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Abstract—We consider the joint optimization of beamform-
ers and linear receivers in a MIMO interference network. Each
transmitter transmits a single beam corresponding to a rank-
one precoder. When the number of users K is greater than the
number of antennas at each terminal N , the maximum degrees
of freedom is achieved via spatial interference alignment.
Interference alignment is feasible for up toK = 2N−1 users, in
which case there is a finite number of solutions to the alignment
conditions. This number of solutions increases rapidly with N ,
and the solutions depend only on the cross-channel coefficients
(i. e., they are independent of the direct channels). To maximize
the achievable sum rate at high SNRs we therefore wish to select
an aligned solution which is best matched to the direct channels.
We evaluate the performance of this scheme for large K and
N , assuming that the solution is the best out of a random
subset of aligned solutions. We then compare numerically
this performance with the performance of previously proposed
numerical (e. g., forward-backward) techniques for optimizing
beams, and a new technique which tracks the local optimum
as the SNR is incrementally increased, similar to a homotopy
method for improving convergence properties. We observe that
the incremental technique typically achieves better performance
than the previously proposed methods.

I. INTRODUCTION

Determining the sum-rate optimal beamforming strategy

in MIMO interference networks is a difficult problem. Not

only is it in general impossible to express the optimal

strategy in closed form, in many cases there exist multiple

local optima, making it even more challenging to find the

global optimum. Recently, much research has been devoted

to understanding the problem at asymptotically high signal-

to-noise ratios (SNRs). In the high-SNR regime it is clear

that the interference must be fully separable from the desired

signal. This can be achieved by alignment of the interfering

signals at the receivers in lower-dimensional subspaces [1],

[2].

When the number of users and beams is such that the

zero-interference conditions form a system of equations

with equally many variables and equations, there is only

a finite number of beamforming strategies for which the

interference is aligned [2]. The challenge of finding the

optimal beamforming strategy at high SNR is therefore

equivalent to finding the best one among these aligned

solutions. Computing and comparing all aligned solutions,
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however, is a very difficult problem and is computationally

infeasible unless the system dimensions are very small, i. e.,

when there are more than two antennas per node.

Instead, a number of iterative algorithms have been pro-

posed [3], [4], [5], [6] that reliably converge towards a

“good” (but not necessarily globally optimal) aligned solu-

tion. These algorithms can be numerically compared for dif-

ferent scenarios, but deriving analytical performance results

appears to be difficult.

Another possibility is to compute many (L ≫ 1) different
aligned solutions directly from the alignment conditions and

then choose the best one. The performance of this approach

can be accurately approximated analytically as a function of

L [7] assuming that the method for computing the different

aligned solutions does not depend on the direct channels.

In this paper we compare the performance of the “Max-

of-L Alignment” (MLA) strategy with the iterative methods

in [3], [4], [5]. We also introduce another numerical opti-

mization method in which the beamformers are re-optimized

as the SNR is incrementally increased. Our results show that

this incremental technique performs significantly better than

the iterative (forward-backward) algorithms in [3], [4], [5]

for large loads (K/N ) and high SNRs. Furthermore, the

iterative methods perform significantly better than the MLA

method even when L is very large (although still less than

the total number of aligned solutions). Hence we conclude

that a computationally feasible search for the optimal aligned

solution must take into account the direct channels.

In the next section we introduce the system model, and

in Section III we discuss the behavior at asymptotically

high SNRs. In Section IV we summarize the performance

approximation proposed in [7], in Section V we present

a novel numerical method based on gradually increasing

the SNR, and in Section VI we compare our new method

with the state of the art and the analytical performance

approximations by means of numerical simulations.

II. SYSTEM MODEL

We examine a scenario with K transmitter-receiver pairs,

or users, where each transmitter and receiver hasN antennas.

