward. The random variable
z = |gH

1 H11v1|2 is the sum of the squares of the real and
imaginary part of gH

1 H11v1, which are both Gaussian with

variance 1
2 . Therefore, 2z has a Chi-square distribution with

two degrees of freedom [4], and z has the pdf

fz(z) = e−z if z ≥ 0, zero otherwise. (7)

By transformation of the random variable, we find that x =
log z has the preceding pdf. For the mean and variance, cf. [5,
Section 9.3].

We would now like to approximate the average rate offset
over channel realizations r̄, and thus the average high SNR
performance, for the following two strategies:

Random Alignment (RA): Compute the two aligned solutions
and randomly decide which one to use.

Max-Alignment (MA): Compute the two aligned solutions
and use the one with the higher rate offset r.

Proposition 3: For RA r̄ is given by r̄RA = −3γ ≈
−1.732.

Proof: r is the sum of three independent random vari-
ables, each of which has the pdf of the variable x in Propo-
sition 2, cf. (5). Therefore the mean is the sum of the three
means.

Determining r̄ for MA is far more difficult. We therefore
make the following simplifying assumptions, in order to obtain
a useful approximation:

1) The distribution of a sum of three independent random
variables, each of which has the pdf of the variable x
in Proposition 2, is approximately Gaussian with mean
−3γ and variance π2/2.

2) Instead of choosing the better of two
beamformer/receiver sets for a given channel realization,
we consider a similar random experiment in which we
compare two independent channel realizations for a
given beamformer/receiver set. For large systems the
two experiments are equivalent, cf. Section V.

With these approximations, the mean r̄MA is simply the
expected value of the maximum of two realizations of a
Gaussian random variable with mean −3γ and variance π 2/2.
This can be explicitly calculated by determining the pdf of the
maximum and solving the integral for the expectation. The
result of the approximation for the average rate offset with
the optimal MA strategy is r̄MA = −3γ +

√
π/2 ≈ −0.478,

where the details of the derivation are omitted due to space
constraints.

For the numerical evaluation of our approximation, we
averaged the sum rate performance of the RA and MA
strategies over 1000 random channel realizations and plotted
the simulated performance alongside the derived high-SNR
approximations in Fig. 2. These results shows that the ap-
proximation for r̄MA is very accurate.

V. LARGE SYSTEM APPROXIMATION

In this section, we perform a similar analysis for systems
with a large number N of antennas and K = 2N − 1 users.
As discussed in Section III, the number of equations equals
the number of variables in this case and we assume that there
is a finite number of aligned solutions. For the analysis, it is
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Fig. 2. Analytical and simulated performance results for N = 2.

crucial to know how many solutions we can choose from; this
is, however, unknown for N > 2.

An upper bound is given by Bézout’s Theorem [2], [3],
[6], which states that the number of solutions to a set of
multivariate polynomial equations is at most the product of the
degrees of the individual equations. Following the discussion
in Section III, the product of the degrees is 22K2

= 22(2N−1)2

in our case. The expression varies when the interference
alignment conditions are stated in a different way, but the
upper bound always grows as O

(
cN2+αN

)
for N → ∞, with

some constants c > 1 and α ∈ R.
Clearly, the number of solutions might be extremely high for

N > 2 and evaluating r for each solution could be compu-
tationally infeasible. Instead, we assume that we have some
method for computing different aligned solutions from the
cross-channel coefficients, where computing more solutions
incurs an additional computational cost. An example for such a
method is to run an iterative algorithm, such as the ‘Minimum
Leakage’ algorithm of [7], with different initializations.

Max-of-L Alignment (MLA): Compute L different aligned
solutions and use the one with the largest rate offset r.

In the following, we approximate r̄ with the MLA strategy
with different assumptions concerning the relation between L
and N . For this analysis we make the simplifying assumption
that the L aligned strategies are independent sets of random
isotropically distributed unit-norm beamforming and receive
filter vectors.1

First consider a preliminary random experiment with unit
norm vectors v1 and g1 that are isotropically distributed on
the unit sphere, and the matrix H11, which has unit-variance
complex Gaussian i. i. d. elements. In a large system, the
singular values of H11 are deterministic [8]. Furthermore, the
matrix containing the left and right singular bases are unitary,
so that when they are multiplied with any unit norm vector,

1This assumption leads to an upper bound on the rate offset since correlation
generally reduces the maximum value.

the resulting unit norm vector is also isotropically distributed
on the unit sphere. Therefore, for a given realization H 11, the
distribution of gH

1 H11v1 over random v1 and g1 is the same
as the distribution of gH

1 H11v1 when v1 and g1 are given
realizations, and H11 is random.

With this insight, and from the discussion in Section IV,
we obtain the distribution of one summand of r, cf. (6). Due
to the large number of summands in (5), the distribution of
r is approximately Gaussian and has mean −(2N − 1)γ and
variance (2N − 1)π2/6.

