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Abstract— We consider a multiple access, doubly-selective
block Rayleigh fading channel in which the users coordinate
spectrum sharing through a limited feedback scheme. Each user
probes a random set of sub-channels, known to the receiver,
by sending a pilot sequence at the beginning of each coherence
block. Multiple users may probe the same sub-channel, causing
interference. The receiver assigns each sub-channel to the user
with the highest estimated sub-channel gain (via limited feed-
back), provided that this gain exceeds a predetermined threshold.
Our problem is to optimize the number of channels to probe,
or “probing bandwidth”, for each user. We maximize a lower
bound on the ergodic capacity, and consider a large system limit
in which the system bandwidth and number of users scale linearly
with the coherence time. We show that the optimal probing
bandwidth grows as O

�
N

(log N)2

�
, assuming a linear Minimum

Mean Square Error channel estimator, and the achievable rate
increases asO (log log N) per user, where N is the number of
available subchannels. In contrast, if the users are pre-assigned
nonoverlapping subchannels on which they probe and transmit,
then the capacity per user converges to a constant asN becomes
large. Additionally, the optimal training length and training
power are computed and the effect of system load (number of
users per unit coherence time) on the achievable rate is studied.

I. I NTRODUCTION

The current scarcity of spectrum for many types of services
can be alleviated by dynamically sharing spectrum across a
multitude of services. That possibility motivates the consider-
ation of “wideband” systems in which each user can choose
from among a large number of coherence bands. A primary
challenge when the users are non-cooperative is the mitigation
and control of interference.

In this work we assume that the available spectrum is shared
by several independent devices, which communicate synchro-
nously with a central transceiver. Although the devices do not
coordinate transmissions directly, indirect coordination takes
place through a feedback channel. We focus on the multiple
access uplink, and assume that the transmitting devices use
multi-carrier signaling. Given many available sub-channels,
each device wishes to choose a subset of sub-channels, which
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avoids interference from other devices and exploits available
frequency diversity.

The achievable rate for a doubly-selective fading channel
depends on what channel state information (CSI) is available
at the receiver and transmitter. Namely, CSI at the receivercan
increase the rate by allowing coherent detection, and CSI atthe
transmitter allows adaptive allocation of rate and power across
sub-channels (e.g., see [1, Ch. 6]) in addition to opportunistic
scheduling across the users. This information is all the more
important given a wideband fading channel, which offers many
degrees of freedom for diversity. Obtaining CSI at the receiver
and/or transmitter typically requires overhead in the formof a
pilot signal and feedback. Hence there is a fundamental trade-
off in allocating available resources between learning CSIand
data transmission.

The channel from each user to the central receiver is
assumed to bei.i.d. doubly-selective block fading, and is
divided into several independent flat Rayleigh fading sub-
channels. That is, each sub-channel remains static for a certain
number of channel uses (coherence block), and then changes
to a new independent value in the next block. Furthermore,
sub-channel gains are assumed to be independent across the
users. To simplify the analysis, we assume that the users
are both symbol- and frame-synchronous, where each frame
corresponds to a coherence block.

Each user selects a random subset of available subchannels,
known to the receiver1, to probe, i.e., send pilot sequences
at the beginning of each coherence block. Multiple users may
choose to probe a particular sub-channel, creating interference.
The receiver estimates the sub-channel gain using the (possibly
interfering) pilots and assigns the sub-channel for rest ofthe
coherence block to the user with highest estimated gain via a
feedback channel, provided that it is above a predetermined
“on-off” threshold. We assume that the assignment process
takes a negligible amount of time.

The preceding assumptions lead to the following tradeoff:

1We have assumed that the choice of subset, although random, is shared
between each transmitter and the central receiver as common randomness.
For example, we can assume a synchronized pseudo random generator for
sub-channel selection.



Probing a large number of channels gives inaccurate channel
estimates due to the increased likelihood of interference and
also because the probing power per sub-channel is small. On
the other hand, probing a small number of channels is likely to
give accurate channel estimates, but does not exploit available
degrees of freedom. This work is extension of [5], which
studies the preceding tradeoff with a single user. Related work
on single-user wideband models, which accounts for the effect
of channel probing and the associated channel estimation error
on the achievable rate, is presented in [7], [8]. Other models
for multi-channel probing by a single user are studied in [9],
[10].

