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Abstract—We consider a multiple access, doubly-selective avoids interference from other devices and exploits abkila
block Rayleigh fading channel in which the users coordinate frequency diversity.
spectrum sharing through a limited feedback scheme. Each user The achievable rate for a doubly-selective fading channel
probes a random set of sub-channels, known to the receiver, - . . .
by sending a pilot sequence at the beginning of each coherencedepends on what Channel. state information (CSI) is aymlabl
block. Mu|t|p|e users may probe the same Sub_channeL Causing at the receiver and transmitter. Namely, CSl at the receanr
interference. The receiver assigns each sub-channel to thears increase the rate by allowing coherent detection, and Clkat
with the highest estimated sub-channel gain (via limited feed- transmitter allows adaptive allocation of rate and poweoss
back), provided that this gain exceeds a predetermined threshold sub-channels (e.g., see [1, Ch. 6]) in addition to oppostiqi

Our problem is to optimize the number of channels to probe, heduli th This inf tion is all th
or “probing bandwidth”, for each user. We maximize a lower SCN€AUIING across the users. This information 1s all theemor

bound on the ergodic capacity, and consider a large system limit important given a wideband fading channel, which offersynan

in which the system bandwidth and number of users scale linearly degrees of freedom for diversity. Obtaining CSI at the nezei
with the coherence time. We show that the optimal probing and/or transmitter typically requires overhead in the farfa
bandwidth grows as O (ﬁ) assuming a linear Minimum  pilot signal and feedback. Hence there is a fundamentaétrad

Mean Square Error channel estimator, and the achievable rate off in allocating available resources between learning &8l
increases asO (loglog N) per user, where N is the number of data transmission

available subchannels. In contrast, if the users are pre-assigned Th h | f h to th tral . .
nonoverlapping subchannels on which they probe and transmit, e channel from each user to the central receiver IS

then the capacity per user converges to a constant @ becomes assumed to be.i.d. doubly-selective block fading, and is
large. Additionally, the optimal training length and training divided into several independent flat Rayleigh fading sub-

power are computed and the effect of system load (number of channels. That is, each sub-channel remains static fortaicer
users per unit coherence time) on the achievable rate is studied. number of channel uses (coherence block), and then changes
to a new independent value in the next block. Furthermore,
|. INTRODUCTION sub-channel gains are assumed to be independent across the

. . users. To simplify the analysis, we assume that the users
The current scarcity of spectrum for many types of SEIVIC&Ye poth symbol- and frame-synchronous, where each frame
can be alleviated by dynamically sharing spectrum across '

[titude of i That ibilit tivates the dg tbrresponds to a coherence block.
MUt PZ o serwcczs. at possibriity motivates the cges Each user selects a random subset of available subchannels,
ation of “wideband” systems in which each user can choo

f | ber of coh bands. A ori Rfiown to the receivér to probe, i.e., send pilot sequences
rr?n;l amongha f;:ge number of co erence;_ an tsh .pr_'m?e[thhe beginning of each coherence block. Multiple users may
challenge when the users are non-cooperative Is the metiga choose to probe a particular sub-channel, creating imarée.

anld cr?ntrol ?(f mterference.h h ilabl is sh The receiver estimates the sub-channel gain using theifjpypss
n this work we assume that the available spectrum is s ang rfering) pilots and assigns the sub-channel for reghef

by several independent devices, which communicate squchE?)herence block to the user with highest estimated gain via a

nously with a central transceiver. Although the devices db ng gy, o channel, provided that it is above a predetermined

coordinate transmissions directly, indirect coordimatiakes «, ot threshold. We assume that the assignment process
place through a feedback channel. We focus on the multiqtljﬁ«eS a negligible.amount of time

access uplink, and assume that the transmitting devices Us@p o preceding assumptions lead to the following tradeoff:
multi-carrier signaling. Given many available sub-chdsne

each device wishes to choose a subset of sub-channels, whiglye have assumed that the choice of subset, although randomarieds

between each transmitter and the central receiver as commaomaess.

