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Abstract—This paper considers the problem of beamforming in
multiple-input multiple-output (MIMO) wireless systems. Assum-
ing perfect channel state information at the receiver, the choice
of the beamforming vector is made possible through a noiseless
limited-rate feedback to the transmitter. This paper proposes the
use of beamforming codebooks based on quadrature amplitude
modulation (QAM) and phase-shift keying (PSK) constellations,
which essentially eliminates the need for storage of the codebook.
We show that such codebooks perform arbitrarily close to the
perfect feedback case as the constellation size increases, and that
full diversity order is achieved. We demonstrate an equivalence
between the beamforming codebook search problem with that of
noncoherent sequence detection. Based on this we propose fast
beamforming vector search algorithms. Monte-Carlo simulations
are presented to show that the performance is comparable to the
best known codebooks, and that the search complexity can be
reduced by several orders of magnitude.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can pro-
vide increased reliability in wireless communication links by
exploiting the spatial diversity due to the increased num-
ber of transmit-receive paths. A simple technique to obtain
the highest possible diversity order is to employ transmit
beamforming and receive combining, which simultaneously
improves the array gain. This technique requires that the
transmitter has channel state information in the form of a
transmit beamforming vector. It is often impractical to have a
reciprocal channel for the transmitter to estimate the channel,
and thus a small number of bits are sent via a feedback path
for the transmitter to recreate the beamforming vector. Such
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systems are known as limited feedback systems (see [1] and
references therein).

In these limited feedback systems, the transmitter and
receiver share a codebook of possible beamforming vectors
indexed by a number of bits. The receiver chooses a beam-
forming vector from the codebook on the basis of maximizing
the effective signal-to-noise ratio (SNR) after combining, and
sends the corresponding bits to the transmitter. We examine
two beamforming codebook strategies in this paper. Firstly, we
consider maximum ratio transmission (MRT), where the beam-
forming vectors are constrained to have unit length, so that the
energy expended in each packet transmission is unchanged
[2, 3]. Secondly, we consider equal gain transmission (EGT),
where the transmit power of each antenna is unaffected, and
thus the amplifier requirements are not increased [4].

The most straightforward approach to designing a limited
feedback system is to employ scalar quantization where each
component of the beamforming vector is quantized separately.
More advanced approaches to the limited feedback design
problem involve designing beamforming vector codebooks
using the minimum number of feedback bits possible for a
given effective SNR after combining [3], neglecting the search
and storage requirements. The codebook design strategies
which have been suggested use either numerical optimization
techniques [3–7], or for larger systems the codebooks can be
randomly generated, i.e random vector quantization (RVQ) [8].
Such random codebooks have been shown to be asymptotically
optimal as the number of bits and antennas increase [9, 10].

Unfortunately, the codebook size increases exponentially
with the number of transmit antennas to maintain a given
effective SNR or capacity loss with respect to the ideal
unquantized system [3, 7, 11]. Since the codebooks have no
structure an exhaustive search is usually required. For time-
varying channels, the resulting delay due to the excessive
search time reduces the effectiveness of the beamforming
vector when employed at the transmitter [12]. Non-exhaustive
methods for searching unstructured codebooks at the expense
of increased memory requirements have been well documented
in [13]. One of these methods is a tree-search [5, 14], where
storage of the tree and codebook is required. An additional
consequence of exponential growth in codebook size is that
even storage of the codebook may be infeasible for large
numbers of antennas.

In this paper, we propose schemes to reduce both the search
and storage complexity. This is enabled by using structured
codebooks where each vector in the codebook is a sequence
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of symbols from an M -ary quadrature amplitude modulation
(QAM) or M -ary phase-shift keying (PSK) constellation. The
QAM codebooks are used for quantizing the ideal infinite-
precision MRT vector, and since PSK symbols have equal
envelope, the PSK codebooks are used for quantized EGT.
Before application at the transmitter, the vectors are scaled to
have unit norm so as to satisfy the power constraints.

Since QAM and PSK constellations have simple bit-to-
symbol mapping algorithms no codebook storage is required
at either the transmitter or receiver1. We show that the perfor-
mance can be arbitrarily close to the ideal unquantized system
as M →∞ and that the codebooks achieve the full diversity
order. We also discuss the improved peak-to-average power
ratio (PAPR) obtained, as compared to using unstructured
codebooks.

Our primary motivation for proposing the use of QAM
and PSK codebooks is to exploit their structure to reduce the
codebook search complexity. To do this, we first demonstrate
the equivalence between the problem of finding the optimal
beamforming vector in the codebook and the problem of
noncoherent sequence detection. We then provide optimal
codebook search algorithms based on the fast noncoherent
sequence detection algorithms given in [15–17]. We also
show how further reductions in complexity may be obtained,
while maintaining near identical performance, by using the
suboptimal noncoherent sequence detection algorithm from
[18]. We show that the complexity of the new algorithm can be
orders of magnitude smaller than an exhaustive search. We also
show that even lower complexity scalar quantization schemes
can be developed with a compromise on performance.

Importantly, we show that these reduced-search algorithms
do not reduce the diversity order of the system. We also
calculate the average effective channel gain and provide an
upper bound on the capacity of the beamforming system
employing PSK-based codebooks and scalar quantization.

Finally, we compare via simulation the QAM and PSK-
based schemes to the codebooks obtained via numerical opti-
mization in [3, 7, 19, 20], available for small numbers of anten-
nas and codebook sizes, and for large number of antennas we
compare to randomly generated codebooks. We show that the
performance is similar for the same number of feedback bits,
and much improved for a given computational complexity. We
also show that the performance of the proposed quantization
algorithms significantly improves over a scalar quantization
approach.

II. MIMO BEAMFORMING SYSTEM MODEL

We consider a single-user, narrowband wireless MIMO sys-
tem employing transmit beamforming and receive combining
with NT transmit antennas and NR receive antennas (for
more details see [3]). The channel H ∈ CNR×NT is assumed
to be independent and identically distributed (i.i.d.) complex
Gaussian with unit variance. The channel state information
(CSI) is perfectly known at the receiver.

1The index bits need not be relayed in the same modulation format.

Given the transmitted symbol x ∈ C, the received symbol
y ∈ C is given by

y = z†Hwx+ z†n (1)

where w ∈ CNT×1 and z ∈ CNR×1 are the beamforming
and combining vectors respectively with ‖w‖ , ‖z‖ = 1.
The vector n ∈ CNR consists of i.i.d. circularly symmetric
complex Gaussian variables, each with variance N0. The
average symbol energy is Ex = E[|x|2]. The instantaneous
signal-to-noise ratio (SNR), ρ, is

ρ ,
ExΓ(H)
N0

where Γ(H) ,
∣∣z†Hw

∣∣2 is the effective channel gain.
Note that given any w, it is well known that the combining

vector which maximizes the SNR is given by maximum ratio
combining (MRC) where z = Hw/ ‖Hw‖. The resulting
effective channel gain is ΓMRC(H) = ‖Hw‖2.