We characterize the optimal number of sub-channels to
probe, orprobing bandwidth, for a large system in which the
total number of sub-channels (coherence bands)N and number
of usersK scale linearly with the coherence block, consisting
of L channel uses. Namely, the optimal probing bandwidth
increases asO

(

N
(log N)2

)

, assuming the receiver computes
an optimal Linear Minimum Mean Square Error (LMMSE)
estimate of the channel, and asO

(

N
(log log N)(log N)2

)

with a

sub-optimal channel estimate obtained from a matched filter.2

The corresponding capacity per user grows asO (log log N),
which is the same as the order-growth with perfect channel
knowledge [6]. For the model considered, we characterize
the second-order loss in capacity due to channel estimation.
In contrast, if the users are pre-assigned to non-overlapping
subchannels, then the capacity per user converges to a constant
as N , K, andL become large. We also characterize the as-
sociated optimal on-off threshold, training power, and training
length. A comparison of the asymptotic bounds with results
from numerical optimization of finite-size systems shows that
the asymptotic analysis accurately predicts performance only
when the number of usersK is large (e.g., a few hundred),
although the asymptotic trends are visible for smallK as well.

II. M ODEL AND CAPACITY OBJECTIVE

We consider a synchronous multiple access channel model
in whichK users transmit through a wideband Rayleigh fading
channel. The channel for each user is divided intoN identical
independent flat Rayleigh fading sub-channels. Furthermore,
the wideband channel is assumed to be independent across the
users. Block fading is assumed, so that the channel gains are
constant within a coherence block ofL symbols (for all users),
and are independent across coherence blocks. At the beginning
of a coherence block, each user chooses a random subset
of sub-channels on which to probe, i.e., transmit a training
sequence. In what follows, without any loss of generality, we
do not indicate the dependence on coherence block indexl
explicitly and focus on sub-channel1. For thelth coherence
block, letK denote the set of indices of users who select sub-
channel1 to probe, and the corresponding number of users
|K| = K ′. The received (scalar) signal on the sub-channel is

2The result with LMMSE channel estimation also applies to the single-user
model considered in [5].

given by
y = h†s + n (1)

wheres is the K ′ × 1 vector of transmitted symbols across
usersk ∈ K, h is the correspondingK ′ × 1 vector of in-
dependent zero mean circularly symmetric complex Gaussian
(CSCG) channel gains, each with varianceσ2

h, and the noise
n is also CSCG, zero-mean, and white with varianceσ2

n.
Each coherence block consists ofT training symbols fol-

lowed byD data symbols, assuming the sub-channel is used
for data transmission. We therefore partition the1×L vector of
received symbols on the sub-channel within coherence block
l as

y = [yT yD] = h† [SX] + n (2)

whereyT andyD are the1 × T and1 × D received vectors
during training and data transmission, respectively,S is the
K ′ × T matrix of training symbols,X is theK ′ × D matrix
of transmitted data symbols, andn is the 1 × L vector of
noise samples. Note that the rows ofS and X contain the
training and data symbols transmitted by users inK. The
training symbols have zero mean and variancePT

N ′ wherePT

is the power during the training period for a particular user,
which is split uniformly amongN ′(≤ N) randomly probed
sub-channels. The row ofX corresponding to userk ∈ K,
sayxk, has data symbols with power (variance)PD if user k
is “assigned” the sub-channel (explained below), otherwise it
has zero power. Given an average power constraintPav, for
each user, we have

ǫT + q N (1 − α)PD = Pav (3)

where ǫT = αPT is the average training power,α = T/L
denotes the fraction of the coherence block devoted to training
and,q is the probability that userk is assigned the sub-channel.