This work was supported by the U.S. Army Research Office undemtg For example, we can assume a synchronized pseudo random tgerfera
DAAD19-99-1-0288 and NSF under grant CCR-0310809 sub-channel selection.



Probing a large number of channels gives inaccurate chang®en by

estimates due to the increased likelihood of interferenak a y=his+n (1)
also because the probing power per sub-channel is small. On . , .

the other hand, probing a small number of channels is likely \(vheres is the K x 1 vector of transmitted symbols across

: C .
give accurate channel estimates, but does not exploitadlail usersk € K, h is the c_orrespondmg‘( * 1 vector of in .
degrees of freedom. This work is extension of [5], WhiCﬁependent zero mean circularly symmetric complex Gaussian

studies the preceding tradeoff with a single user. Relatak w CSCG) channel gains, each with variangg and the noise

on single-user wideband models, which accounts for theteffé' Is also CSCG, zero-mean, apd white .W.'th variantie
of channel probing and the associated channel estimation er Each coherence block consists Dftraining symbols TOI'
on the achievable rate, is presented in [7], [8]. Other med PWEd by D dat'a ;ymbols, assuming th'e. sub-channel is used
for multi-channel probing by a single user are studied in [9 or data transmission. We therefore partition thel vector of

[10] eceived symbols on the sub-channel within coherence block
' L as

We characterize the optimal number of sub-channels to
probe, orprobing bandwidth, for a large system in which the B ot
total number of sub-channels (coherence bandand number y=[yryp]=h"[SX]+n 2)
of usersK scale linearly with the coherence block, consistingherey, andyp are thel x T and1 x D received vectors
of L channel uses. Namely, the optimal probing bandwidduring training and data transmission, respectiv8lyis the

increases asg) ﬁ , assuming the receiver computesK’ x T matrix of training symbolsX is the K’ x D matrix

an optimal Linear Minimum Mean Square Error (LMMSE)Yf transmitted data symbols, and is the 1 x L vector of

estimate of the channel. and és( J\g ) with a noise samples. Note that the rows $fand X contain the
! (loglog N)(log N

3t training and data symbols transmitted by userskin The

el ini ’
. : raining symbols have zero mean and varla%ewherePT
The corresponding capacity per user growsaBoglog V), is, the power during the training period for a particular yser

which is the same as the order-growth with perfect channvc\elhich is split uniformly among\’(< N) randomly probed

knowledge [6]. For the model considered, we characterize .
; . .~ stub-channels. The row daX corresponding to uset € K,

the second-order loss in capacity due to channel estimatign . X )
sayxy, has data symbols with power (variand@) if user k

In contrast, if the users are pre-assigned to non-ovelri@:)m? “assigned” the sub-channel (explained below), othemitis

. i
subchannels, then the capacity per user converges to amonshas zero power. Given an average power constiBigt for
as N, K, and L become large. We also characterize the as- P : gep

sociated optimal on-off threshold, training power, andhirey €ach user, we have
length. A comparison of the asymptotic bounds with results
from numerical optimization of finite-size systems showat th
the asymptotic analysis accurately predicts performamtg owhereer = aPr is the average training powet, = 7'/L
when the number of user® is large (e.g., a few hundred),denotes the fraction of the coherence block devoted toitigin
although the asymptotic trends are visible for snfalas well. and,q is the probability that usek is assigned the sub-channel.
For each useri € K with channel gainh;, the receiver
Il. MODEL AND CAPACITY OBJECTIVE computes the corresponding channel estimatewith esti-

. . tion errore; = h; — h;. The error variancer? ., (i) =
We consider a synchronous multiple access channel moge ) e el K (@ -
lei|* | K’] in general depends upon the particular training

in which K users transmit through a wideband Rayleigh fadi
¢ y'elg equences transmitted by the users probing the sub-channel

channel. The channel for each user is divided iNtadentical - . !
independent flat Rayleigh fading sub-channels. Furthe&mo?'nce the training sequences are assigned randomly, the var