We consider the case where there is a low-rate, error-
free, zero-delay feedback channel from the receiver to the
transmitter, as in [1, 3]. The receiver and transmitter share
a codebook C of N possible beamforming vectors of unit
magnitude, which are indexed by B = dlog2Ne bits.

To maximize the SNR, the receiver chooses the beamform-
ing vector from the codebook according to

w = arg max
v∈C

‖Hv‖2

‖v‖2
. (2)

and then sends the corresponding index bits to the transmitter.
The beamforming scheme employing the ideal unquantized

beamforming vector with ‖w‖ = 1 is known as maximum
ratio transmission (MRT) [2]. In this case, the ideal infinite-
precision beamforming vector is given by the right-singular
vector of H corresponding to the largest singular value of H.
We denote this vector wopt. The effective channel gain when
using MRT and MRC is denoted ΓMRT,MRC(H).

For equal gain transmission (EGT), the beamforming vector
has the property that |wt| = 1/

√
NT for all t. The effec-

tive channel gain when using EGT and MRC is denoted
ΓEGT,MRC(H). In this paper, we generate EGT beamforming
vectors by quantizing the optimal MRT vector wopt so as
to maximize the effective SNR under the per-antenna power
constraint.

III. CONSTELLATION BASED CODEBOOK DESIGN

In this section, we propose a method of beamforming
codebook construction using sequences of symbols drawn
from an M -ary QAM or PSK constellation. We then show
how the beamforming vectors are indexed efficiently.

A. QAM Codebook Construction

For QAM, the proposed codebook C is the set of all MNT

possible sequences of M -ary QAM symbols of length NT ,
with some sequences that we will show to be redundant
removed. In this paper we focus on some specific QAM
constellations. The QAM constellations we consider satisfy the
following properties: 1) the real and imaginary part of each
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constellation point is an odd integer; and 2) the constellation
exhibits 2-fold rotational symmetry2 on the complex plane
about the origin, so that there exists at least one pair of
antipodal constellation points u,−u. Specifically, we consider
square QAM with M = 4, 16, 64 and rectangular 8-QAM
where the constellation points have real part ±1,±3 and
imaginary part ±1. However, it is not hard to extend the
algorithms and analysis to other constellation shapes such as
cross or circular.

Each QAM vector is a basis for a subspace in CNT .
Moreover, two vectors v1,v2 are a basis for the same subspace
in CNT , if there exists some γ ∈ C such that v1 = γv2,
implying ‖Hv1‖ / ‖v1‖ = ‖Hv2‖ / ‖v2‖. There exist sets of
QAM vectors which share the same subspace and always give
the same effective channel gain regardless of H. Therefore the
redundant vectors can be removed to reduce the number of
feedback bits. When |γ| = 1, this is a phase ambiguity. Since
square QAM constellations have 4-fold rotational symmetry,
each QAM vector has at least three other QAM vectors in
the codebook that describe the same subspace. Hence, only
a quarter of all possible MNT constellations are required,
and by removing redundant sequences this saves two bits in
the feedback path. To remove this ambiguity, we apply the
restriction that Re {v1} > 0 and Im {v1} > 0, for all v ∈ C.
Thus, two less bits are required to describe v1 and an upper
bound on the number of bits required for the codebook is
B 6 dNT log2M − 2e. The version of 8-QAM considered
in this paper exhibits only 2-fold rotational symmetry, hence
we apply the restriction that Im {v1} > 0 and it follows that
B = 3NT − 1.

Another form of ambiguity arises between QAM vectors
when |γ| 6= 1, which we call a divisor ambiguity [21]. Closed-
form expressions for calculating the number of redundant
sequences due to divisor ambiguity were provided in [21]
using number theoretic techniques in the context of nonco-
herent sequence detection. For the constellations examined in
this paper, the number of such sequences is not significant
enough to reduce the required bits in the feedback path by
1, regardless of the number of antennas. Hence, since we are
considering only a single channel, the upper bounds given in
the previous paragraph are treated as equalities in the rest of
this paper. However, small reductions in the feedback rate may
be obtained for some large M when quantizing over a number
of channels, such as in an OFDM system.

Note that as M increases there exist candidate vectors in
the QAM lattice that give an effective channel gain ‖Hw‖2

arbitrarily close to the optimum ‖Hwopt‖2.

B. PSK Codebook Construction

For PSK-based codebooks, the codebook C is formed by
normalizing the set of all MNT possible sequences of M -
ary PSK symbols of length NT to have unit magnitude. Due
to the π/M rotational symmetry of PSK constellations, each
PSK sequence has M − 1 other PSK sequences that describe
the same subspace. To remove this ambiguity, we apply the

2An object exhibits n-fold rotational symmetry in 2 dimensions if a rotation
of 2π/n does not change the object.

restriction that w1 = 1/NT . Thus, no bits are required to
describe w1 and the number of bits required for the codebook
is B 6 d(NT − 1) log2Me.

As M increases there exist candidate vectors in the PSK-
based codebook that give an effective channel gain arbitrarily
close to that obtained by using the ideal unquantized EGT
vector.

IV. CODEBOOK PROPERTIES

We now discuss the properties of the codebook which
suggest that the performance of the QAM and PSK codebooks
will be comparable to the unstructured codebooks. We show
that the codebooks achieve the full diversity order and have a
better PAPR than unstructured MRT codebooks.

A. Diversity order

A system achieves diversity order D if the probability of
symbol error, Pe, averaged over H satisfies

lim
Ex/N0→∞

logPe(Ex/N0)
log(Ex/N0)

= −D. (3)

For an NT × NR system the maximum achievable diversity
order is D = NTNR [2]. To show that QAM and PSK-based
codebooks achieve the full diversity order, we first note the
following result from [22, Theorem1].

Theorem 1 (Love and Heath [22]): A wireless system em-
ploying beamforming and combining over memoryless, cor-
related Rayleigh fading channels provides full diversity order
if and only if the vectors in the beamforming codebook span
CNT and there exists a set of valid combining vectors that
span CNR .
Note that the theorem includes i.i.d. Rayleigh fading MIMO
channels as a special case. This result is used in the proof of
the following lemma.

Lemma 1: A wireless system employing a QAM or PSK-
based beamforming codebook with receiver combining over
memoryless, correlated Rayleigh fading channels provides full
diversity order if the set of valid combining vectors span CNR .