For each useri ∈ K with channel gainhi, the receiver
computes the corresponding channel estimateĥi with esti-
mation errorei = hi − ĥi. The error varianceσ2

e|K′(i) =

E
[

|ei|
2 | K ′

]

in general depends upon the particular training
sequences transmitted by the users probing the sub-channel.
Since the training sequences are assigned randomly, the vari-
anceσ2

e|K′(i) is random in general and can be different for
different users inK. The receiver uses the channel estimates
for both coherent detection, and to “assign” sub-channels.That
is, sub-channel1 is assigned to userk ∈ K if its estimated
channel gain is largest among users probing the sub-channel,
and it exceeds the thresholdt(K ′), i.e., lettingµ̂i = |ĥi|

2,

µ̂k ≥ µ̂i, for all i ∈ K, and µ̂k ≥ t(K ′). (4)

Here we explicitly denote the dependence of the threshold
on K ′. The assigned user then transmits data on the sub-
channel during the rest of the coherence block. Ifµ̂i < t(K ′)
for all i ∈ K, then the sub-channel is not used. The sub-
channel assignments are made after training and before data
transmission. Here we assume that these assignments take up
a negligible fraction of the coherence block.



The capacity for userk (and hence for any user by symme-
try) summed over allN sub-channels is given by3

Ck = N(1 − α)
1

D
I
(

xk; (yD,K, {σ2
e|K′(i)}, {ĥi})

)

(5)

where the mutual information for a particular sub-channel is

I
(

xk; (yD,K, {σ2
e|K′(i)}, {ĥi})

)

≥

qD E

[

log

(

1 +
PD µ̂k

PDσ2
e|K′(k) + σ2

n

)

∣

∣

∣

∣

userk is assigned
the subchannel

]

(6)

The first line (5) is the mutual information for a fading
channel with channel estimation error and the lower bound in
(6) is taken from [4], [5]. Our performance objective is ergodic
capacity per user and hence the expectation in (6) is over the
joint distributions ofK ′, {µ̂i}, and{σ2

e|K′(i)} given that user
k is assigned the sub-channel. In general, the channel estimates
across the users,{µ̂i}, can be correlated due to non-orthogonal
training sequences. In what follows, we will take a large
system limit in which the channel estimates are independent
and the channel estimation error variance converges to a
constant, which depends only onK ′. That is, in this limit
the variance does not depend on the particular realizationsof
random training sequences. We therefore simplify the analysis
by assuming that this is true for a large but finite-size system.
Hence, dropping the dependence on the user indexi, the error
variance for all users probing the same sub-channel is denoted
asσ2

e|K′ .
Averaging the lower bound in (6) over the distribution of

K ′ and{µ̂i} gives the achievable rate per user,

C = (1 − α)
β

ρ
·

K
∑

K′=1

[

∫ ∞

t(K′)

log

(

1 +
PDt

PDσ2
e|K′ + σ2

n

)

fmax;K′(t)dt

]

p(K ′)

(7)

whereβ = N
L is the normalized available bandwidth andρ =

K
L is the normalized load (number of users). Also,fmax;K′(·)
is the pdf of µ̂max;K′ = maxi∈K µ̂i given |K| = K ′, and
p(K ′) is the probability that|K| = K ′. With Rayleigh fading
and the assumption (justified in next section) that{ĥi} are
independent CSCG random variables with variance,

E
[

|ĥi|
2
]

= σ2
ĥ|K′ = σ2

h − σ2
e|K′ , ∀ i ∈ K (8)

we have,

fmax;K′(t) =
K ′

σ2
ĥ|K′

(

1 − e
−t/σ2

ĥ|K′

)(K′−1)

e
−t/σ2

ĥ|K′ , t ≥ 0.

(9)

3The notation{σ2
e|K′ (i)} = {σ2

e|K′ (i) : i ∈ K} and similar definitions

holds for{ĥi} and{µ̂i}.

Assuming that each user probes a randomly chosen subset of
N ′ channels out of the availableN channels, we also have
that

p(K ′) =

(

K

K ′

)

rK′

(1 − r)(
K−K′) K ′ = 0, 1, . . . K

(10)
wherer = N ′

N is the probability that sub-channel1 is probed
by a particular user. HereN ′ is assumed to be the same for
all users and is defined as ”probing bandwidth”. Hence the
average number of users, which probe a particular sub-channel
is rK.