9 ; .

the wideband channel is assumed to be independent acros ALY (2) |s.random N ggneral and can be dlffere_nt for

users. Block fading is assumed, so that the channel gains% erent users ink. The. receiver uses .the channel estimates

constant within a coherence block bfsymbols (for all users), for bOtbh Cr? herert_detecpon, dart1d to ;35'912 ?utb -chatl_n ﬁé:afj

and are independent across coherence blocks. At the baginﬁ?' sub-channel IS assigned 1o uset € A IT its estimate

of a coherence block, each user chooses a random sulsS@N€l gain is largest among users probing the §u§)-channel
L . 7 . . P )

of sub-channels on which to probe, i.e., transmit a traini it exceeds the thresholdk™), i.e., letting/i; = |h:%,

sequence. In what follows, without any loss of generalitg, w fk > fi;, foralliek, and i > t(K'). (4)

do not indicate the dependence on coherence block ihdex o

explicitly and focus on sub-channg! For thel*" coherence Here we explicitly denote the dependence of the threshold

. . ! 1 H
block, letKC denote the set of indices of users who select suBl &' The assigned user then transmits data on th/e sub-
channell to probe, and the corresponding number of usefannel during the rest of the coherence blocki;lk t(K”)

K| = K'. The received (scalar) signal on the sub-channelf@r all i € K, then the sub-channel is not used. The sub-
channel assignments are made after training and before data

2The result with LMMSE channel estimation also applies to ihgle-user transmls_suon. He_re we assume that these assignments take up
model considered in [5]. a negligible fraction of the coherence block.

ET-l-qN(l—Oz)PD:PaU (3)



The capacity for usek (and hence for any user by symmeAssuming that each user probes a randomly chosen subset of

try) summed over allV sub-channels is given By N’ channels out of the availabl® channels, we also have
that
Crp=N(1- 04)%1 (Xk; (v, K, {021 (D)}, {ﬁi})) )  pK)= <II§> K (1 - r)(K*K') K =0,1,... K
where the mutual information for a particular sub-chansel iwherer _ NW is the probability that sub-channglis prc()%g)d
ICHOENOREDE e o

qD E

the subchannel is rK.
) Letting

og (14 Pp fix userk is assigned average number of users, which probe a particular sub-ehann
PDO';K, (k) + o2

o0
The first line (5) is the mutual information for a fading u(K’) = Pr{jimaz.rcr > t(K')| K"} :/ Fmaz:xc (t)dt,
channel with channel estimation error and the lower bound in t(K’) (1)

(6)is tgken from [4], [5]. Our performance ijept|ve 'S eigo me probability that usek is assigned to sub-channklis
capacity per user and hence the expectation in (6) is over the

joint distributions of K, {fi;}, and{ale,(i)} given that user 1 K
k is assigned the sub-channel. In general, the channel ¢stima ¢= % Z w(K") p(K"). 12)

across the user$ji; }, can be correlated due to non-orthogonal K'=1

training sequences. In what foIIows,. we will take a large Gjven the system parametei§ L, andN (users, coherence
system limit in which .the phannel estlmates are mdependqmtle, and bandwidth), our objective is to determine thentrej
and the channel estimation error variance converges thﬂgth T, probing bandwidthV’ and average training power

constant, which depends only aii’. That is, in this limit . “\hich maximize the achievable rate (7). This can be done
the variance does not depend on the particular rea"zanbnsnumerically' however, to gain further insight, we will cader

random training sequences. We therefore simplify the &ly, |3rge system limit in which all the system parameters
by assuming 'Fhat this is true for a large but fln!t§—3|ze syste{KjL’N} tend to infinity with fixed ratios{3, p}. In that
Hence, dropping the dependence on the user indthe ermor caqe \ve wish to characterize the growth in optimat; and

varia;nce for all users probing the same sub-channel is dénoj. (training length, training power and probing bandwidth)wi
aSog g _ ~__ total number of userg.
Averaging the lower bound in (6) over the distribution of 14 5chieve the rate (7), the receiver must feed back the