Proof: The proof proceeds by first constructing a set of
vectors spanning CNT so that Theorem 1 is satisfied. To do
this we can construct a matrix with linearly independent rows,
which are the required spanning vectors, and represent valid
codewords. Consider the matrix B = 1 + (e

j2π
M − 1)I, where

1 is an NT ×NT matrix with all entries equal to one, and I
is the NT × NT identity matrix. It can be seen that the row
vectors of B are valid codewords3 from an M -ary PSK-based
codebook. Noting that det(B) 6= 0 if and only if B spans
CNT , we have

det(B) = (e
j2π
M − 1)NT det(I + (e

j2π
M − 1)−11)

= (e
j2π
M − 1)NT

(
1 +

NT

e
j2π
M − 1

)
= (e

j2π
M − 1)NT−1(e

j2π
M − 1 +NT ). (4)

3As a consequence of the bit saving restriction that w1 > 0 discussed in
Section III-B, the first row vector must be rotated to be a valid beamforming
vector. This does not affect the rank of the matrix.
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Now, (4) is equal to zero only if M = NT = 2. In this
case, we can use rows of the linearly independent matrix
B =

[
1 1
1 −1

]
as codewords. Therefore a set of beamforming

vectors that span CNT can be constructed for any value of
NT from an M -ary PSK codebook. It follows from Theorem 1
and the assumption that the combining vectors span CNR , that
PSK-based codebooks achieve the full diversity order. Since
antipodal BPSK sequences are a subset of any QAM-based
codebook, it follows that QAM-based codebooks achieve the
full diversity order.
Note that the proof could be simplified if we did not consider
M -ary PSK for all M by noting that BPSK sequences are
subsets of QAM and M -ary PSK codebooks with even M .

B. Peak-to-Average Power Ratio

The PAPR is an important issue in codebook design, as
it can greatly affect the hardware requirements of multiple-
antenna systems.

We consider the peak-to-average power ratio (PAPR) taken
to be the ratio between the maximum possible power scaling
performed at any one antenna, over all possible channels, and
that of the average power of the antenna. We assume that
there is no additional variable power scaling performed at the
transmitter (e.g. due to automatic gain control).

Firstly, note that the average transmit power per antenna,
Pave is 1

NT
since ‖w‖ = 1. We now turn to calculating

the peak power at any one antenna, defined as Ppeak =
maxw∈C maxt |wt|2.

For unstructured codebooks, if the only design constraint
applied is that ‖w‖ = 1, it is possible that there exists
a codebook vector corresponding to all the power being
concentrated in one transmit antenna. It follows that Ppeak
can be as high as one resulting in a worst-case PAPR of
PAPR = NT .

For QAM based codebooks, we have by construction that
each antenna has a non-zero power allocation, and hence the
PAPR is always strictly less than NT . Furthermore, the PAPR
is also bounded by the constellation size. For example, for
M -ary square QAM constellations, the peak transmit power
at any antenna due to beamforming is due to the case where
one antenna is designated one of the four outermost QAM
constellation points e.g. (

√
M −1) + j(

√
M −1), and the rest

are designated one of the four innermost QAM constellation
points e.g. 1 + j. Remembering that the beamforming vector
is scaled to have unit magnitude, the maximum magnitude of
any element of the beamforming vector is therefore

Ppeak =
(
√
M − 1)2

(NT − 1) + (
√
M − 1)2

.

Hence

PAPR =
NT (
√
M − 1)2

(NT − 1) + (
√
M − 1)2

6 (
√
M − 1)2

since
√
M > 2 and hence (

√
M − 1)2 > 1. Hence, em-

ploying QAM-based codebooks instead of naively designed
unstructured quantized MRT codebooks implies that amplifiers
with smaller dynamic range can be used, reducing the expense

of the system. Alternatively, the power backoff required to
avoid nonlinear amplifier effects may be reduced, increasing
the range or throughput of the system.

V. CODEBOOK SEARCH

In this section we show how the codebook search over the
proposed QAM and PSK-based codebooks can be performed
optimally with low complexity by observing an equivalence
with noncoherent sequence detection, and then applying fast
noncoherent algorithms developed for that problem.

We also consider a suboptimal approach for the QAM
codebook search, which reduces the complexity considerably
without any noticeable loss in performance. We also compare
scalar quantization approaches, which have low complexity but
suffer a performance loss. We provide a unified framework for
the algorithms to clarify the complexity-performance tradeoff
of the schemes.

A. Codebook Search via Singular Vector Quantization

We first show that for the case where NR 6 2, the search
in (2) is equivalent to finding the closest beamforming vector
in angle to the optimal unquantized beamforming vector. For
the case NR > 2, we show that it is also a good first-
order approximation. We denote this approach as singular
vector quantization (SVQ), because it effectively performs a
codebook search by quantizing the righthand singular vector
associated with the largest singular value of the channel
matrix.

We start by calculating the effective channel gain, in terms
of angles, for a particular beamforming vector v. Using MRC
we have

ΓMRC(H) = ‖Hv‖2 =
K∑
k=1

σ2
k|v†uk|2

where K = rank(H) > 0, σ2
k is the kth ordered singular value

of H, and uk is the corresponding kth right singular vector.
Note that u1 = wopt by definition. Now defining

cos2 θ(v,u) ,
|v†u|2

‖v‖2 ‖u‖2

where by definition θ(v,u) is the principal angle between the
subspaces vC and uC, and recalling that ‖v‖ = ‖uk‖ = 1
we have

ΓMRC(H) =
K∑
t=1

σ2
k cos2 θ(v,uk). (5)

For the MISO case, or for the MIMO case where rank(H) =
1, there is only one singular vector and hence ΓMRC(H) =
σ2

1 cos2 θ(v,wopt). Therefore the maximization in (2) can be
achieved by searching for the closest vector in C in angle to
wopt, i.e.

w = arg max
v∈C

cos2 θ(v,wopt). (6)
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For the MIMO case where rank(H) > 1, we obtain the upper
bound of (5) as follows,

ΓMRC(H) 6 σ2
1 cos2 θ(v,wopt) + σ2

2

K∑
k=2

cos2 θ(v,uk)

= σ2
1 cos2 θ(v,wopt) + σ2

2 sin2 θ(v,wopt)

where we have used the fact that
K∑
k=1

cos2 θ(v,uk) =
K∑
k=1

|v†uk|2 = 1.

Similarly, we obtain the lower bound

ΓMRC(H) > σ2
1 cos2 θ(v,wopt) + σ2

K sin2 θ(v,wopt).

The upper and lower bounds are equal for the cases NR = 1, 2.
Thus for NR 6 2, finding the beamforming vector closest in
angle to wopt maximizes the effective channel gain.

Also note that the upper and lower bounds both approach
σ2

1 cos2 θ(v,wopt) as cos2 θ(v,wopt)→ 1 (i.e. for beamform-
ing vectors in the codebook close to the optimal). Moreover,
note that for NR > 2, ‖Hv‖ / ‖v‖ and cos2 θ(v,wopt) are still
maximized by the same unquantized vectors. Therefore, we
are motivated to use codebook search algorithms that limit the
search to only those vectors close in angle to wopt, regardless
of the number of receive antennas.