The complex channel gains between the antennas of trans-

mitter j and the antennas of receiver k are the elements of

the channel matrix Hkj ∈ CN×N . Each transmitter k forms

the transmitted vector by multiplying its single unit-variance

data symbol bk with its respective beamforming vector vk.

For all users k, we require ‖vk‖22 ≤ 1, corresponding to a

unit power constraint.



The channel output at receiver k is

yk = Hkkvkbk +
∑

j 6=k

Hkjvjbj + nk (1)

where nk is the Gaussian noise with zero mean and covari-

ance matrix E[nkn
H
k ] = σ2

I. We define σ−2 as the SNR.

Receiver k is interested in decoding only the data stream bk
from yk; the components from all other transmitters j 6= k
are interference.

We assume that all users employ random Gaussian code-

books and decode their data stream (treating the interference

as additional noise) after applying a linear receive filter gH
k .

Without loss of generality, we can assume ‖gk‖22 = 1 for all

users k. The following rate is achievable by user k:

Rk = log

(
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|gH
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where (2) holds for any unit-norm receive filter gk and (3)

holds for the optimal receive filter vector.

The overall goal is to optimize the sum of all users’ rates:

max
v1,...,vK

K
∑

k=1

Rk s. t.: ‖vk‖22 ≤ 1 ∀k ∈ {1, . . . ,K}. (4)

By taking the derivative of the Lagrangian function w. r. t.

vk, we obtain the following necessary conditions for local

and global optimality:

Ak · vk = λk · vk ∀k ∈ {1, . . . ,K} (5)

where

Ak =
1

1 + γk
HH

kkX
−1

k Hkk

−
∑

j 6=k

1

1 + γj
HH

jkX
−1
j Hjjvjv

H
j H

H
jjX
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j Hjk (6)

and

Xk =
∑

j 6=k

Hkjvjv
H
j H

H
kj + σ2

I (7)

is the interference-plus-noise covariance matrix of receiver k
and

γk = vH
k H

H
kkX

−1

k Hkkvk (8)

is the signal-to-interference-and-noise ratio (SINR) at re-

ceiver k. In addition to the norm constraint on the beam-

formers vk, we have

λk ≥ 0 and λk(‖vk‖22 − 1) = 0 ∀k ∈ {1, . . . ,K}.
(9)

Note that even though (5) has the form of a simple eigen-

vector problem, each matrixAk depends on all beamforming

vectors v1, . . . ,vK and a non-trivial solution in closed

form cannot be readily obtained. Furthermore, numerical

experiments show that there are in general multiple sets of

beamforming vectors that fulfill these conditions, a subset of

which are local optimizers of (4).

Unless K and N are small, it is generally computationally

infeasible to find the globally optimal solution to (4) in

acceptable time. Instead, we must rely on iterative algorithms

to find “good” local optima that are in general not globally

optimal.

III. OPTIMALITY AT HIGH SNR

Additional properties of the solution to problem (4) can

be given for the regime of asymptotically high SNR, i. e.,

for σ−2 → ∞. From (2), we observe that for a given set

of beamformers and receive filters Rk approaches either a

constant or a constant plus log σ−2 for the case that the sum

interference power term is non-zero or zero, respectively.

Therefore, the sum rate is

K
∑

k=1

Rk = s · log σ−2 + r + o(1) (10)

as σ−2 → ∞, where s is the number of users with zero

interference power after the receive filter and r is a constant;

s and r can be interpreted as the slope and the y-axis

intercept (or offset) of the high-SNR asymptote of the sum

rate plotted versus SNR in dB.

If all K users are interference-free, i. e., if

gH
k Hkjvj = 0 ∀(k, j) ∈ {1, . . . ,K}2 with k 6= j,

(11)

then from (2) it follows that the slope is s = K and the

sum-rate offset is

r =

K
∑

k=1

log|gH
k Hkkvk|2. (12)

Clearly, for high enough SNRs, the slope s dominates the

sum rate, i. e., to solve (4) at high SNRs it is necessary to

maximize the number of receivers that do not experience

any interference. In [2] it was shown that if the channel

coefficients Hkj are drawn from a continuous distribution,

it is possible to fulfill (11) if K ≤ 2N − 1 almost surely.