K’ and{/;} gives the achievable rate per user, index of the probing user with the highest estimated channel

3 gain, which requiredog,(K) bits per coherence block per
C=(1-a)—- sub-channel. We also remark that in sub-channel assignment
K P rule (4) the users are assigned sub-channels based onlgion th

> Ppt , estimated channel gains, which does not account for estimat
log 1+ ) fmam:K’ (t)dt (K ) .
= e Ppog e + 0}, ’ error. A more general scheme could also take into account the
(7)error variancer? i, (4).
where3 = £ is the normalized available bandwidth ape= [1l. CHANNEL ESTIMATION ERRORVARIANCE

£ is the normalized load (number of users). Al$,qz;x ()

is the pdf Of ez = max;ex ft; given |K| = K’, and
p(K') is the probability thatKC| = K’. With Rayleigh fading
and the assumption (justified in next section) tmég} are
independent CSCG random variables with variance,

In this section we compute the channel estimation error
variance,ag| x» Which appears in the capacity expression
(7). We consider two linear channel estimators, which give
different asymptotic growth rates for the optimal paransete
In both cases, since we compute a Linear Minimum Mean
Squared Error (LMMSE) estimate, the relation (8) holds.
Furthermore, because the sub-channelsi.atk, without loss
of generality, we again focus on subchanhel

E“]Azzﬂ :U]%‘K, :U?L—Ug‘K/, Vie K (8)

we have,

K’ —t/o? (K'-1) —t/o? A. Matched Filter Estimator
f'rrLaa:;K' (t) = 2 (1 ¢ th() € hy‘Kla t>0.
Th K Given the vector of received samplgg, corresponding to
(9) T training symbols in (2), for usek € K the matched filter
estimator first computes
3The notation{ag‘K/(i)} = {aglK,(z') : i € K} and similar definitions
holds for {A;} and {/i;}. 2k = skyh = (sksh)he + 11 (13)



where s, is the 1 x T" row vector containing the training For both channel estimators considered, the set of channel
symbols of usek andn; contains the interference from otherestimates are zero-mean CSCG random variables, and are
users and noise. The channel estimate is thes: cz;, where assumed to be independent for the following reasons. For the
¢ is selected to minimize®[|h;, — hx|2]. Here we assume thatLMMSE estimator with parameter values of interest, the off-
the training sequences consist of binary symhie{g £z.. with ~ diagonal terms oft; converge to zero in the large system
K' users probing the sub-channel, we have limit, so that the channel estimates bec_ome pair-wise md(_a-
pendent. However, the set of channel estimates acrossgrobi
users are still dependent since the eigenvalue distrifoudfo
®; is non-degenerate in the large system limit [2]. This depen-
{ai + (@) op + (T]\IQ'T> o,%} dence increases with the ratfp-. Since we expect to operate
. at small values 0%’ in the large system limit (i.e., to avoid

B. LMMSE Channel Estimator interference), the error in calculating the achievable date to

For the model (2) with known training sequence, thehis independence approximation is expected to be quité.sma
LMMSE estimate of the vector of channel gains across usesssimilar argument justifies the independence assumption in
probing the sub-channel is the case of the matched filter estimator. Moreover, assuming

U}%‘K/ = E[lak] =

L, 2/af 2y1—1 ¢ that the estimates are independent in a finite system implies
h=0}8 [0;(8'S) + o 1] yr 159 more diversity than is actually available, and should tfueee
and the covariance matrix is give an optimistic estimate of the achievable rate.
o, =F [flfﬁ} = oS [02(S18) + 021] ' ST, (16) IV. SIMPLIFIED RATE OBJECTIVE