In summary, we see that the SVQ approach of calculating
the singular vector wopt, and searching the beamforming
vector codebook according to (6) gives optimal or near-optimal
performance, depending on the scenario. For systems with
NR 6 2 searching according to (6) is optimal. For NR > 2,
searching according to (6) is expected to at least give a good
approximation, if not the optimal. The approximation comes
about in this case since there is no guarantee that the optimum
beamforming vector, according to (5), is in the search space.
Finally, we note that the SVQ approach can also be used in
the limited feedback MIMO broadcast scenario [23].

B. Equivalence between SVQ and Noncoherent Sequence De-
tection

In this section we show that there exists an equivalence
relationship between SVQ using the angular metric and the
problem of sequence detection over unknown deterministic
flat-fading channels, e.g. [21, 24]. The equivalence can be
seen by noting that the cost function in (6) is equivalent to
noncoherent detection in the form of the generalized likelihood
ratio test (GLRT) [25]. Specifically, consider the detection of
a discrete valued input x ∈ CT , given an output

y = hx + n (7)

where n ∈ CT is a vector of i.i.d. additive white Gaussian
noise and h ∈ C is an unknown deterministic channel assumed
constant for a period of T symbols. As was shown in [24],
the GLRT-optimal data estimate x̂GLRT is obtained from the
received data by solving

x̂GLRT = arg min
x̂

min
ĥ
‖y − ĥx̂‖2 = arg max

x̂
cos2 θ(y, x̂).

(8)

1 begin
2 wopt := dominant right singular vector of H;
3 if QAM and M > 4;
4 w := QAM-SVQ(wopt) ;
5 Rotate-To-First-Quadrant(w);
10 return bits := QAM-to-Bits(w);
6 else if PSK or ( QAM and M = 4 )
7 w := PSK-SVQ(wopt) ;
8 Rotate-To-Real-Axis(w);
10 return bits := PSK-to-Bits(w);
9 end if;

TABLE I
ALGORITHM FOR FAST CODEBOOK SEARCH

Note also that the angular metric cos2 θ(y, x̂) is also the metric
for maximum likelihood (ML) estimation of a sequence of
PSK signals over an uniformly distributed phase noncoherent
AWGN channel [26], i.e.,

x̂ML = arg max
x̂

Eθ[p(y|x̂, θ)]

= arg max
x̂

∣∣y†x∣∣2 = arg max
x̂

cos2 θ(y, x̂).

The important step in this paper is to recognize that the
detection task of searching the transmitted symbols in (8)
is equivalent to the beamforming codebook search in (6).
It follows that the algorithms developed for the detection
problem can then be applied to the beamforming vector
codebook search problem.

For sequences of T symbols drawn in an i.i.d manner
from a specific constellation, it was shown in [27] that the
GLRT-optimal data sequence estimate can be found in time
polynomial with T . An explicit lattice decoding algorithm for
QAM symbol detection over fading channels that gives the
GLRT-optimal estimate with complexity O(T 3) was given in
[15]. For the constellations BPSK and QPSK, ML noncoherent
PSK sequence detection can be performed using an algorithm
with complexity O(T log T ) [16, 17]. Thus we are able to use
the algorithms in [15–18] as a basis for a low-complexity
algorithm to find the optimal beamforming vector according
to (2), where of course the sequences are of length NT .

Once the equivalence is made, the algorithm manifests
itself directly in terms of a ‘black-box’ implementation of the
noncoherent sequence detection algorithms, which perform the
SVQ operation. We first discuss the black-box implementation
of the algorithms, before providing a unified framework of
their operation which will explain the relative performance
and complexity advantages of using these algorithms. Table I
gives pseudo-code for the proposed codebook search for both
QAM and PSK-based codebooks.

The function QAM-SVQ(wopt) on line 4 performs a quanti-
zation of wopt by choosing a vector from a QAM-based code-
book. We propose three different methods for the codebook
search each achieving a different complexity/performance
tradeoff.
• QAM-SVQ: The codebook search is performed using the

GLRT-optimal noncoherent sequence detection algorithm
in [15] which searches in a reduced space but still
guarantees that the QAM codeword closest in angle to
the input vector is found. This algorithm’s complexity
is vastly reduced compared to an exhaustive search, as
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only O(N2
T ) vectors in the codebook are tested. When

NR > 2, we recall that the closest-in-angle search is
not strictly optimal, so we improve the performance
by making the modification to the algorithm that each
codeword examined is tested according to the effective
channel gain ‖Hv‖2 / ‖v‖2 instead of the angle.

• Suboptimal QAM-SVQ: This codebook search is a
suboptimal simplification of the QAM-SVQ algorithm,
using the suboptimal detection algorithm in [18, Section
VI.B]. This algorithm examines far fewer codewords than
QAM-SVQ, but the beamforming vector closest in angle
to wopt is nearly always found. We will see via simulation
in Section VII that there is negligible performance loss
relative to QAM-SVQ.

• Scalar QAM-SVQ: In this codebook search, the ideal
beamforming vector wopt is multiplied by a scalar value
and then each element is quantized with a scalar Eu-
clidean quantizer. This has the lowest complexity but
comes with a performance loss.

After the quantization, the function Rotate-To-First-
Quadrant(w) on line 5 of Table I is invoked which
multiplies the vector w by a complex unit ±1,±i so
that for square constellations 0 6 argw1 < π

2 , or for
rectangular constellations 0 6 argw1 < π. This gives a
valid beamforming vector from the codebook. The function
QAM-to-Bits(w) performs a QAM bit demapping and
removes the first one or two bits of the sequence that
are redundant, due to the phase ambiguity, to provide the
feedback bit sequence.

Similarly, for the PSK-based codebooks the function
PSK-SVQ(wopt) on line 7 performs a quantization of wopt

by choosing a vector from a PSK-based codebook using one
of the two following methods.

• PSK-SVQ: The codebook search is performed based on
the detection algorithm from [16, 17] which provides the
closest PSK vector in angle to the input vector. As for
the QAM case, the input is the ideal unquantized MRT
beamforming vector wopt.

• Scalar-PSK: This codebook search is similar to that
described for scalar QAM-SVQ. The performance is the
easiest to analyze, and we will see via simulation this
provides a tight lower bound on PSK-SVQ performance
for moderate number of feedback bits per antenna.

After the PSK quantization, the function Rotate-To-Real-
Axis(w) on line 8 of Table I rotates the vector w by a complex
number so that Im {w1} = 0 to give a valid beamforming
vector. The function PSK-to-Bits(w) performs a PSK bit
demapping ignoring the first symbol.

For both QAM and PSK-based codebooks, the selected
index bits are sent to the transmitter, where the bits are
remapped to the constellation points to create the beamforming
vector w, which is then scaled so that ‖w‖ = 1.

In Section VII, we will see via simulation that the algo-
rithms which search the codebook for the codeword closest
in angle to the ideal unquantized beamforming vector produce
very good results.

We now discuss the algorithms in more detail so as to

highlight the differences in the complexity and performance
gains.

