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ABSTRACT 
Computer manufacturers spend a huge amount of time, 

resources, and money in designing new systems and newer 
configurations, and their ability to reduce costs, charge 
competitive prices and gain market share depends on how good 
these systems perform. In this work, we develop predictive models 
for estimating the performance of systems by using performance 
numbers from only a small fraction of the overall design space. 
Specifically, we first develop three models, two based on artificial 
neural networks and another based on linear regression. Using 
these models, we analyze the published Standard Performance 
Evaluation Corporation (SPEC) benchmark results and show that 
by using the performance numbers of only 2% and 5% of the 
machines in the design space, we can estimate the performance of 
all the systems within 9.1% and 4.6% on average, respectively. 
Then, we show that the performance of future systems can be 
estimated with less than 2.2% error rate on average by using the 
data of systems from a previous year. We believe that these tools 
can accelerate the design space exploration significantly and aid in 
reducing the corresponding research/development cost and time-
to-market.  

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance of 
Systems, H.2.8 [Database Applications] Data Mining. 

General Terms 
Performance, Design. 

Keywords 
Design space, machine learning, performance prediction. 

1. INTRODUCTION  
Computer manufacturers spend tremendous effort in designing 

new desktop/server/laptop systems each year to gain advantage in 
a market that is worth hundreds of billions of dollars. At stake are 
revenue, profit and market-share. Which configurations are 
designed and manufactured determine the cost, price, and time-to-
market. Thus, a lot is at stake to come up with cost-effective 
configurations amongst many possibilities. This paper examines 
the following question: “Is it possible to predict the performance 
of systems accurately from a small subset of configurations or is it 
possible to predict performance of future systems using existing 
ones?” If these can be achieved, a company could potentially 
reduce its cost while manufacturing good configurations of 
systems. In this paper we demonstrate that these can be achieved. 

When a new system is developed, the designers are faced with 
an immense challenge: how can one estimate the performance of a 
particular system configuration? When one considers all the 
components that need to be configured (CPU type, CPU 
frequency, motherboard, memory speed, memory size, busses, 

hard disk, etc.), it is clear that the set of possible configurations is 
huge. The design space exploration is an important task for all 
system (e.g., desktop/server/laptop) manufacturers. Currently, 
most designers rely on their intuitions to make decisions during 
the system design.  

Design space exploration is not limited to system performance 
extraction, but is used in various domains including processor 
design, computer-aided design, and VLSI among others. 
Generally, designers in such fields revert to simulation to estimate 
the performance of their selection. Nevertheless, since the design 
space can be extremely large, it is not conceivable to simulate all 
the possible configurations; hence the designers mostly use 
heuristics (such as simulated annealing [1]) to find the set of 
configurations they evaluate. There are also several methods and 
heuristics to guide the design space exploration process in such 
domains [2, 3, 4]. Our work deviates from such studies 
significantly, because we do not attempt to control the simulations 
to be performed, instead we try to predict the real system 
performance. Specifically, a major bottleneck in system design is 
that each possible configuration has to be manufactured before its 
performance can be found. To the best of our knowledge, there is 
no publicly available work in this arena. In this work, we fill this 
gap by developing predictive models that will aid the developers. 
Specifically, we  

a) develop predictive models using neural networks and linear 
regression to estimate the performance of a system by just using 
the information about its components,  

b) show that the performance of a system can be accurately 
predicted by using a small fraction of the overall design space, and 

c) show that the performance of a system can be accurately 
predicted by using information from past systems. 

The rest of this paper is organized as follows. In Section 2, we 
give an overview of design space exploration and how our models 
can be used by manufacturers. In Section 3, we discuss our 
predictive models. Section 4 presents the results. Sections 5 and 6 
present the related work and conclusions, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 

        (a)        (b)  

Figure 1. Overview of design space exploration using 
predictive modeling: (a) sampled design space exploration and  

(b) chronological predictive models. 