In this section, we characterize the parameter@raining
duration), ez (training power), andr (probing bandwidth),

guarantee that the estimation error variance converges t ch maximize the asymptotic growth rate of the capacity

large system limit, we also assume that the symbols have fin'? f_of both channel gshmators pr(_asented n Fhe last sqadlho
fourth moment [2]. Is difficult to work with the capacity expression (7) diregtl

For a finite size system, the covariance matrix depena%.that instead we optimize thg f°”°W‘F‘9 simpler expressio
on the particular realization of signatures. However, in thV ich has the same asymptotic behavior.

large system limit considered here, under certain contitio 3 (Pay — €1) U;%w( log(rK)

on parametersa,r,er} to be described subsequently, the R = (1 — a)—log (1+ 7 5 > (19)
diagonal elements of; converge to adeterministic value p (1 _O‘)E‘Tn

given by [2], [3]

Here the training symbols, i.e., the entriesfare complex
i.i.d. random variables with mean zero and variar%?e To

where0 < a,r <1,0<er < P, and 02‘7“ is the variance
ok of the sub-channel estimate given th&f users probe the sub-
p (17)  channel. We wish to maximize this expression aveer, and
r. The following theorem states that the optimal values also

maximize the asymptotic growth rate of the capacitygiven

by (7).
Theorem 1. Let (a*, €}, r*) = arg maxq, ., » R, R* be the

{= 202 2a02 corresponding maximum, and* be the value of” evaluated
n h .
) 1/2 at (a*, ek, r*) with thresholds chosen as,
(1 - KT/) (1 + KT,) / 2 * 2 * /
n 24 - (18) tK') = aﬁlr*Klog(r K)—Uﬁ‘r*Kloglog(r K), VK’ (20)
402 202(acy) = 4(aoci)?

If C has a unique maximum, denoted b¥,,..

anda = <. In what follows, we will take this to be the MaXo, e r,{1(x7)} O then for fixeds andp,

channel estimate variance, even though for finite and lim  (|R* = C*| 4 |Chae — C*|) =0 (21)
T, J%Lu« depends on the realization of training sequences. (K,N,L)—o0

This substitution still leads to the correct large systemitli with either the Matched filter or LMMSE channel estimator.
provided that the variance @ffng . tends to zero sufficiently  The proof is omitted to save space. Hence the parameters,
fast with K and T. More precisely, the results in [32] canwhich maximizeR, also maximizeC' asymptotically, and the

be used to show that this variance is bounded/iﬁyzﬁ, optimized R and C,,,,. exhibit the same asymptotic behavior.
where k is a constant. According to the results in the neXurther, the theorem implies that to maximize the asymptoti
section, the optimal parameters scale in such a way tleaipacity, the threshold can be chosen as in (20). That is,
this variance and the error in achievable rate incurred liye threshold can be set according to #aerage number
using (17) are expected to go to zero in the large system.linof probing users;*K, as opposed to varying it with the

instantaneous number of probing useks,



A. Numerical Comparison

Fig. 1 compares the parameter values obtained by maxim
ing R with the corresponding values obtained by maximizin
the actual capacity”. The system loagp = 0.1. Here and
in the numerical results that follow?,, = oﬁ =1, the SNR
Pyo?/o2 = 0 dB, 3 = 1, and we only show results for
the LMMSE channel estimator. (Similar curves were obtaine
for the matched filter channel estimator.) Also, to reduc
the computational complexity, we assume that the threshc
{t(K")} = to, independent of’, and numerically maximize
C in (7) with respect tda, er, ) andt, for eachK.

Figure 2 shows the corresponding plots ®f and C,,,,...
The figures show that the optimized system parameters and

corresponding rates exhibit the same asymptotic trends. 1..

gaps between the optimized parameters and betu#eand
Cimaz Close, albeit very slowly, as the system size becom
large.