Proposition 4 (cf. [5, Section 9.3]): For large L, the max-
imum out of L realizations of a Gaussian random variable
with mean −(2N −1)γ and variance (2N −1)π2/6 follows a
scaled and shifted Gumbel distribution, the mean of which is
−(2N−1)γ+π

√
(2N − 1)/6(�+γ/�), where � = Q−1(1/L)

and Q−1(·) is the inverse of the Q-function.
Assuming that the Gaussian approximation is accurate for

large N , we can therefore use this as an approximation for
r̄MLA. Note, however, that � = O(

√
log L) as L → ∞ [5].

Consequently, for L = cN2+αN , i. e., if the upper bound on
the number of solutions provided by Bézout’s Theorem is tight
and we are able to try out all possible solutions, � is O(N) for
N → ∞ and the approximated mean r̄MLA is O

(
N

3
2
)
. This

is a higher growth rate than that of a simple upper bound in
which the interference channels are set to zero, which yields
O(N log N). This indicates that when taking the maximum
out of so many realizations, we are in a regime so far right
on the tail of the pdf that the Gaussian assumption no longer
holds, so that our approximations do not provide a meaningful
performance characterization.

Nonetheless, when L increases more slowly (e.g., exponen-
tially) with N , the Gaussian approximation is reasonable and
leads to accurate performance estimates of finite-size systems,
as indicated by the numerical results in Section VII. We also
note that for any polynomial relationship L = N m with
m ≥ 1, the analysis shows that r̄MLA → −∞ for N → ∞,
i. e., the y-axis intercept of the asymptote of the average sum
rate moves down, while the slope increases, as the system size
grows. Note that this asymptotic rate offset is the same as that
obtained by choosing a random aligned solution (L = 1). We
will investigate the consequences of this effect in Section VIII.

VI. ACHIEVABLE RATE OFFSET WITH K = N

We would like to compare the previously discussed full
alignment case to a scheme in which K ≤ N users are served.
Assuming zero interference, the high-SNR slope is at most
s = N , instead of 2N−1 for full alignment. When the number
of active users does not exceed the number of antennas at
each terminal, however, every set of beamformers v 1, . . . , vK

fulfills the zero-interference conditions (for a properly chosen
set of receive filters g1, . . . , gK).

Instead of searching for the globally optimal set of beam-
formers, we examine a suboptimal Successive Allocation (SA)
strategy for K ≤ N users, similar to the scheme in [9]. We
begin with the beamformer v1 and receiver g1, which are



chosen to maximize the first user’s individual rate offset, i. e.,
the first summand of r in (5):

max
v1,g1

|gH
1 H11v1|2 s. t.: ‖v1‖2

2 = 1 and ‖g1‖2
2 = 1.

(8)
The solution to this problem can be obtained by perform-
ing a singular value decomposition (SVD) of H11; v1 and
g1 are simply the principal right and left singular vectors,
respectively. For the following users k ∈ {2, . . . , K}, the
beamformers and receive filters are chosen to maximize the
respective individual rate offset, but subject to the condition
that all interference terms involving the previously allocated
users must be zero:

max
vk,gk

|gH
k Hkkvk|2 s. t.: ‖vk‖2

2 = 1 and ‖gk‖2
2 = 1

gH
k Hkjvj = gH

j Hjkvk = 0

∀ j ∈ {1, . . . , k − 1}.
(9)

Here, the solution is found by performing the SVD of a
projected version of Hkk, where the projectors from the left
and right are designed to ensure that the additional zero-
forcing constraints are fulfilled.

Furthermore, it is possible to order the users, i. e., instead
of beginning with user 1, to begin with the user that has the
highest maximum singular value of the direct channel, and
then to continue with the user that has the highest maximum
singular value of the appropriately projected direct channel,
and so on.

Proposition 5: Regardless of how the users are ordered, as
N → ∞, the rate offset normalized with the system dimension
r/N of this scheme approaches 2 log 2 + log(N !)/N , i. e.,

lim
N→∞

r/N − 2 log 2 − log(N !)/N = 0. (10)

Proof Sketch: In a large system, the singular values of
H11 are deterministic and are governed by the Mar čenko-
Pastur distribution; the maximum singular value approaches
2
√

N (see, e. g., [8]). Therefore, the rate for the first user
approaches log(4N). The projected direct channel of the sec-
ond user can be shown to have the same singular values as an
(N−1)×(N−1) matrix with unit-variance complex Gaussian
i. i. d. elements; its maximum singular value therefore ap-
proaches 2

√
N − 1, the individual rate offset is log(4(N−1)),

etc. Now let M = N − K = εN for some small ε > 0. The
maximum singular value for the N − M th user approaches
2
√

M with rate offset log(4M). Hence the sum rate offset
excluding the last M users approaches r = 2(N −M) log 2+
log(N !)− log(M !) = 2(1− ε)N log 2+ log(N !)− log[(εN)!].
Since ε can be arbitrarily small, we obtain (10).