2. OVERVIEW OF PREDICTIVE MODELING  
In this work, we develop two types of predictive models that 

can be utilized by system designers. The overview of how these 
models are developed and used is depicted in Figure 1. The first 
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one (Figure 1(a)) is called sampled design space exploration. In 
this methodology, we first choose a random set of the 
configurations. Then, using this set as the training set, we build 
our models, which are later used to predict the performance of the 
rest of the design space. The second mode of operation is called 
chronological estimation (Figure 1(b)), where we generate models 
by using the results of the previous years’ systems in the market to 
build the models, which are later used to predict the performance 
of the systems that are built in the following year. We must note 
that there may be other means of utilizing the predictive models 
during the design space exploration. However, we restrict 
ourselves to sampled design space exploration and chronological 
predictions, because they exhibit the most apparent use of 
predictive models in system design space exploration. 

Another important aspect of our work is the use of real data. 
Specifically, we train and evaluate our models using previously 
announced SPEC results [5]. Hence, we can precisely report how 
accurately we can estimate the real system performance. We must 
highlight that SPEC rating is the most common means of 
comparing the performance of different systems and hence they 
are of tremendous importance to system manufacturers. SPEC 
ratings are commonly used for marketing and also used for setting 
the prices of the systems. Consequently, system manufacturers put 
great effort in optimizing their systems for these ratings.  

Considering the tremendous cost advantages of using predictive 
models and such accurate predictions, the use of our models could 
provide a significant competitive advantage. Another point that 
should be mentioned is that the parameters used in the models are 
not only processor parameters; other parameters related to 
memory and bus of the system are chosen by our models and 
contain high importance factors. 

3. PREDICTIVE MODELS  
In this paper, we use predictive modeling techniques from 

machine learning to obtain estimates of performance of systems by 
using information about their components as the input. We use 
three different models. The linear regression model is described in 
the next section. Section 3.2 discusses the two neural network 
based models developed in this work.  

3.1 Linear Regression (LR) Model  
Regression analysis is a statistical technique for modeling 

relationship between variables [6]. We have n observations; 
y=y1,…,yn called the response variables, and xi=xi,1,…,xi,p for 
i=1..n that are predictor or regressor variables. The simplest linear 
regression is of the form y=β0+ β1x+ε. In this formula β represents 
the coefficients used in describing the response as a linear function 
of predictors plus a random error ε. 

We used the linear regression model inside the SPSS 
Clementine [9] tool. In Clementine there are 4 available methods 
for creating the linear regression models: Enter (LR-E), Stepwise 
(LR-S), Forwards (LR-F), and Backwards (LR-B). In our 
experiments, for sampled design space we have seen that the 
Backwards (LR-B) method produced the best results. Therefore, 
we only present results for LR-B. The Backwards method builds 
the equation in steps. In this model, the initial model contains all 
of the input fields as predictors, and fields can only removed from 
the model. Input fields that contribute little to the model are 
removed form the model until no more fields can be removed 
without significantly degrading the model. Generally, we found 
that the linear regression models can be built quickly for our 
system. It took on the order of milliseconds to generate the models 
from our input data set.  

3.2 Neural Network (NN) Models 
Neural networks, or more accurately, Artificial Neural 

Networks (ANN), have been motivated by the recognition that the 
human brain processes information in a way that is fundamentally 
different from the typical digital computer [6]. A neural network, 
sometimes called multilayer perceptron, (feedforward ANN) is a 

multivariate statistical model used to relate p predictor variables 
x1,…,xp to q response variables y1,…,yq. The model is very flexible 
containing many parameters and it is this feature that gives a 
neural network a nearly universal approximation property.  