Fig. 3 compares the thresholgl, which maximizesC”' with
the asymptotically optimal threshold given by (20). The fegu
indicates that the growth rate is the same in each caseugtho
there is a significant gap between the curves.
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Fig. 1. Comparison of parameters obtained by maximizitign (19) and
Cin (7).

V. OPTIMAL PARAMETERS

Setting the derivatives ok with respect tceer, r, o to zero
gives the necessary conditions

do?
2 hlrk
Okt (Pav — €1) Der 0 (22)
o? do?
K Jog(r K g?‘jK = 0 (23)
R B [ eftr/(—0)f _q
R (- O‘); ( eRo/(=c)8 )
2 2
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Fig. 3. Comparison of optimal on-off threshotd with the asymptotically
optimal threshold (20).

These conditions appear to be difficult to solve directly,
so that we consider asymptotic propertiesias— oo with
fixed 8 andp. We assume certain properties of the asymptotic
solution, which simplifies these conditions. We can then de-
termine the asymptotic behavior of «, ander, and verify
that the corresponding solution indeed satisfies the aigin
assumptions.

A. Matched Filter Channel Estimator

We first simplify the necessary conditions (22)-(24) by
drawing analogies with the single-user analysis in [5]. M
there it is shown that as the system size scales, both the
optimal training lengthn and training poweer tend to zero.
However, the optimal probing bandwidih— 0 fast enough
so that the channel estimation error tends to zero. With this
in mind, we assume thaty, ez, ) — 0, er log(rK) — 0 and
(? + %) r — 0 as K — oo. With these assumptions,



(22), (23) and (24) impky

P, o2 1
P,,02 r*ox - h 35
2 = p (Br) (25) o2p (logQ(K)) (35)
P
2 * - av
rlog(rK) = M"ihﬁa 26) T T log(K) (36)
(a’+;:> . (p> (pwgg) 1
(% = — -
e S @7) )\ % ) (logloa(K))7* (log(K))*®
lo [ a2k ] (37)

] ) ) These relations are consistent with our initial assumpgtion
Fror_n these relat|_ons we obtain the following asymptotigy, ¢ asymptotic behavior. In this case, for (32)-(34) g
behavior for the optimat, er, anda, an accurate estimate of the optimal valugsshould be large

1 enough so thaf: >> p, <& >> ﬁ:; ander << P,,. As for

o= 2 (28)  the matched filter, this implies thd must be at least several

p (loglog(K)) (log(K)) hundred
. Pyyo? 1
er = =5 L /2 (29) VI. ASYMPTOTIC TRENDS AND NUMERICAL RESULTS

OnP  (loglog(K)) "~ (log(K)) . . .
1 We now highlight some asymptotic properties, and show

o =< (30) numerical results for finite-size systems. We also comgage t

(108 105(K) (108 (K ) ’ o

preceding results for the multiple-access channel (MAGh wi
It is easy to verify that these relations satisfy the initid® analogous results for a single user presented in [S]. The
assumptions about the solution. The asymptotic expressiéRodel in [5] assumes the same probing and on-off feedback
(25)-(27) accurately estimate the optimal values provithed Scheme as that considered here. There the asymptoticsresult
the system siz& is large enough so th4tZ: @) r o< are presented as the coherence time» oo with an infinite

2
P
+ . .
9 . . < . number of independently fading subchannels.
o; ander << P,,. Numerical results in the next section show

« €T
that this is satisfied only whei is in the range of several A. Capacity
hundred or greater. Nevertheless, the asymptotic trenels arThe asymptotic rate in (19) has the form
present for finite-size systems of interest. c1
R= n log (1 + caplog(rpL)), (38)

B. LMMSE Channel Estimator where ¢; and ¢ are constants. For largé, R therefore

Substituting K’ = 7K in (17), we have grows asO(loglog L) and decreases with system loadIn
contrast, the capacity grows éxlog L) for single user model
(;T B ﬂ> considered in [5].