C. Unified Framework of Codebook Search Algorithms

In the previous section, a number of search algorithms were
referred to, from [15–18]. In this subsection, we provide a
unified overview of the operation of each of these search
algorithms. We discuss their relative complexities, in terms of
NC , the number of codewords that are enumerated and have
their metric calculated by each algorithm. This allows us to
show the merit of the suboptimal QAM-SVQ approach and
the benefit of the “closest-in-angle” based search algorithms
compared to a simple scalar quantization.

Recall from (7) the relationship between the SVQ angular
cost function and the Euclidean cost function. More generally,
for both QAM and PSK each of the SVQ search algorithms
discussed in the previous section can be formulated as an
optimization of the following form

w = arg min
v∈C

min
β∈R

∥∥wopt − βv
∥∥2

(9)

where R ⊆ C is the search region of the algorithm, which is
different for each algorithm and whether QAM or PSK is used.
In the following subsections we describe the different search
regions for each algorithm, and outline the search procedure.

Note that from a geometrical perspective it is useful to think
of β as a scaling parameter, that allows any scaled version
of a codeword to be tested in terms of Euclidean distance.
Certainly, the scaled version of the codeword that minimizes
(9) will also minimize (6).

1) QAM-SVQ: For QAM-SVQ, the proposed search algo-
rithm from [15] performs a search, which when viewed in
terms of (9) corresponds to the case where R is the entire
complex plane C. In essence, the search algorithm limits the
search space by focusing on the complex plane defined by
β−1wopt, and searching only the vectors in C that are near
the plane. More specifically, it only searches vectors which
have a nearest neighbor region which cuts through the plane.
The nearest neighbor region of a codeword x is defined as
the region in CNT for which x is the closest codeword in
terms of Euclidean distance. In Figure 1(a) we demonstrate
the plane with axes Re

{
β−1

}
and Im

{
β−1

}
for the case of

NT = 3 using a 16-QAM based codebook. The criss-crossed
lines on the figure show where the boundaries of the nearest
neighbor regions of the codebook vectors intersect with the
plane β−1wopt, where we show the case for an arbitrary wopt.
Seen from a different perspective, the plane is partitioned into
regions, such that all values of β−1 in a particular region
correspond to the same codeword; which by definition is the
codeword that minimizes ‖wopt − βv‖2 for those values β−1.

The search algorithm can be viewed as picking a value
of β−1 within each region, and for each region calculating
the corresponding codeword via nearest neighbor decoding of
the point β−1wopt (For the details on how these boundaries,
internal points, and nearest neighbor codewords are calculated,
see [15, 18]). It was shown in [15] that this set of codewords
contains the codeword which minimizes (9).
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It was shown in [18] that since square QAM constellations
exhibit 4-fold rotational symmetry, only values of β−1 in the
first quadrant need to be examined to guarantee that the opti-
mal QAM codeword is found, reducing NC by approximately
a factor of four. Moreover, it was shown in [18, Theorem
2], that knowledge of the range of values of the elements in
wopt can be used to restrict the search over β−1 to a finite
region. These two factors reduce the search over β−1 to that of
the shaded region in Figure 1(a). These improvements result
in the worst case complexity of the overall algorithm to be
NC 6 1

2NT (2NT − 1)[(
√
M − 1)2 − 1] + 1.

For the case of rectangular 8-QAM, the square QAM
algorithm is applied similarly, with the exception that it has
only 2-fold rotational symmetry, and the resulting worst-case
complexity for this case is NC 6 6N2

T − 4NT + 1.
Clearly, these methods provide a huge complexity im-

provement over an exhaustive search, which would require
examination of N > MNT−1 codewords.

2) Suboptimal QAM-SVQ: For suboptimal QAM-SVQ,
the proposed search algorithm from [18, Section VI.B]
performs a search which when viewed in terms of (9)
corresponds to the case where R is reduced to a set
of L lines emanating radially from the origin, given by{
αejθ | α > 0, θ ∈ {1, e

jπ
rL , . . . , e

j2π(L−1)
rL }

}
, where r is the

number of rotational symmetries in the constellation. This
is demonstrated in Figure 1(b), where the lines are shown
in bold. The search algorithm in this case divides the lines
into segments defined by the nearest neighbor boundaries, and
calculates corresponding codewords for each segment. This is
clearly a lower complexity search compared with QAM-SVQ
described above, since line segments are easier to calculate
than two-dimensional region boundaries. The suboptimality
comes about since it is clearly not guaranteed that the set of
lines pass through all of the regions, therefore some codewords
will be missed.

Simulations indicate that the number of lines L, required
for near-optimal performance is small; L = 4 is sufficient
for square constellations where M 6 64 and NT 6 10. The
overall complexity is dominated by the number of phases and
the complexity of each ‘line-search’, which is dominated by a
sorting operation and therefore the complexity of the algorithm
turns out to be O(NT logNT ) per phase estimate.

The upper bound on the number of codewords examined by
the suboptimal algorithm is only NC 6 L(2NT (

√
M/2−1)+

1) for square QAM [18]. For 8-QAM it is NC 6 L(2NT +
1), although the number of lines are doubled since 8-QAM
requires a search over the right-hand half plane.

3) Scalar QAM-SVQ: This algorithm has negligible com-
plexity, at the expense of some performance loss, by perform-
ing a simple scalar Euclidean quantization of the codeword.
The algorithm works by choosing a single value of β, and
then performing a scalar quantization, equivalent to quantizing
each element of wopt independently, thus dropping the second
minimization in (9).

We considered several ad hoc methods for choosing the
value of β based on knowledge of the constellation and of
wopt. We found that the performance of the methods was
very similar, even for small antennas and feedback bits. We

therefore suggest using a simple technique by setting β−1

such that the average magnitude of the codeword and ideal
beamforming vector are matched, i.e.

β =

√
N∑

v∈C [‖v‖
2]
.

We will confirm via simulation in Section VII, that scalar
quantization is inferior to the closest-in-angle methods. How-
ever, the performance of scalar quantization approaches angu-
lar quantization as the number of feedback bits per antenna
increases.

4) PSK-SVQ: In the case of PSK the cost function (9) has
the form

w = arg min
v∈C

min
θ∈[0,2π)

∥∥wopt − ejθv
∥∥2
.

This reduction of the search space from R = C to R =
ej[0,π/2) is due to the constellation having a constant enve-
lope, and therefore the magnitude of β does not affect the
corresponding best codeword estimate. For each phase θ a
corresponding best codeword estimate exists, and therefore the
interval [0, 2π) can be partitioned into intervals which corre-
spond to obtaining the same codeword estimate. This reduced
search is shown in Figure 1(c) for a quantization of an arbitrary
vector wopt using 8-ary PSK for NT = 3. Note that the search
over θ is further reduced to the emboldened arc [0, π/2M),
due to the rotational symmetry of PSK constellations.