Conversely, if K > 2N − 1 the conditions almost surely

cannot be simultaneously fulfilled.

The feasibility argument in [2] is based on counting

the number of equations and variables and showing in-

dependence of the coefficients in the resulting system of

polynomial equations. In particular, when K = 2N − 1,
the number of equations equals the number of variables,

and by the same argument the zero-interference conditions

almost surely have a finite number of isolated solutions.

This number of solutions is known to be two for a system

with N = 2 and K = 3, and 216 for the next larger

(fully loaded) system with N = 3 and K = 5. This

number becomes increasingly difficult to determine for larger

systems, as it involves the computation of mixed volumes

(Bernshtein’s Theorem, cf. [2]). An upper bound on the

number of solutions is given by Bézout’s Theorem, which

grows as O
(

cN
2
+αN

)

where c > 1 and α ∈ R are constants.



In the following we focus on systems with K = 2N − 1
and assume that the appropriate number of users has been

determined in a previous step of user selection or scheduling.

For (11) to be fulfilled, K − 1 = 2N − 2 interfering beams

must be orthogonal to every receive filter gk ∈ CN , i. e.,

they may only occupy an (N − 1)-dimensional subspace at

the kth receiver. This property is referred to as interference

alignment.

Note that the direct channels Hkk do not appear in the

system of equations (11). Consequently, while all solutions

to (11) have the same slope s, they can differ in the offset r,
which is defined solely by the direct channels Hkk, cf. (12).

Therefore, the solution to the optimization problem (4) at

asymptotically high SNR is the particular zero-interference

(or aligned) solution that results in the highest value of r.
Computing different aligned solutions, let alone finding

all aligned solutions, is generally not possible in closed

form. Finding the roots of the zero-interference equations

is computationally demanding and feasible only for very

small networks. In constrast, iterative algorithms have been

proposed that converge to a set of beamformers and receive

filters that fulfills the zero-interference conditions in reason-

able time, e. g., the “minimum leakage” algorithm in [3].

Here we consider two approaches to determining a good,

but not globally optimal, high-SNR strategy:

1) We compute many different zero-interference solutions

by running an iterative algorithm until convergence

from many different initial conditions; we then com-

pare the corresponding sum-rate offsets r for the

resulting beamformer/receiver sets and choose the best

one. Assuming the offsets are statistically independent

and the number of sampled solutions L (as well as

the system dimension N ) is reasonably large, we are

able to approximate the expected value of r averaged

over channel realizations. This analysis was presented

in [7] and the approximation is summarized in the

following section. We refer to this approach as “Max-

of-L Alignment” (MLA).

2) We run a numerical algorithm that is designed to

maximize the sum rate (or a related objective) directly.

Many such algorithms have been proposed [3], [4], [5],

often with suitability for distributed implementation

in mind. As opposed to the preceding strategy, their

performance is difficult to analyze and we must rely on

numerical comparisons. In Section V we present a new

numerical algorithm based on gradually incrementing

the SNR.

In Section VI we numerically compare the sum rates for these

different approaches using the analytical approximation for

the first MLA method.

IV. PERFORMANCE OF THE MLA SOLUTION

In this section we examine the statistical properties of

r in (12) for an i. i. d. channel model. If the number of

summands K is large, we can use the central limit theorem

to assume a Gaussian distribution, and argue that taking the

best out of L independently chosen aligned solutions can

be modeled by taking the maximum out of L independent

realizations of this Gaussian distribution. A result from

extreme statistic then gives us an approximation for the

average performance of the MLA strategy.