ag B Ba) 1 The O(loglog L) growth for the MAC model is optimal,
202 207 i.e., matches the order growth with perfect CSI at the trans-
2 1/2 mitter [6]. Here there is a second-order term, which denotes
(% - %) (%4‘ ?Tf) 1 the (additive) loss in capacity due to channel estimation

404 20202 Q (31)  and one-bit feedback. Specifically, substituting the optim

asymptotic parameters into (19) suggests that this term de-
creases ag) ( é L) for the matched filter estimator, and as

lo,

Now if we assume that a& — oo, the optimal values of s
the parameteréa, er,r) — 0, and <, ¢, andrK all tend to O (M) for the LMMSE estimator. As expected, the

log L)3/2
infinity, then (22), (23) and (24) simplify to loss i§1 ?:aé)acity is greater for the matched filter estimaer.
) cause (19) approximates the capacity for a finite-size syste
& = i av:n (Br) (32) these error terms are only estimates. A more accurate asalys
Ih must take into account the rate at which the gap between (19)
erlog(rK) =< Py (33) and (7) closes.

Po? = €rpr (34) Rather than allowing the users to choose sub-channels to

log {Pm, o2 log('r‘K):| probe at random, suppose that the users pnoheoverlapping
eo? s sets of sub-channels. In that scenario the number of subchan

nels assigned to each useris= 2. (A non-integer value of
implies time-sharing of some of the sub-channels.) Evehdf t
transmitter has perfect CSlI for all users, @8, L, N) — oo,

4The notationF (K) < F>(K) denotesim g, oo % =1 the capacity per user converges to a constant, which is upper

which imply



bounded by%wa, where C*/ is the ergodic capacity per ,
subchannel achieved by water-pouring over the channedisstat —e— Single User
across time. Hence probing overlapping sets of subchannels —=—MACp=0.1
exploits multi-user diversity, in spite of the interferemaresent - mg p= 8'2
during channel estimation. p==
Fig. 4 shows plots of the capacity for the MAC channel

model C' versus coherence timg. As the loadp increases,

the per user capacity decreases due to interference, as show

(o2}
o

al
o

IN
o

Probing Bandwidth (N’)
w
=)

in the figure. The gap between the single-user curve and the 20f
MAC curves should increase ds increases. (The range of
coherence times is not large enough to make this apparent.) 10}
0 ; ‘ ‘
18 : : , 0 200 400 600 800

Coherence Time (L)

161

3

é Fig. 5. Optimal probing bandwidth versus for different system loadg.

g 1.4f

£

-é ' channel estimator, it can be shown that the optimal training

g 1f —e— Single User power decreases &3 m )

S 08 —s—MACp=0.1] | Although the training power tends to zero asymptotically,

g ——MACp=0.3 the rate of decrease is sufficiently slow to guarantee iserea

206 —*—MACp=06] | ingly accurate channel estimates. To see this, note that the

= training energy per fading coefficient, given b%L, tends

045 200 400 600 800 to infinity as O((loglog(pL))'/*(log(pL))) and O(log(pL))

Coherence Time (L) in Channel Uses for matched filter and LMMSE estimators, respectively. Sim-

ilarly, for the single-user model it increases@€log L). The
optimized trainingenergy for the matched filter estimator is
thereforelarger than that for the LMMSE estimator, whereas
the optimized trainingpower is smaller. Similarly, asp in-

Fig. 4. Achievable rate versus with different user load$.

B. Probing Bandwidth creases, the optimized training power decreases, wherneas t
The asymptotic relations (28) and (35) imply that theptimized training energy increases. This reversal ofdsen
optimal probing bandwidthN/ = »* N scales sublinearly is due to the asymptotic behavior of the probing bandwidth,

with L. More specifically, the probing bandwidth grows a¥hich decreases gsincreases. Consequently, the optimized
training power is spread over fewer sub-channels.
O (152 10g(,,L)L(1og(pL))2) and O (m) for the matched gp P

filter and LMMSE estimators, respectively. For the singdewu As an example, Figure 6 shows optimal training power

model with an LMMSE channel estimator. it can be show\ﬁerSUSL' The average training power decreases at a similar
that the optimal probing bandwidth rowé &< L asymptotic rate for both the MAC and single-user channel
P P g 9 (og L)2 ) (r:nodels, and also decreases with load.