Letting

u(K ′) = Pr{µ̂max;K′ ≥ t(K ′)|K ′} =

∫ ∞

t(K′)

fmax;K′(t)dt,

(11)
the probability that userk is assigned to sub-channel1 is

q =
1

K

K
∑

K′=1

u(K ′) p(K ′). (12)

Given the system parametersK, L, andN (users, coherence
time, and bandwidth), our objective is to determine the training
length T , probing bandwidthN ′ and average training power
ǫT , which maximize the achievable rate (7). This can be done
numerically; however, to gain further insight, we will consider
a large system limit in which all the system parameters
{K,L,N} tend to infinity with fixed ratios{β, ρ}. In that
case, we wish to characterize the growth in optimalα, ǫT and
r (training length, training power and probing bandwidth) with
total number of usersK.

To achieve the rate (7), the receiver must feed back the
index of the probing user with the highest estimated channel
gain, which requireslog2(K) bits per coherence block per
sub-channel. We also remark that in sub-channel assignment
rule (4) the users are assigned sub-channels based only on their
estimated channel gains, which does not account for estimation
error. A more general scheme could also take into account the
error varianceσ2

e|K′(i).

III. C HANNEL ESTIMATION ERRORVARIANCE

In this section we compute the channel estimation error
variance, σ2

e|K′ , which appears in the capacity expression
(7). We consider two linear channel estimators, which give
different asymptotic growth rates for the optimal parameters.
In both cases, since we compute a Linear Minimum Mean
Squared Error (LMMSE) estimate, the relation (8) holds.
Furthermore, because the sub-channels arei.i.d., without loss
of generality, we again focus on subchannel1.

A. Matched Filter Estimator

Given the vector of received samplesyT , corresponding to
T training symbols in (2), for userk ∈ K the matched filter
estimator first computes

zk = sky
†
T = (sks

†
k)hk + nI (13)



where sk is the 1 × T row vector containing the training
symbols of userk andnI contains the interference from other
users and noise. The channel estimate is thenĥk = czk, where
c is selected to minimizeE[|hk − ĥk|

2]. Here we assume that

the training sequences consist of binary symbols±
√

PT

N ′ . With
K ′ users probing the sub-channel, we have

σ2
ĥ|K′ = E[µ̂k] =

σ4
h

[

σ2
h +

(

(K′−1)
T

)

σ2
h +

(

N ′

TPT

)

σ2
n

] (14)

B. LMMSE Channel Estimator

For the model (2) with known training sequence, the
LMMSE estimate of the vector of channel gains across users
probing the sub-channel is

ĥ = σ2
hS
[

σ2
h(S†S) + σ2

nI
]−1

y
†
T (15)

and the covariance matrix is

Φ
ĥ

= E
[

ĥĥ†
]

= σ4
hS
[

σ2
h(S†S) + σ2

nI
]−1

S†. (16)

Here the training symbols, i.e., the entries ofS, are complex
i.i.d. random variables with mean zero and variancePT

N ′ . To
guarantee that the estimation error variance converges to a
large system limit, we also assume that the symbols have finite
fourth moment [2].

For a finite size system, the covariance matrix depends
on the particular realization of signatures. However, in the
large system limit considered here, under certain conditions
on parameters{α, r, ǫT } to be described subsequently, the
diagonal elements ofΦ

ĥ
converge to adeterministic value

given by [2], [3]

σ2
ĥ|K′ =

σ4
h

σ2
h + 1

aξ

(17)

where

ξ =

(

1 − K′

T

)

2σ2
n

−
1

2aσ2
h

+







(

1 − K′

T

)2

4σ4
n

+

(

1 + K′

T

)

2σ2
n(aσ2

h)
+

1

4(aσ2
h)2







1/2

(18)

and a = ǫT

rβ . In what follows, we will take this to be the
channel estimate variance, even though for finiteK and
T , σ2

ĥ|K′
depends on the realization of training sequences.

This substitution still leads to the correct large system limit
provided that the variance ofσ2

ĥ|K′
tends to zero sufficiently

fast with K and T . More precisely, the results in [3] can
be used to show that this variance is bounded byκa2K

T 2 ,
where κ is a constant. According to the results in the next
section, the optimal parameters scale in such a way that
this variance and the error in achievable rate incurred by
using (17) are expected to go to zero in the large system limit.