We used the SPSS Clementine tool to build the ANN models. 
The neural network node provides five different training methods: 
Quick (NN-Q), Dynamic (NN-D), Multiple (NN-M), Prune (NN-
P), and Exhaustive Prune (NN-E). In our methods, we use two 
methods. The first one is the Single layer (NN-S) method (a 
modified version of NN-Q) and has a constant learning rate. This 
method uses only one hidden layer, which is smaller than the other 
methods. As a result, the models are faster to train. This model is 
similar to the one developed by Ipek et al. [2]. Note that Ipek et al. 
use this model for estimating the results of processor simulations. 
The other method that we use is Exhaustive prune (NN-E) method. 
In this model, network training parameters are chosen to ensure a 
very thorough search of the space of possible models to find the 
best one. This method is the slowest of all, but often yields the best 
results. During our analysis of the models, we have observed that 
the time it takes to build the neural network models vary 
significantly. While the NN-S model takes on the order of seconds 
to build, the NN-E models can take up to tens of minutes for the 
largest input data sets. However, relative to the time and cost of 
building a real system, these development times are still 
negligible.  

3.3 Cross-validation  
Clementine software does not provide the estimated predictive 

error for the model it creates. Therefore we have used 2 different 
sets of 5-fold cross-validation. In the first set of cross-validation, 
the training data is divided into 5 groups and 4 of them are used to 
create the predictive models using different methods. Then, the 
developed model is tested on the left out data group to calculate 
the estimated error. Afterwards, the group selection is rotated. The 
second set of cross-validation that we have used employs 3 sets to 
create the model, and 2 sets of data to calculate the estimated error. 
We similarly perform group rotation to extract the 5-fold cross-
validation. We have observed that these 2 different cross-
validation schemes produce similar results, and in general the 
second one produces estimations that are closer to the true error 
rates. However, since the former cross-validation uses more 
records during training, its true error rates can be lower. Therefore 
we always use the average of these 10 folds to calculate the true 
and estimated errors. Note that true error rates of the models are 
calculated by using the created models on the whole (100%) data.  

3.4 Data Preparation and Input Parameters 
Data preparation is an important part of the predictive 

modeling. In our experiments, Clementine software automatically 
scales the input data to the range 0-1 to prevent the effect of scales 
of different parameters. The linear regression methods expect the 
input parameters to be numerical. Therefore some of the inputs to 
Clementine  need to be mapped to numeric values. For some other 
input parameters this kind of transformation is not possible, hence 
these are omitted by Clementine. However, neural network models 
can have any type of input (numeric, flag, categorical), and are 
automatically transformed and scaled for model generation usage. 

 In this work, we feed all the input available parameters to 
Clementine. Then the program automatically measures the 
importance of the parameters, and depending on the methodology 
adds or removes predictor variables to the model. In some of the 
chronological design space experiments Clementine omits some 
predictor variables because these input parameters does not have 
any variation (e.g. single L2 cache size configuration). Other than 
this kind of predictor elimination, we don’t discard any input. 

4. PREDICTION RESULTS  
There are several possible methods of presenting SPEC 

numbers. The most commonly used one, SPECint2000 rate is the 
geometric mean of the ratios (of execution to the base system) for 
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the 12 integer applications. In this work, we are mostly interested 
in being able to estimate this rate, because it is the most important 
metric used for determining the system performance, price, and 
marketability. Hence, we present the accuracy of our techniques 
for this rate (similar results were obtained for SPECfp2000 too). 

SPEC contains results announced since 1999. Specifically, the 
SPEC results contain announcements from Intel, Alpha, SGI, 
AMD, IBM Power PC, Sun Ultra SPARC, etc. based systems. 
Among these, we have chosen to analyze the systems based on 
AMD Opteron (Opteron), AMD Opteron Dual (Opteron 2), Intel 
Pentium 4 (Pentium 4), and Intel Xeon (Xeon). The main reason 
for this selection is that these systems are the most commonly used 
systems. We analyze the systems based on the processor type 
because we have observed that when different processor types are 
used, the system configurations were significantly different from 
each other, preventing us from making a relative comparison.  

An important property of the announcements is that even 
within a single processor family, the performance numbers showed 
significant variation: Opteron based systems has 210 records with 
a range of 2.21 times (i.e., the best system has 2.21 times better 
performance than the worst system) and variation of 0.15; Opteron 
2 based systems have 197/2.47/0.15, Pentium 4 based systems 
have 241/7.70/0.37 and Xeon based systems have 216/1.34/0.09 
records/range/variation values. The SPEC announcements contain 
information about the systems and as well as execution times of 
each application. Each announcement provides the configuration 
of 32 system parameters: Company, system name, processor 
model, number of processors and configuration, bus frequency, 
floating point unit, total cores and chips, SMT, Parallel, L1 
instruction and data, L2 and L3 and L4 data cache configuration, 
memory size and frequency, hard drive size, speed and type, and 
extra components. Currently, there are 7032 announced results 
(3550 integer and 3482 floating-point).  