However, the asymptotic results also imply that for the MAI
model, the optimal probing bandwidth decreases witfThis D. Training Duration
is because of the additional interference associated aitfet Figure 7 shows plots of optimal training length versis

p, which degrades the channel estimates. Hengelasreases, with different values op. This figure shows that for the single-

users should probe fewer sub-channels. Figure 5 shows 8Bar model the training length should be minimized, e
timized probing bandwidth versus. The figure shows that 1

probing bapdwidth with the matched filter estimator is Iesf%r o> (,)fhaengilr?éngll)epnegtir;é?ggizze;igjlnjr%sé Iilgsraer;iwgm itn
than that with the LMMSE estimator. the length of the training sequence allows for interference
suppression during the channel estimation phase. That is,
the LMMSE channel estimator can suppress the interferers

From (29) and (36), the average training power Pejovided that the length of the training sequence exceegls th
user e}, — 0 at the rateO (10glog(pL))11/2(log(pL)) and number of users probing the particular sub-channel.

C. Training Power

1 . .
0 (log(P_L)) for the mat_Ched filter and LMMSE estimators, 51t is shown in [5] that asl. — oo, the performance depends eanonly
respectively. For the single-user model with the LMMSHhrougher.
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Fig. 6. Optimized training power versus for different loadsp.

scale linearly. The scheme is order-optimal in the sengdhba
capacity exhibits the same growth with coherence time as the
capacity with complete channel knowledge at the transrmitte
(i.e., O(loglog L)). The loss due to training overhead and
channel estimation is a second-order term, which tends to
zero asl. — oo. In contrast, if the users avoid interference
by probing and transmitting on non-overlapping sub-chémne
then the ergodic capacity per user is a constant, i.e., doies n
increase withL.

The asymptotic analysis shows that the number of
users, which probe a particular sub-channel, increases as
O (K/log® K). This provides increasingly accurate channel
estimates, even though the training power per user tends to
zero. The optimal probing bandwidth and training power de-
crease with the loagd. An extension of the single-user results
in [5] shows that each parameter exhibits the same order-
growth with L as for the MAC model. In contrast, the training
length must be at least as long as the expected number of users

The average number of users probing a particular super sub-channel in order to effectively suppress interfege

channel isr*K, which increases sublinearly witlik'. Al-
though the optimale — 0, it is also true that*/a* —

from other users probing the same sub-channel. Although the
asymptotic results accurately predict the performancg forl

0. Hence the average number of users probing a particuk@ry large K, the asymptotic trends presented are visible for
sub-channel should be small relative to the duration of tis¥stem sizes of interest. _
training sezuence_ From (30) and (37) the training |engthThe model and results presented here might be extended

L
grows as0 (loglog L)(log L)

L
and asO ( (loglog L)1/2(log L)3/2

for the matched filter estimator, in different ways. For example, we have assumed synchro-

nous training, whereas uncoordinated users are likely to be

for the LMMSE estimator. asynchronous. Also, the sub-channels across frequency and

As expected, the optimal training length for the matcheefrfilttime are likely to be correlated. This may reduce the amount

estimator is larger than that for the LMMSE estimator.
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Fig. 7. Optimal training length versus for different loadsp.

VIl. CONCLUSIONS

of overhead needed to obtain accurate sub-channel estimate
although it may not change the order of capacity growth
from the i.i.d. model. Finally, extensions to other network
configurations (e.g., peer-to-peer) may also relate totioedc
spectrum sharing scenarios.
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