The algorithm in [16, 17] effectively calculates the intersec-
tion of the arc [0, 2π

M ) with the lines on the plane indicating
the nearest neighbor boundaries. The algorithm then sorts the
boundary points in order of phase which allows the codeword
estimates and corresponding angular metric to be updated in
a recursive manner.

The complexity of the algorithm is dominated by the sorting
operation of NT boundary points; a computation which has
complexity O(NT logNT ), and results in NC = NT .

5) Scalar PSK-SVQ: In this scheme the optimal unquan-
tized MRT beamforming vector is rotated so that wopt

0 = 1.
Then w0 is chosen according to the scalar quantization

w = arg min
v∈C

∥∥wopt − v
∥∥2
.

VI. PERFORMANCE OF CODEBOOKS USING PROPOSED
SEARCH ALGORITHMS

In this section we examine the performance of the new
codebooks when used with the proposed codebook search
algorithms. We first show that the full diversity order is
maintained for the proposed codebook strategies, as it was
proved for the exhaustive search in Section IV-A. We also
calculate the average effective gain and an upper bound on the
capacity of the scalar-PSK technique which provides a lower
bound on the performance of the optimal-PSK algorithm.

A. Diversity Order with Proposed Codebook Search Algo-
rithms

Although Lemma 1 covers an exhaustive search approach,
it does not guarantee that the use of suboptimal QAM-SVQ
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Fig. 1. Visual representation of reduced search algorithm for NT = 3 16-QAM codebook search for (a) optimal QAM-SVQ (b) suboptimal
and scalar QAM-SVQ, and (c) optimal PSK-SVQ for 8-ary PSK codebooks. Each region on the plot corresponds to the values of β ∈ C
which produce the same codeword estimate. Due to properties of the constellation, the optimal search is reduced to (a) the shaded region
for QAM-SVQ; and (c) the emboldened arc for PSK-SVQ. In (b), the suboptimal approaches reduce the search region to the emboldened
lines indicating multiple ‘line-searches’ for suboptimal QAM-SVQ; and a single point (denoted here as a star) for scalar QAM-SVQ.

or the optimal SVQ approaches for NR > 2 achieves the
full diversity order. This is because even though the vector
maximizing the SNR may be in the codebook, it may not be
examined and chosen by the suboptimal schemes. To cover
these scenarios, we first provide the following lemma.

Lemma 2: For an NT × NR wireless system employing
a BPSK beamforming codebook, antenna selection at the
receiver and codebook search

w = arg min
v∈C

min
β=1,j

∥∥wopt − βv
∥∥2
, (10)

the diversity order is D = NTNR.
Proof: We start by considering a system employing un-

quantized EGT with antenna selection at the receiver. For such
a system the beamforming vector w has the restriction that
|wt| = 1/

√
NT , ∀t = 1, . . . , NT , and the combining vector z

is restricted to be one of the rows of the NR × NR identity
matrix. The effective channel gain of the ideal unquantized
system with EGT and receiver antenna selection (SEL) for a
particular H is

ΓEGT,SEL(H) = max
16r6NR

1
NT

(
NT∑
t=1

|hr,t|

)2

(11)

It was shown in [4] that this system achieves a diversity order
of NTNR.

We now show that for the BPSK-based beamforming code-
book and using R = {1, j} the SNR is no worse than a
quarter of the SNR achieved by using the EGT-SEL system
with identical Ex/N0 reduced by a constant factor. From this it
follows that the diversity order is no worse than that for EGT-
SEL, and is hence equal to it. The codebook search scheme
given in (10) effectively chooses one of the beamforming

vectors

w(1) =
1√
NT

sgn {Re {hr0,1}} sgn {Re {hr0}} or (12)

w(2) =
1√
NT

sgn {Im {hr0,1}} sgn {Im {hr0}} (13)

depending on which one gives the greater effective channel
gain, where r0 is the maximizing r in (11), and hr is the rth
row of H. The vectors w(1) and w(2) are derived from the
cases where β = 1 and β = j in (10) respectively. We also
define er0 as the r0th row of the NR ×NR identity matrix.

Using w = w(1) and the antenna selection vector z = er0 ,
the effective channel gain is

Γ(1)
BPSK,SEL(H) =

1
NT

∣∣∣∣∣
NT∑
t=1

hr0,t sgn {Re {hr0,t}}

∣∣∣∣∣
2

>
1
NT

(
NT∑
t=1

|Re {hr0,t}|

)2

Similarly, when using w = w(2),

Γ(2)
BPSK,SEL(H) >

1
NT

(
NT∑
t=1

|Im {hr0,t}|

)2

.

Hence, when choosing the best of the two vectors, the
effective channel gain is,

ΓBPSK,SEL(H) > max
{

Γ(1)
BPSK,SEL(H),Γ(2)

BPSK,SEL(H)
}

>
1
2

(
Γ(1)

BPSK,SEL(H) + Γ(2)
BPSK,SEL(H)

)
>

1
4NT

(
NT∑
t=1

|Re {hr0,t}|+
NT∑
t=1

|Im {hr0,t}|

)2

>
1

4NT

(
NT∑
t=1

|hr0,t|

)2

=
1
4

ΓEGT,SEL(H)



TO APPEAR IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED JAN. 2008 9

where the third inequality follows from the fact that for any
a, b ∈ R, a2 + b2 > 1

2 (a + b)2 and the fourth inequality is
obtained by application of the triangle inequality.

Now, for all H, we have shown that by choosing the
BPSK vectors as in (12) and (13), we have ΓBPSK,SEL(H) >
1
4ΓEGT,SEL(H). Hence the probability of error is no more than
that of a system using EGT-SEL with transmit power 1

4Ex.
Thus the diversity order is no less than that of an EGT-SEL
system, which was previously established to be NRNT . Since
it is not possible to be greater than NRNT , the BPSK-based
beamforming codebook diversity must equal NRNT .

The scalar quantization scheme proposed in the proof of
Lemma 2 in (12) and (13) performs a search over β ∈ R =
{1, j} so as to minimize ‖wopt − βv‖2. As discussed in Sec-
tion V, the QAM-SVQ and PSK-SVQ algorithms are equiva-
lent to performing a search over all β ∈ R = C, and therefore
the effective channel gain is never less than that of the scheme
of Lemma 1. For suboptimal QAM-SVQ, the search region
is effectively R =

{
αe

jπ`
2L | α ∈ [0,∞), ` = 0, . . . , 3L− 1

}
if the rotational symmetry of the constellation is taken into
account; which clearly includes {1, j}. Hence the effective
channel gain of suboptimal QAM-SVQ, and the QAM-SVQ
and PSK-SVQ schemes when NR > 2, is never less than that
of the scheme used in Lemma 1. Therefore the full diversity
order is achieved when using these codebook search schemes.

B. Performance of scalar PSK-SVQ

In the case of an NT ×1 system using scalar PSK-SVQ it is
possible to obtain explicit expressions for the average effective
channel gain, which can be used to obtain a capacity upper
bound.