We assume that the elements of all matrices Hjk are

drawn independently from a unit-variance complex Gaussian

distribution. Because the zero-interference conditions do not

depend on the direct channels Hkk , we fix the aligned

solution as an arbitrary set of unit-norm beamformers and

receivers (v1, . . . ,vK , g1, . . . , gK) and then randomly draw

the direct channels Hkk. The resulting desired signal pow-

ers |gH
k Hkkvk|2 have an exponential distribution, and the

mean and variance of log|gH
k Hkkvk|2 are −γ and π2/6,

respectively, where γ ≈ 0.5772 is the Euler-Mascheroni

constant [7].

Consequently, if the number of independent summands of

r, i. e., the number of users K , is large, r is approximately

Gaussian distributed with mean −Kγ = −(2N − 1)γ and

variance Kπ2/6 = (2N − 1)π2/6, cf. (12). Note that this

is the distribution of r over random channel realizations,

assuming that for each channel realization one out of the

finite number of beamformer/receiver sets that fulfill (11) is

chosen at random.

Instead of taking one random aligned solution per channel

realization, however, we would like to compare L different

random solutions for the same channel realization and take

the one with the highest value of r. It is argued in [7] that if

the dimensionality N of the channel matrices is large, it is ir-

relevant whether we compare L random beamformer/receiver

sets for the same channel realization or L random beam-

former/receiver sets for different random channel realiza-

tions (assuming that the aligned beamformers/receivers are

isotropically distributed), as the singular spectra of large

random matrices are approximately deterministic.

Therefore, for large N the offset r for the MLA solution

can be approximated as taking the maximum out of L realiza-

tions of a Gaussian random variable with mean −(2N−1)γ
and variance (2N − 1)π2/6. From extreme statistics it is

known that for large L the maximum of L realizations of a

Gaussian random variable has a shifted and scaled Gumbel

distribution. Specifically, for our Gaussian approximation of

the rate offset r the mean of the resulting Gumbel distribution

approaches

E [rmax] ≈ −(2N − 1)γ + π
√

(2N − 1)/6(ℓ+ γ/ℓ) (13)

as L becomes large, where ℓ = Q−1(1/L) and Q−1(·) is the
inverse of the Q-function [7], [8].

In practice, an MLA solution can be obtained by running

the “minimum leakage” algorithm proposed in [3] starting

from L independent initializations (e. g., chosen from an

isotropic distribution). The iterative updates in this algorithm

do not depend on the direct channels Hkk and the only

objective is to fulfill the zero-interference conditions. We

emphasize that the previous analysis does not apply to the

“maximum SINR” algorithm in [3] or to the algorithms

proposed in [4], [5] since the updates in these algorithms

depend on the direct channels.



Although this analysis relies on both N and L being

asymptotically large, it yields a good prediction of the sim-

ulated performance even for moderate system dimensions,

as is demonstrated in Section VI. We note, however, that

if L grows much faster than N , e. g., L = cN
2

, the

approximations can become inaccurate, as the maximum

out of L realizations is so far right on the tail of the

probability density function that the Gaussian approximation

is inaccurate. In particular, this analysis cannot be used to

predict the performance obtained by taking the best out of

all of the aligned solutions, since the number of aligned

solutions may grow as cN
2

.

V. INCREMENTAL-SNR OPTIMIZATION

A few algorithms have been proposed that are directly

aimed at maximizing the sum rate or a related criterion. The

“maximum SINR” algorithm in [3] is based on repeatedly

exchanging the roles of transmitters and receivers and after

each switch updating all receive filters to maximize the

SINR. A different global SINR utility function is defined

in [4] and transmitters and receivers are alternatingly updated

to maximize the ratio of the network-wide sum signal power

to the network-wide sum interference plus noise power. A

similar algorithm aimed at minimizing the weighted sum

mean square error and adapting the weights in order to find a

local optimum of the sum rate was proposed in [5]. In [6], the

sum rate is optimized directly over the covariance matrices

instead of the beams.1 Analytical performance evaluation

of these algorithms seems difficult; they can, however, be

compared numerically for a given channel model.