4.1 Sampled Design Space Modeling 
In this section we present results investigating the accuracy of 

our models. In these models, we randomly sampled 2% to 10% of 
the data to build our models, and then used the entire data set to 
predict the accuracy of our models. As described in Section 2, this 
approach can be used to reduce the design space size and hence 
accelerate the design space exploration. The percentage error is 
calculated by the formula: 100*|ŷi-yi|/ yi, where ŷi is the predicted 
and yi is the true (reported) number for the ith record in the data 
used. By using only the training set during cross-validation (c.f. 
Section 3), we also extract estimated error rates for each model.  

Figure 2 presents the results for the estimated and true error 
rates for the linear regression backwards LR-B (leftmost), neural   
. 

 
 
 
 

network with exhaustive prune NN-E (middle), and neural 
network with single layer NN-S (rightmost) methods on Opteron 
based systems for varying the sampling rate. For the linear 
regression, we observe that the difference between the estimated 
and true error rates is generally small. In the neural network 
methods, we see that the exhaustive method has a slightly higher 
error rate than the single layer method. The backwards method of 
linear regression produces the best results, and has a prediction 
accuracy of 95.68% accuracy at 4% sampling.  

The results for the Opteron 2 system are similar to the Opteron 
based systems, 8.5% and 4.2% error rate for LR model at 2% and 
5% sampling, respectively. We can conclude that the estimation 
error is generally small for small sampling rates, and becomes very 
accurate with increasing data set size. An important property of all 
the presented results is that as the training set size is increased, the 
accuracy of the models generally increases. This is expected 
because with a larger training set, the variations in the design 
space can be modeled better.  

For the Pentium 4 based systems, the error rates for the 
prediction accuracy are higher than the previously discussed 
systems unless a high sampling rate is used. One reason for this 
inaccuracy is that the range of Pentium 4 machines is very wide 
(the fastest machine is more than 7.7 times faster than the slowest 
machine). Hence, the systems are very different from each other 
and the selected training points are not always representative of 
the whole design space. However, when a larger data set is used 
for model creation, the accuracy increases rapidly. The estimated 
error rates are also close to the true error rates. When compared to 
other systems, we see that neural networks are optimistic when 
estimating the error rates. A similar observation can be made for 
the Xeon systems (presented in Figure 3). The prediction accuracy 
is generally better when there is little variation among the different 
systems. As a result, the training set used during the development 
of the model tends to contain similar records and particularly the 
neural network models are able to fit to these elements tightly. 
This results in very low estimated error rates. 

The models developed in this section include 5 to 7 predictor 
variables. Within these, there are usually two or three factors that 
are significantly more important than others. The important factors 
and their order of importance change from a processor family to 
another. For example, for the Pentium 4 systems, the most 
important parameters for neural networks (with their relative 
importance presented in parenthesis) are processor speed (0.503) 
L2 cache size (0.501), memory size (0.279), bus frequency (0.145), 
and L1 instruction cache size (0.115). Note that the importance 
factor denotes the relative importance of the input factor (0 
denoting that the field has no effect on the prediction and 1.0 

 
 
 
 
 

Figure 2. Estimated vs. true error rates for Opteron based systems 
 
 
 
 
 
 
 
 
 
 

Figure 3. Estimated vs. true error rates for Xeon based systems 
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Figure 4. Chronological predictions for Opteron systems 

completely determines the prediction). For the same predictions 
LR model has processor speed, memory size and L2 cache size 
with standardized beta coefficients of 0.510, 0.406 and 0.123, 
respectively. Standardized beta coefficients show the relative 
importance of the predictor variable. 