Lemma 3: For an NT ×1 wireless system employing scalar
PSK-SVQ of an M -ary PSK-based beamforming codebook,
the average effective channel gain is

ΓScalar M -PSK,ave = Ω2ΓEGT,ave + (1− Ω2) +
π(NT − 1)

2NT
[Ω− Ω2]

(14)

where Ω , sinc(M−1) and ΓEGT,ave is the average effective
channel gain for unquantized EGT.

Proof: For a particular channel h ∈ C1×NT , the effective
channel gain is determined by the difference between the
channel phase and the phase of the beamforming vector chosen
by scalar quantization. We first apply a rotation to the channel
vector so that h1 has zero imaginary component. It follows
that the difference in phase between wt and h∗t for t > 1 is
at most π/M . Hence, defining αt = M

2π (arg h∗t − argwt) the
effective channel gain of a scalar M -ary PSK system for a
particular h is given by

ΓScalar M -PSK(h) =
1
NT

∣∣∣∣∣
NT∑
t=1

|ht|e
j2παt
M

∣∣∣∣∣
2

where α1 = 0 and αt ∈ [−0.5, 0.5] for t = 2, . . . , NT .
We denote a = [ a1 . . . aNT ] as the vector of amplitudes

of h, that is at , |ht|. We now calculate the average gain
over all channels h which have the same a. First note that the

phase of each element of h is uniformly distributed over the
interval [0, 2π) and independent of the amplitude at. Therefore
αt is an i.i.d. uniformly distributed variable over the interval
[−0.5, 0.5] which gives

Eh|a[ΓScalar M -PSK(h)]

=
∫ 1

2

− 1
2

· · ·
∫ 1

2

− 1
2

1
NT

∣∣∣∣∣
NT∑
t=1

|ht|e
j2παt
M

∣∣∣∣∣
2

dα2 . . . dαNT .

We now use the following properties. For t 6= t′ and t, t′ 6= 1
we have ∫ 1

2

− 1
2

∫ 1
2

− 1
2

e
j2παt
M e−

j2πα
t′

M dαtdαt′ = Ω

since∫ 1
2

− 1
2

cos
(

2πα
M

)
dα = Ω and

∫ 1
2

− 1
2

sin
(

2πα
M

)
dα = 0.

Hence,

Eh|a[ΓScalar M -PSK(h)]NT

=
NT∑
t=1

|ht|2 + 2|h1|Ω
NT∑
t=2

|ht|+
NT∑
t=2

NT∑
t′=2
t′ 6=t

|ht||ht′ |Ω

= Ω2

(
NT∑
t=1

|ht|

)2

+ (1− Ω2) ‖h‖2 + 2|h1|
NT∑
t=2

|ht|[Ω− Ω2]

and hence by averaging over a we obtain,

E[ΓScalar M -PSK(h)]

= Ω2ΓEGT,ave + (1− Ω2)
E[‖h‖2]
NT

+

2
NT

E[|h1|]
NT∑
t=2

E[|ht|][Ω− Ω2].

where we recall that ΓEGT,ave is the average effective channel
gain for the case of perfect feedback. Noting that E[‖h‖2] =
NT and E[|ht|] =

√
π/2 for all t completes the proof.

As expected, since Ω = sinc(M−1) → 1 as M → ∞
the average effective channel gain of the scalar quantization
system approaches that of the ideal unquantized EGT system
as M → ∞. By noting that log(1 + ΓScalar M -PSK(h)) is
concave and applying Jensen’s inequality gives the following
corollary.

Corollary 1: The capacity C of an NT ×1 wireless system
employing scalar PSK-SVQ of an M -ary PSK-based beam-
forming codebook with antenna selection at the receiver is

C 6 log2

(
1 +

Ex
N0

ΓScalar M -PSK,ave

)
where ΓScalar M -PSK,ave is given by (14).
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Fig. 2. Plot of average effective channel gain Γave for QAM
codebooks as a function of the number of bits per QAM symbol. Plots
are shown for NT = 2, 4, 8 transmit antennas with NR = 1 receive
antennas. The effective channel gains for RVQ and some numerically
found codebooks for quantized maximum ratio transmission are also
shown.

VII. SIMULATION RESULTS

In this section we perform Monte Carlo simulations to
examine the average effective channel gain, bit error rate and
the number of codeword metric calculations required for the
QAM-based codebooks using the proposed optimal, subopti-
mal and scalar quantization codebook search algorithms given
in Section V.

We compare the QAM and PSK based codebooks with
codebooks of the same size, namely RVQ [8] and with the
numerically determined codebooks in [3, 19, 20], which are
available for small NT and codebook size N , and can be
considered near-optimal. For RVQ, the codewords are each
chosen independently and isotropically from the feasible set
of MRT or EGT beamforming vectors. We also average over
the RVQ codebooks. The receiver employs MRC.

For the suboptimal QAM-SVQ algorithm of Section V-C2
we use L = 4 different line searches: for square QAM
constellations the line searches are separated by π

2L radians,
whereas for the rectangular 8-QAM constellation the line
searches are separated by π

L .
Experiment 1: In Figure 2, we show the average effective

channel gain Γave , E[Γ(H)], (where the expectation is
over H) as a function of log2M , the number of bits for the
respective QAM constellation. Plots are shown for a system
with NR = 2 receive antennas and NT = 2, 4, 8 transmit
antennas. As an upper bound, the performance of unquantized
MRT is also plotted. For the codebook search, the three
QAM algorithms in Section V are used for the QAM-based
codebooks, while an exhaustive search is employed for the
unstructured codebooks. Note that no plots are shown for RVQ
systems for NT = 8 when using log2M = 3, 4 as in excess
of 8×106 codewords are required and this is computationally
infeasible.

We see that the performance of the QAM codebooks using
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Fig. 3. Plot of average effective channel gain Γave for PSK, RVQ
and Lloyd-Max based codebooks for quantized EGT as a function of
number of bits per PSK symbols. Plots are shown for NT = 2, 4, 8
transmit antennas with NR = 1 receive antennas.

the optimal and suboptimal quantization algorithms are nearly
identical, and the performance is comparable to that obtained
by the unstructured codebooks (both RVQ and numerically
optimized). Also, the performance approaches unquantized
MRT as M → ∞, as explained in Section III-A. Note that
the performance of the scalar quantization technique for the
QAM codebooks is clearly inferior to the other schemes but
does approach the performance of angular quantization as the
number of feedback bits per antenna increases.

The figure also indicates that from a practical point of view
it would be preferable to choose the QAM codebooks with
B bits over an RVQ codebook of the same size, even though
RVQ is asymptotically optimal for large N,NT [9, 10]. This
is because we see that for small NT the performance of the
QAM codebooks is superior to RVQ (e.g. for log2M = 1,
QAM collapses to BPSK which is optimal for the case where
NT = N as the codebook vectors are orthogonal), while for
NT > 8 RVQ is computationally infeasible.