For both channel estimators considered, the set of channel
estimates are zero-mean CSCG random variables, and are
assumed to be independent for the following reasons. For the
LMMSE estimator with parameter values of interest, the off-
diagonal terms ofΦĥ converge to zero in the large system
limit, so that the channel estimates become pair-wise inde-
pendent. However, the set of channel estimates across probing
users are still dependent since the eigenvalue distribution of
Φĥ is non-degenerate in the large system limit [2]. This depen-
dence increases with the ratioK

′

T . Since we expect to operate
at small values ofK

′

T in the large system limit (i.e., to avoid
interference), the error in calculating the achievable rate due to
this independence approximation is expected to be quite small.
A similar argument justifies the independence assumption in
the case of the matched filter estimator. Moreover, assuming
that the estimates are independent in a finite system implies
more diversity than is actually available, and should therefore
give an optimistic estimate of the achievable rate.

IV. SIMPLIFIED RATE OBJECTIVE

In this section, we characterize the parametersα (training
duration), ǫT (training power), andr (probing bandwidth),
which maximize the asymptotic growth rate of the capacity
(7) for both channel estimators presented in the last section. It
is difficult to work with the capacity expression (7) directly,
so that instead we optimize the following simpler expression,
which has the same asymptotic behavior:

R = (1 − α)
β

ρ
log

(

1 +
(Pav − ǫT ) σ2

ĥ|rK
log(rK)

(1 − α)β
ρ σ2

n

)

(19)

where0 < α, r ≤ 1, 0 ≤ ǫT ≤ Pav andσ2
ĥ|rK

is the variance
of the sub-channel estimate given thatrK users probe the sub-
channel. We wish to maximize this expression overα, ǫT , and
r. The following theorem states that the optimal values also
maximize the asymptotic growth rate of the capacityC, given
by (7).

Theorem 1: Let (α⋆, ǫ⋆
T , r⋆) = arg maxα,ǫT ,r R, R⋆ be the

corresponding maximum, andC⋆ be the value ofC evaluated
at (α⋆, ǫ⋆

T , r⋆) with thresholds chosen as,

t(K ′) = σ2
ĥ|r⋆K

log(r⋆K)−σ2
ĥ|r⋆K

log log(r⋆K), ∀K ′ (20)

If C has a unique maximum, denoted byCmax =
maxα,ǫT ,r,{t(K′)} C, then for fixedβ andρ,

lim
(K,N,L)→∞

(|R⋆ − C⋆| + |Cmax − C⋆|) = 0 (21)

with either the Matched filter or LMMSE channel estimator.
The proof is omitted to save space. Hence the parameters,

which maximizeR, also maximizeC asymptotically, and the
optimizedR andCmax exhibit the same asymptotic behavior.
Further, the theorem implies that to maximize the asymptotic
capacity, the threshold can be chosen as in (20). That is,
the threshold can be set according to theaverage number
of probing users,r⋆K, as opposed to varying it with the
instantaneous number of probing users,K ′.



A. Numerical Comparison

Fig. 1 compares the parameter values obtained by maximiz-
ing R with the corresponding values obtained by maximizing
the actual capacityC. The system loadρ = 0.1. Here and
in the numerical results that follow,Pav = σ2

h = 1, the SNR
Pavσ2

h/σ2
n = 0 dB, β = 1, and we only show results for

the LMMSE channel estimator. (Similar curves were obtained
for the matched filter channel estimator.) Also, to reduce
the computational complexity, we assume that the threshold
{t(K ′)} = t0, independent ofK ′, and numerically maximize
C in (7) with respect to(α, ǫT , r) and t0 for eachK.

Figure 2 shows the corresponding plots ofR⋆ and Cmax.
The figures show that the optimized system parameters and the
corresponding rates exhibit the same asymptotic trends. The
gaps between the optimized parameters and betweenR⋆ and
Cmax close, albeit very slowly, as the system size becomes
large.