In contrast to the preceding approaches, here we propose

an approach which attempts to track a local optimum as

the SNR is incrementally increased from zero. (Equivalently,

all transmitters increase their power simultaneously.) This

is motivated by the observation that for low SNR the in-

terference can be ignored, so that the optimal beam vk is

the eigenvector of HH
kkHkk corresponding to the maximum

eigenvalue. (This also follows from the conditions (5)–(8).)

It is furthermore motivated by the intuition that the best high-

SNR solution will be in some sense “close” to the low-SNR

optimizer.

This intuition is illustrated in Fig. 1: when the SNR is

low, the optimal strategy is easily determined and depends

on the direct channels. For sufficiently high SNR, on the

other hand, there are many different locally optimal so-

lutions. For instance, all of the isolated interference-free

beamformer/receiver sets correspond to local optima, but

other local optima may also exist, corresponding to solutions

where the interference is zero only for some users. (This is

supported by the observation that gradient algorithms that

follow the steepest ascent of the sum rate occasionally fail

to end up at an interference aligned solution at high SNR.)

The locations of the local optima are determined by the cross

channels.

1The covariance-based algorithm in [6] can result in more than one
beam per user being active and is therefore not included in the following
comparison.

While the (almost) aligned local optima all have close to

zero interference at high SNR, they can differ significantly

in the resulting sum rate. In terms of the approximation (10),

they all have the same slope s, but differ in the offset

r. The offset r is determined only by the direct channels,

cf. (12), and is highest when the beamformers and receivers

are matched to the direct channels, i. e., in the vicinity of the

low-SNR optimizer.

Based on these considerations, we propose the following

procedure for determining a good local optimum at any

SNR: we begin with very low SNR, i. e., a high value of

σ2, and initialize the beamformers with the beams matched

to the direct channels. Then we successively increase the

SNR, i. e., decrease σ2, and after each incremental change of

the SNR iteratively update the beamformers until they have

settled on a nearby local optimum. We formulate a fixed

point updating procedure based on the necessary conditions

for local optimality (5). Specifically, we keep A1, . . . ,AK

fixed using the beamformers resulting from the previous

iteration, and then update the beamformers v1, . . . ,vK to

be the principal eigenvectors of A1, . . . ,AK .2

A distributed implementation is possible provided that

each transmitter k knows Hjk for all j ∈ {1, . . . ,K}. After
each update, the receivers measure the new interference-plus-

noise covariance matrix Xk and compute the vector

tk =
1√

1 + γk
X−1

k Hkkvk. (14)

This vector is then communicated to all transmitters. Trans-

mitter k can now compute the new matrix Ak as

Ak =
1

1 + γk
HH

kkX
−1

k Hkk −
∑

j 6=k

HH
jktjt

H
j Hjk (15)

and perform the update of vk on its own. We observe that this

update is analogous to the best-response update performed

by transmitter k in the distributed interference pricing algo-

rithm [9], [10], [11], [12]. The complete incremental-SNR

algorithm is summarized in Table I.

For satisfactory results it is critical to fine-tune the conver-

gence threshold and the size of the SNR increments used in

the algorithm. In our implementation, we assumed conver-

gence of the beamformers to be complete when the sum of

the Euclidean norms of the changes over all beamformers

vk was below 10−4. The SNR in dB 10 log10 σ
−2 was

incremented by 4 until the target SNR was reached.

The concept of gradually transforming a problem from a

more managable form into its original, difficult form, is also

known as a “homotopy method”. It is used in the numerics

literature, e. g., to improve the convergence properties of the

Newton method for finding zeros of systems of nonlinear

equations [13].
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Fig. 1. For low SNR (left), the optimal beamforming strategy is easily found and consists of using the principal eigenvectors of the Gramians of the
direct channels. At high SNR (right), there are many local optimizers which depend only on the cross channels. The best aligned solution is the one with
the highest high-SNR offset r, which depends only on the direct channels. The expression for the offset r (12) reaches its maximum for the same principal
eigenvectors that maximize the sum rate at low SNR. We are therefore interested in finding aligned solutions that are close to the low-SNR optimal strategy.