The proposition implies that for a system with finite K = N
we can approximate r̄SA ≈ 2N log 2 + log(N !), which grows
as O(N log N). We note that a similar argument can be used
to estimate r for a system with K < N . As can be seen in
Section VII, this approximation is quite accurate, even for a
moderately sized system.
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Fig. 3. Analytical and simulated performance results for N = 8.

Max−SINR    Min−Leakage SA + pricing
0

50

100

150

200

250

Su
m

 R
at

e 
in

 B
its

 p
er

 C
ha

nn
el

 U
se

Fig. 4. Scatter plot showing the sum rate at 40 dB for 50 different channel
realizations for the same scenario as in Fig. 3. The horizontal lines are the
analytical approximations.

VII. NUMERICAL EVALUATION

To evaluate the approximations, we simulated the MLA
and SA strategies for 20 different channel realizations in a
scenario with N = 8 antennas per user. In order to obtain
L = 50 aligned solutions per channel realization for the MLA
strategy, we let the ’Min-Leakage’ algorithm from [7] run until
convergence from 50 different random initial conditions. For
comparison, we also let the ’Max-SINR’ algorithm from [7]
run until convergence from the same 50 initial conditions
and chose the best result. The SA strategy was implemented
with ordering as described in Section VI. To improve the
performance of SA at low and moderate SNRs, we used the
resulting strategy as an initial condition for the distributed
optimization (pricing) algorithm in [10]. Note that the pricing
algorithm does not deviate from an interference free strategy
at high SNR.2

2The performance is measured in bits per channel use, which requires a
scaling of the slope and offset expressions from the previous sections, where
the natural logarithm is used.
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Fig. 3 shows that the analysis accurately predicts the
simulated performance of the MLA and SA strategies at
high SNRs. The ‘Max-SINR’ algorithm performs significantly
better than the MLA and SA strategies due to the fact that the
direct channels Hkk are taken into account in the iterative
updates. Since the beamformers and receivers are no longer
independent of the direct channels, our large system results do
not apply to the ‘Max-SINR’ algorithm. For the channel model
assumed here, it is not known whether the SA strategy can
achieve a larger rate offset than the Max-SINR algorithm for
larger N . We note, however, that as the variance of the cross-
channel coefficients increases relative to the direct channel
coefficients, the ‘Max-SINR’ curve moves closer to ‘Min-
Leakage’ curve.

Fig. 4 shows how the performance of the three schemes
varies over 50 different random channel realizations in the
same scenario at an SNR of 40 dB. The two horizontal
lines for the MLA and SA strategies mark the large system
approximation for the sum rate.

VIII. ASYMPTOTIC CROSSOVER POINT

We are able to approximate the high-SNR asymptotes of an
interference alignment based strategy (MLA) and a strategy
that only serves N users (SA). While the asymptotic slope
for MLA is nearly twice as high as for SA, the offset for SA
grows as O(N log N) whereas for MLA it can even decrease
with N (e. g., when L = N m). We characterize this trade-off
by computing the SNR at which the two asymptotes cross:

log(σ−2
crossover) =

r̄SA − r̄MLA

N − 1
. (11)

For L = Nm, it is straightforward to see with the ap-
proximations in Propositions 4 and 5 that the crossover point
moves to the right as N → ∞, i. e., the SNR for which
MLA outperforms SA becomes larger and larger. In Fig. 5,
(11) is numerically evaluated using the large system results in
Propositions 4 and 5 for different relationships between L and

N . Interestingly, even for the super-exponential relationship
L = NN , the crossover point moves right as N grows, albeit
very slowly.

The results in Fig. 5 are based on large system approxima-
tions, and also the assumption that the L aligned solutions
give independent rate offsets. The latter leads to an upper
bound on the rate offset, although it is not known how
accurate this bound is for larger N . Nonetheless, the fact
that the approximations accurately predict the performance of
moderately sized systems indicates that they can be used to
predict the performance of larger systems as well. This is quite
useful, since simulating systems with larger N quickly become
very time consuming.

IX. CONCLUSION

We have derived large system approximations for the be-
havior of the high-SNR asymptote of interference alignment
strategies with a computational constraint, as well as for a
scheme where the number of users is equal to the number
of antennas and the beams are successively allocated. The
approximations provide an accurate prediction of the high-
SNR performance of the associated schemes for moderately
sized systems, which can be simulated with an acceptable
computational effort. Assuming that the approximations also
hold for larger systems, we show that the SNR at which the
two asymptotes cross increases with the system size even if
the number of different aligned solutions, which are sampled,
grows exponentially with the system dimension.
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