Experiment 2: In Figure 3, we show the average effective
channel gain as a function of log2M for PSK codebooks.
Plots are shown for a system with NR = 1 receive antennas
and NT = 2, 4, 8 transmit antennas. We plot the performance
for both optimal and scalar PSK-SVQ, where the scalar PSK-
SVQ curves coincide with (14). We compare with RVQ code-
books where the codewords are each chosen independently
and isotropically, and average over the RVQ codebooks. We
also compare with numerically derived codebooks obtained
using the Lloyd-Max algorithm based codebooks [6]. The
performance of unquantized EGT is also plotted.

We see that the performance of the PSK codebooks is better
than that of RVQ, and choosing log2M > 3 is sufficient to
achieve performance close to perfect feedback. The average
effective channel gain of scalar PSK-SVQ matches the ana-
lytical result given by Lemma 3, and performs very closely to
PSK-SVQ for log2M > 3.

Experiment 3: In Figure 4, we show the bit error rate of
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Fig. 4. Plot of BPSK BER using QAM beamforming codebooks
as a function of Es/N0. Plots are shown for NT = 2, 4, 8 transmit
antennas with NR = 2 receive antennas.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
10

−4

10
−3

10
−2

10
−1

10
0

Pr
{c

os
2  θ

( 
w

, w
op

t ) 
<

 α
}

α (dB)

Optimal QAM−SVQ
Suboptimal QAM−SVQ
Scalar QAM−SVQ
RVQ
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QAM codebook using the proposed search strategies of Section V
compared to RVQ. Plots are shown for NT = 8 transmit antennas
with NR = 1 receive antenna.

BPSK symbol detection for the proposed QAM codebooks as
a function of Ex/N0. Plots are shown for M = 4, 8, 16 and the
unquantized MRT upper bound. We see that the performance
approaches that of MRT as M increases and that for M = 16,
the curve is within 0.2dB of the optimal for NT = 2, 4, 8.
For NT = 8, the performance of the QAM schemes is within
1.8, 0.9, 0.13 dB, for M = 4, 8, 16 respectively. Thus, again
we see the asymptotic convergence to the ideal performance.

Experiment 4: In Figure 5 we examine the cumulative dis-
tribution function (c.d.f.) of cos2 θ(w,wopt) representing the
angular distortion between the quantized and ideal beamform-
ing vectors. Plots are shown for an NT = 8, NR = 1 system
using 8-QAM codebooks along with RVQ. The codebooks
are all of size N = 223. For RVQ, the outage probability
is given in [28, Lemma 1]. We see that in this case RVQ is
superior. However, in Figure 6 we see that this only results in

−1 0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

Pr
{Γ

( 
h)

 <
 γ

}

γ (dB)

Optimal QAM−SVQ
Suboptimal QAM−SVQ
Scalar QAM−SVQ
RVQ 

Fig. 6. Plots of the resulting outage probability Pr(Γ(h) < γ) for
the same scenario as Figure 5.

an approximately 0.16dB difference between QAM-SVQ and
RVQ in terms of the outage probability of the effective channel
gain Pr{Γ(h) < γ}. This can be explained by first noting that
cos2 θ(w,h) is between 0.25 and 1 if there is at least one
feedback bit per antenna (this can be proved using the method
in the proof of Lemma 2), whereas ‖h‖2 has infinite range as
it is determined by a chi-square distribution. Hence the order
of magnitude of the outage probability is approximated to a
first order by the c.d.f. of ‖h‖2.

Experiment 5: In Figure 7, we examine the number of
codeword metric calculations NC required to obtain a given
average effective channel gain Γave. Plots are shown for
NT = 4, 8 with NR = 2, for both QAM codebooks using the
optimal and suboptimal algorithms and also for RVQ using
an exhaustive search. As NC is variable for the suboptimal
algorithm we plot the average complexity. The unquantized
MRT upper bound is also shown and the number of feedback
bits is also given. For the QAM constellations, this corresponds
to M = 4, 8, 16, 64. Note that we do not consider QPSK for
the suboptimal algorithm as the faster PSK-SVQ algorithm can
be used instead. Also, note that the curves for our proposed
QAM codebooks are not smooth due to the various efficiencies
we are able to achieve for the different constellations as
discussed in Sections V-C1 and V-C2. We also note that
suboptimal vector quantization algorithms could be applied
however these require full storage of the codebook [5, 14].

For the case NT = 4, note that when B = 14 feedback bits
are employed we are within 0.1 dB of the RVQ performance
and that 16384 metric calculations are required for RVQ, while
only 113 are required for the optimal QAM algorithm and
on average 28 are required using the suboptimal algorithm
(with M = 16). Clearly, even for moderate numbers of
antennas, there are huge complexity reductions to be obtained
by using QAM codebooks and the proposed algorithms instead
of exhaustive search techniques.

Similarly, for NT = 8, B = 14 to be within 1.2 dB of the
optimal gain, 16384 metric calculations are required for RVQ,
while only 8 are required by using M = 4 QAM codebooks.
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Fig. 7. Plot of number of metric calculations NC for QAM and
RVQ codebooks as a function of the average effective channel gain
Γave. Plots are shown for NT = 4, 8 transmit antennas with NR = 2
receive antennas.

Also note that near optimal performance is obtained using 64-
QAM for both NT = 4 and 8, where the respective codebook
sizes are N ≈ 4 × 106 (B = 22 bits) and N ≈ 7 × 1013

(B = 46 bits) respectively. Using such large codebooks is
simply infeasible for exhaustive search based schemes.

We see that the complexity of the suboptimal QAM-SVQ
algorithm is a factor of ∼ 10 less than that of QAM-SVQ
for NT = 4, and a factor of ∼ 50 less for NT = 8. Since
suboptimal QAM-SVQ performs nearly as well as QAM-SVQ,
it is an even more attractive choice for implementation. Finally,
we again note that the performance of the scalar quantization
technique for the QAM codebooks is clearly inferior to the
other schemes but does approach the performance of angular
quantization as the number of feedback bits per antenna
increases.

VIII. CONCLUSION

In this paper we have proposed schemes for codebook
construction and searching which deliver near-ideal perfor-
mance for limited-rate feedback MIMO systems. We have
shown that structured codebooks based on QAM and PSK
sequences perform comparably to the unstructured random
and numerically derived codebooks, in terms of both average
SNR, bit error rate and outage probability. Taking advantage
of the structure of QAM and PSK sequences, we show that
these codebooks can be searched in an optimal manner with
complexity orders of magnitude smaller than an exhaustive
search. Furthermore, by using the suboptimal algorithm of
[18], very fine quantization can be achieved with very low
computational expense. We have shown analytically that the
proposed codebooks and algorithm combinations obtain the
full-diversity order, and have provided a tight lower bound on
the performance of the PSK codebooks.
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