TABLE I

INCREMENTAL-SNR ALGORITHM

for k in {1, . . . , K} do

initialize vk as principal eigenvector of HH

kk
Hkk

end for
initialize σ−2 close to zero
while σ−2 < target-SNR do

repeat

for all k do
compute tk from (14)

end for

for all k do
compute Ak from (15)
update vk as principal eigenvector of Ak

end for

until convergence of all vk

increase σ−2

end while
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Fig. 2. Comparison of the average sum rate over the SNR of the
incremental-SNR algorithm with the MLA strategy for a system with
K = 11 users and N = 6 antennas at each terminal
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Fig. 3. Comparison of the average sum rate over the SNR of the
incremental-SNR algorithm with previously proposed algorithms for a
system with K = 11 users and N = 6 antennas at each terminal

VI. NUMERICAL RESULTS

For the results in Fig. 2 we numerically simulated the

incremental-SNR algorithm along with the MLA strategy for

a scenario with N = 6 antennas at each terminal and K =
2N−1 = 11 users. The sum rate is averaged over 50 channel

realizations. Also included are the approximated asymptotes

for the MLA method with L = 1, L = 50, and L = 100 000
using the results from Section IV. In Fig. 3 we compare the

performance of the incremental-SNR algorithm with that of

the algorithms from [3], [4], [5] for the same scenario.

2Note that by taking the principal eigenvector regardless of the sign of
the highest eigenvalue, we are effectively replacing the inequality power
constraints by equality power constraints. This has little effect if the number
of users selected initially is feasible, i. e., if K ≤ 2N − 1. Alternately, the
update could be done such that the new beamformer is set to zero if the
highest eigenvalue is negative.
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Fig. 4. Average sum rate over number of users K for a system with N = 6

antennas at each terminal and an SNR of 30 dB

The proposed incremental-SNR algorithm clearly finds

the best aligned solution on average (although this is not

true for all channel realizations). Also, the analytical results

for the MLA method are reasonably accurate, even for this

moderate system size. Assuming that the approximation for

L = 100 000 predicts the performance equally well, we can

conclude from Fig. 2 that a huge number of aligned solutions

must be sampled in order to find one that is as good as

the one obtained by the incremental-SNR method for this

particular scenario.

In Fig. 4 we show the effect of decreasing the number of

users, again for a system with N = 6 antennas. It can be

seen that the advantage of the incremental-SNR method is

largest when the system is fully loaded with K = 2N −
1 = 11 users. Also, we note that for the “minimum leakage”

algorithm, which converges to a random aligned solution,

the average sum rate is proportional to the number of users,

since adding a user does not harm the other users as long as

zero interference is still feasible. For the incremental-SNR

and maximum SINR methods this is not the case.

VII. CONCLUSION

In this work we examined and compared two approaches

to obtaining a set of beamformers that maximizes the sum

rate in a single-beam MIMO interference network at high

SNRs. The first approach relies on comparing a large number

of randomly obtained interference aligned solutions and can

be analyzed by applying results from the theory of large

random matrices and extreme statistics. The second approach

is to design a numerical search algorithm that finds a good

aligned solution. We proposed a procedure that tracks a

locally optimal solution while incrementing the SNR. The

performance of this algorithm is significantly better than that

of previously proposed algorithms. Furthermore, our simu-

lations suggest that the second approach clearly outperforms

the MLA method unless the number of sampled solutions is

extremely large.

Finding the average sum rate offset for the best aligned

solution, however, remains an open problem. It is not known

whether the numerical methods discussed in this work yield

significantly suboptimal solutions or whether they come

close to the performance of the global optimum at high

SNRs.
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