Fig. 3 compares the thresholdt0, which maximizesC with
the asymptotically optimal threshold given by (20). The figure
indicates that the growth rate is the same in each case, although
there is a significant gap between the curves.
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V. OPTIMAL PARAMETERS

Setting the derivatives ofR with respect toǫT , r, α to zero
gives the necessary conditions

−σ2
ĥ|rK

+ (Pav − ǫT )
∂σ2

ĥ|rK

∂ǫT
= 0 (22)

σ2
ĥ|rK

r
+ log(r K)

∂σ2
ĥ|rK

∂r
= 0 (23)

−
R

(1 − α)
+ (1 − α)

β

ρ

(

eRρ/(1−α)β − 1

eRρ/(1−α)β

)

·

1

σ2
ĥ|rK

[

∂σ2
ĥ|rK

∂α
+

σ2
ĥ|rK

(1 − α)

]

= 0 (24)
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These conditions appear to be difficult to solve directly,
so that we consider asymptotic properties asK → ∞ with
fixed β andρ. We assume certain properties of the asymptotic
solution, which simplifies these conditions. We can then de-
termine the asymptotic behavior ofr, α, and ǫT , and verify
that the corresponding solution indeed satisfies the original
assumptions.

A. Matched Filter Channel Estimator

We first simplify the necessary conditions (22)-(24) by
drawing analogies with the single-user analysis in [5]. Namely,
there it is shown that as the system size scales, both the
optimal training lengthα and training powerǫT tend to zero.
However, the optimal probing bandwidthr → 0 fast enough
so that the channel estimation error tends to zero. With this
in mind, we assume that(α, ǫT , r) → 0, ǫT log(rK) → 0 and
(

σ2

hρ
α +

βσ2

n

ǫT

)

r → 0 as K → ∞. With these assumptions,



(22), (23) and (24) imply4

ǫ2T ≍
Pavσ2

n

σ2
h

(βr) (25)

r log(rK) ≍
σ2

h
(

σ2

hρ

α +
βσ2

n

ǫT

) (26)

α2 ≍
ρr

log

[

Pav σ2

h log(rK)

e σ2
n

β
ρ

] (27)

From these relations we obtain the following asymptotic
behavior for the optimalr, ǫT , andα,

r⋆ ≍
1

ρ (log log(K)) (log(K))
2 (28)

ǫ⋆
T ≍

√

Pavσ2
nβ

σ2
hρ

1

(log log(K))
1/2

(log(K))
(29)

α⋆ ≍
1

(log log(K)) (log(K))
(30)

It is easy to verify that these relations satisfy the initial
assumptions about the solution. The asymptotic expressions
(25)-(27) accurately estimate the optimal values providedthat
the system sizeK is large enough so that

(

σ2

hρ
α +

βσ2

n

ǫT

)

r <<

σ2
h andǫT << Pav. Numerical results in the next section show

that this is satisfied only whenK is in the range of several
hundred or greater. Nevertheless, the asymptotic trends are
present for finite-size systems of interest.

B. LMMSE Channel Estimator

SubstitutingK ′ = rK in (17), we have

aξ =

(

ǫT

rβ − ǫT ρ
βα

)

2σ2
n

−
1

2σ2
h

+







(

ǫT

rβ − ǫT ρ
βα

)2

4σ4
n

+

(

ǫT

rβ + ǫT ρ
βα

)

2σ2
nσ2

h

+
1

4σ4
h







1/2

(31)

Now if we assume that asK → ∞, the optimal values of
the parameters(α, ǫT , r) → 0, and ǫT

r , α
r , andrK all tend to

infinity, then (22), (23) and (24) simplify to

ǫ2T ≍
Pavσ2

n

σ2
h

(βr) (32)

ǫT log(rK) ≍ Pav (33)

Pavα2 ≍
ǫT ρr

log

[

Pav σ2

h log(rK)

e σ2
n

β
ρ

] (34)

which imply

4The notationF1(K) ≍ F2(K) denoteslimK→∞
F1(K)
F2(K)

= 1.

r⋆ ≍
Pavσ

2
h

σ2
nβ

1
(

log2(K)
) (35)

ǫ⋆
T ≍

Pav

log(K)
(36)

α⋆ ≍

√

(

ρ

β

)(

Pavσ2
h

σ2
n

)

1

(log log(K))
1/2

(log(K))
3/2

(37)

These relations are consistent with our initial assumptions
about asymptotic behavior. In this case, for (32)-(34) to give
an accurate estimate of the optimal values,K should be large
enough so thatαr >> ρ, ǫT

r >>
βσ2

n

σ2

h
andǫT << Pav. As for

the matched filter, this implies thatK must be at least several
hundred.