4.2 Chronological Predictive Modeling 
This section presents the results for chronological predictive 

models, which use historical performance announcements to 
predict the performance of future systems. In these models we 
have used announcements from 2005 as the training data and then 
the 2006 announcements have been used as the testing data. 

In this section we have created models and calculated the 
prediction error for different LR and NN methods for Opteron, 
Opteron Dual, Pentium 4 and Xeon systems. The percentage error 
is calculated as described in the previous section. In general we 
see that LR models perform better than NN. One of the main 
reasons for this is the model built using 2005 data is very accurate 
for predicting 2005, however when we try to predict 2006, the 
over-fitting in NN causes larger errors in estimations. However, 
LR does not have this problem and is successful predicting 2006 
results. Another point is that, for some systems we see that there 
are not significant changes to the configurations, e.g., L2 cache 
configuration. Hence the records are similar to each other allowing 
the LR model to perform well. 

In Opteron systems (Figure 4), we see the best accuracy is 
achieved using with LR-B method of linear regression with an 
error rate of 2.1%. Going to a more complex system, Opteron-2, 
we have a higher minimum error rate of 3.1% with the stepwise 
method. Pentium 4 and Xeon systems have 1.5% and 2.4% error 
rates with LR-E method, respectively. We must note that various 
parameters are used during the predictions. For example, for the 
Opteron systems, the most important parameters for neural 
networks are processor speed  (0.659), memory frequency (0.154), 
L2 being on or off chip (0.147), and L1 data cache size (0.139). 
For the same predictions, the linear regression model has 
processor speed and memory size with standardized beta 
coefficients of 0.915 and 0.119.  

5. Related Work  
There have been numerous works in the area of design space 

exploration. Eyerman et al. [10] uses different heuristics to model 
the shape of the design space of superscalar out-of-order 
processors. Ipek et al. [2] use artificial neural networks (with 
cross-validation to calculate their prediction accuracy) to predict 
the performance of memory, processor and CMP design spaces. 
Meanwhile, Lee et al. [4] use regression models to predict 
performance and power usage of the applications found in the 
SPECjbb and SPEC2000 benchmarks. In both of these references 
the data points are created using simulations. Kahn et al. [14] uses 
predictive modeling to tackle the problem of accurately predicting 
the behavior of unseen configurations in CMP environment. 
Ghosh et al. [11] have presented an analytical approach to the 
design space exploration of caches that avoids exhaustive 
simulation. The problem that they are trying to solve  is small 
compared to our work. Dubach et al. [13] has used a combination 
of linear regressor models in conjunction with neural networks to 
a model that can predict the performance of programs on any 
microarchitectural configuration with 32 further simulations. In 

this work, we target system performance rather than processor 
performance. To the best of our knowledge there has not been any 
work done in this area. The closest work is by Ipek et al [12], 
where they use neural networks to predict the performance of 
SMG2000 applications run on multi-processor systems, where 
they change the application inputs and the number of processors 
used. Unlike our work, they do not explore system parameters.  

6. CONCLUSION  
In this work, we have developed two different statistical 

modeling techniques, linear regression and neural network, to 
predict the performance of computer systems. First we have used a 
small fraction of the whole design space to create prediction 
models that are then used to predict performance numbers on the 
whole design space. To show the accuracy of this performance 
prediction models, we have used the published SPECint2000 
benchmark results. We create our models using 2% to 10% of the 
whole data. While the models are built, we also calculate an 
estimate for their accuracy using cross-validation. With the use of 
the sampling of the input data set and the predictive models, our 
results reveal 95.3% accuracy rate on average using only 5% of 
the possible machines in the design space. We generally observe 
that the estimated error rates are close to these true error rates. 
Secondly, we have shown that the performance of future systems 
can be estimated with less than 2.2% error rate on average by 
using the data from previous systems. These results indicate that 
the designers can estimate the performance of new systems using 
the limited data available for the already built systems and use 
them to estimate similar as well as future systems. The system 
manufactures can use current system configuration and the 
important factors provided by the models to start the search 
towards a system that will provide the highest performance.  
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