VI. A SYMPTOTIC TRENDS AND NUMERICAL RESULTS

We now highlight some asymptotic properties, and show
numerical results for finite-size systems. We also compare the
preceding results for the multiple-access channel (MAC) with
the analogous results for a single user presented in [5]. The
model in [5] assumes the same probing and on-off feedback
scheme as that considered here. There the asymptotic results
are presented as the coherence timeL → ∞ with an infinite
number of independently fading subchannels.

A. Capacity

The asymptotic rate in (19) has the form

R =
c1

ρ
log (1 + c2ρ log(rρL)) , (38)

where c1 and c2 are constants. For largeL, R therefore
grows asO(log log L) and decreases with system loadρ. In
contrast, the capacity grows asO(log L) for single user model
considered in [5].

The O(log log L) growth for the MAC model is optimal,
i.e., matches the order growth with perfect CSI at the trans-
mitter [6]. Here there is a second-order term, which denotes
the (additive) loss in capacity due to channel estimation
and one-bit feedback. Specifically, substituting the optimal
asymptotic parameters into (19) suggests that this term de-
creases asO

(

1
log L

)

for the matched filter estimator, and as

O
(

(log log L)1/2

(log L)3/2

)

for the LMMSE estimator. As expected, the
loss in capacity is greater for the matched filter estimator.Be-
cause (19) approximates the capacity for a finite-size system,
these error terms are only estimates. A more accurate analysis
must take into account the rate at which the gap between (19)
and (7) closes.

Rather than allowing the users to choose sub-channels to
probe at random, suppose that the users probenon-overlapping
sets of sub-channels. In that scenario the number of subchan-
nels assigned to each user isN

K = β
ρ . (A non-integer value ofβρ

implies time-sharing of some of the sub-channels.) Even if the
transmitter has perfect CSI for all users, as(K,L,N) → ∞,
the capacity per user converges to a constant, which is upper



bounded byβ
ρ Cwf , whereCwf is the ergodic capacity per

subchannel achieved by water-pouring over the channel states
across time. Hence probing overlapping sets of subchannels
exploits multi-user diversity, in spite of the interference present
during channel estimation.

Fig. 4 shows plots of the capacity for the MAC channel
model C versus coherence timeL. As the loadρ increases,
the per user capacity decreases due to interference, as shown
in the figure. The gap between the single-user curve and the
MAC curves should increase asL increases. (The range of
coherence times is not large enough to make this apparent.)
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Fig. 4. Achievable rate versusL with different user loadsρ.

B. Probing Bandwidth

The asymptotic relations (28) and (35) imply that the
optimal probing bandwidthN ′ = r⋆ N scales sublinearly
with L. More specifically, the probing bandwidth grows as
O
(

L
log log(ρL)(log(ρL))2

)

and O
(

L
(log(ρL))2

)

for the matched
filter and LMMSE estimators, respectively. For the single-user
model with an LMMSE channel estimator, it can be shown
that the optimal probing bandwidth grows asO

(

L
(log L)2

)

.
However, the asymptotic results also imply that for the MAC
model, the optimal probing bandwidth decreases withρ. This
is because of the additional interference associated with larger
ρ, which degrades the channel estimates. Hence asρ increases,
users should probe fewer sub-channels. Figure 5 shows op-
timized probing bandwidth versusL. The figure shows that
the single-user curve has the same shape as the curves for
the MAC channel. Although not shown here, the optimized
probing bandwidth with the matched filter estimator is less
than that with the LMMSE estimator.

C. Training Power

From (29) and (36), the average training power per
user ǫ⋆

T → 0 at the rateO
(

1
(log log(ρL))1/2(log(ρL))

)

and

O
(

1
log(ρL)

)

for the matched filter and LMMSE estimators,
respectively. For the single-user model with the LMMSE
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Fig. 5. Optimal probing bandwidth versusL for different system loadsρ.

channel estimator, it can be shown that the optimal training
power decreases asO

(

1
(log L)

)

.
Although the training power tends to zero asymptotically,

the rate of decrease is sufficiently slow to guarantee increas-
ingly accurate channel estimates. To see this, note that the
training energy per fading coefficient, given byǫ

⋆
T L

r⋆N , tends
to infinity as O((log log(ρL))1/2(log(ρL))) and O(log(ρL))
for matched filter and LMMSE estimators, respectively. Sim-
ilarly, for the single-user model it increases asO(log L). The
optimized trainingenergy for the matched filter estimator is
thereforelarger than that for the LMMSE estimator, whereas
the optimized trainingpower is smaller. Similarly, asρ in-
creases, the optimized training power decreases, whereas the
optimized training energy increases. This reversal of trends
is due to the asymptotic behavior of the probing bandwidth,
which decreases asρ increases. Consequently, the optimized
training power is spread over fewer sub-channels.

As an example, Figure 6 shows optimal training power
versusL. The average training power decreases at a similar
asymptotic rate for both the MAC and single-user channel
models, and also decreases with load.

D. Training Duration

Figure 7 shows plots of optimal training length versusL
with different values ofρ. This figure shows that for the single-
user model the training length should be minimized, i.e.,T =
1, so thatα → 0 as L increases. That is, for the single-user
model, the training energy is concentrated in a single symbol.5

However, the training length increases almost linearly with L
for ρ > 0, and the slope increases withρ. The increase in
the length of the training sequence allows for interference
suppression during the channel estimation phase. That is,
the LMMSE channel estimator can suppress the interferers
provided that the length of the training sequence exceeds the
number of users probing the particular sub-channel.

5It is shown in [5] that asL → ∞, the performance depends onα only
throughǫT .
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Fig. 6. Optimized training power versusL for different loadsρ.

The average number of users probing a particular sub-
channel isr⋆K, which increases sublinearly withK. Al-
though the optimalα → 0, it is also true thatr⋆/α⋆ →
0. Hence the average number of users probing a particular
sub-channel should be small relative to the duration of the
training sequence. From (30) and (37) the training length
grows asO

(

L
(log log L)(log L)

)

for the matched filter estimator,

and asO
(

L
(log log L)1/2(log L)3/2

)

for the LMMSE estimator.
As expected, the optimal training length for the matched filter
estimator is larger than that for the LMMSE estimator.
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VII. C ONCLUSIONS

We have studied spectrum sharing over a doubly-selective
block Rayleigh fading multiple access channel. A random ac-
cess protocol is assumed, in which the users coordinate trans-
missions based on limited feedback about channel conditions.
Our main results show how the optimal probing bandwidth,
training power, and training duration behave asymptotically as
the number of usersK, bandwidthN , and coherence timeL

scale linearly. The scheme is order-optimal in the sense that the
capacity exhibits the same growth with coherence time as the
capacity with complete channel knowledge at the transmitters
(i.e., O(log log L)). The loss due to training overhead and
channel estimation is a second-order term, which tends to
zero asL → ∞. In contrast, if the users avoid interference
by probing and transmitting on non-overlapping sub-channels,
then the ergodic capacity per user is a constant, i.e., does not
increase withL.

The asymptotic analysis shows that the number of
users, which probe a particular sub-channel, increases as
O
(

K/ log2 K
)

. This provides increasingly accurate channel
estimates, even though the training power per user tends to
zero. The optimal probing bandwidth and training power de-
crease with the loadρ. An extension of the single-user results
in [5] shows that each parameter exhibits the same order-
growth withL as for the MAC model. In contrast, the training
length must be at least as long as the expected number of users
per sub-channel in order to effectively suppress interference
from other users probing the same sub-channel. Although the
asymptotic results accurately predict the performance only for
very largeK, the asymptotic trends presented are visible for
system sizes of interest.

The model and results presented here might be extended
in different ways. For example, we have assumed synchro-
nous training, whereas uncoordinated users are likely to be
asynchronous. Also, the sub-channels across frequency and
time are likely to be correlated. This may reduce the amount
of overhead needed to obtain accurate sub-channel estimates,
although it may not change the order of capacity growth
from the i.i.d. model. Finally, extensions to other network
configurations (e.g., peer-to-peer) may also relate to practical
spectrum sharing scenarios.
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