
 1

Efficient System Design Space Exploration Using Machine
Learning Techniques

Berkin Ozisikyilmaz, Gokhan Memik, Alok Choudhary

Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208

{boz283, memik, choudhar}@eecs.northwestern.edu

ABSTRACT
Computer manufacturers spend a huge amount of time,

resources, and money in designing new systems and newer
configurations, and their ability to reduce costs, charge
competitive prices and gain market share depends on how good
these systems perform. In this work, we develop predictive models
for estimating the performance of systems by using performance
numbers from only a small fraction of the overall design space.
Specifically, we first develop three models, two based on artificial
neural networks and another based on linear regression. Using
these models, we analyze the published Standard Performance
Evaluation Corporation (SPEC) benchmark results and show that
by using the performance numbers of only 2% and 5% of the
machines in the design space, we can estimate the performance of
all the systems within 9.1% and 4.6% on average, respectively.
Then, we show that the performance of future systems can be
estimated with less than 2.2% error rate on average by using the
data of systems from a previous year. We believe that these tools
can accelerate the design space exploration significantly and aid in
reducing the corresponding research/development cost and time-
to-market.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems, H.2.8 [Database Applications] Data Mining.

General Terms
Performance, Design.

Keywords
Design space, machine learning, performance prediction.

1. INTRODUCTION
Computer manufacturers spend tremendous effort in designing

new desktop/server/laptop systems each year to gain advantage in
a market that is worth hundreds of billions of dollars. At stake are
revenue, profit and market-share. Which configurations are
designed and manufactured determine the cost, price, and time-to-
market. Thus, a lot is at stake to come up with cost-effective
configurations amongst many possibilities. This paper examines
the following question: “Is it possible to predict the performance
of systems accurately from a small subset of configurations or is it
possible to predict performance of future systems using existing
ones?” If these can be achieved, a company could potentially
reduce its cost while manufacturing good configurations of
systems. In this paper we demonstrate that these can be achieved.

When a new system is developed, the designers are faced with
an immense challenge: how can one estimate the performance of a
particular system configuration? When one considers all the
components that need to be configured (CPU type, CPU
frequency, motherboard, memory speed, memory size, busses,

hard disk, etc.), it is clear that the set of possible configurations is
huge. The design space exploration is an important task for all
system (e.g., desktop/server/laptop) manufacturers. Currently,
most designers rely on their intuitions to make decisions during
the system design.

Design space exploration is not limited to system performance
extraction, but is used in various domains including processor
design, computer-aided design, and VLSI among others.
Generally, designers in such fields revert to simulation to estimate
the performance of their selection. Nevertheless, since the design
space can be extremely large, it is not conceivable to simulate all
the possible configurations; hence the designers mostly use
heuristics (such as simulated annealing [1]) to find the set of
configurations they evaluate. There are also several methods and
heuristics to guide the design space exploration process in such
domains [2, 3, 4]. Our work deviates from such studies
significantly, because we do not attempt to control the simulations
to be performed, instead we try to predict the real system
performance. Specifically, a major bottleneck in system design is
that each possible configuration has to be manufactured before its
performance can be found. To the best of our knowledge, there is
no publicly available work in this arena. In this work, we fill this
gap by developing predictive models that will aid the developers.
Specifically, we

a) develop predictive models using neural networks and linear
regression to estimate the performance of a system by just using
the information about its components,

b) show that the performance of a system can be accurately
predicted by using a small fraction of the overall design space, and

c) show that the performance of a system can be accurately
predicted by using information from past systems.

The rest of this paper is organized as follows. In Section 2, we
give an overview of design space exploration and how our models
can be used by manufacturers. In Section 3, we discuss our
predictive models. Section 4 presents the results. Sections 5 and 6
present the related work and conclusions, respectively.

 (a) (b)

Figure 1. Overview of design space exploration using
predictive modeling: (a) sampled design space exploration and

(b) chronological predictive models.

2. OVERVIEW OF PREDICTIVE MODELING
In this work, we develop two types of predictive models that

can be utilized by system designers. The overview of how these
models are developed and used is depicted in Figure 1. The first

Model

Generation
NN/LR

Model

Sample

Selection

Error

Estimation

System

Configurations

System

Selection

Model

Generation
NN/LR

Model

Sample

Selection

Error

Estimation

System

Configurations

System

Selection

Model

Generation
NN/LR

Model

Error

Estimation

System

Configurations

System

Selection

Past

Configurations

Model

Generation
NN/LR

Model

Error

Estimation

System

Configurations

System

Selection

Past

Configurations

966

52.3

 2

one (Figure 1(a)) is called sampled design space exploration. In
this methodology, we first choose a random set of the
configurations. Then, using this set as the training set, we build
our models, which are later used to predict the performance of the
rest of the design space. The second mode of operation is called
chronological estimation (Figure 1(b)), where we generate models
by using the results of the previous years’ systems in the market to
build the models, which are later used to predict the performance
of the systems that are built in the following year. We must note
that there may be other means of utilizing the predictive models
during the design space exploration. However, we restrict
ourselves to sampled design space exploration and chronological
predictions, because they exhibit the most apparent use of
predictive models in system design space exploration.

Another important aspect of our work is the use of real data.
Specifically, we train and evaluate our models using previously
announced SPEC results [5]. Hence, we can precisely report how
accurately we can estimate the real system performance. We must
highlight that SPEC rating is the most common means of
comparing the performance of different systems and hence they
are of tremendous importance to system manufacturers. SPEC
ratings are commonly used for marketing and also used for setting
the prices of the systems. Consequently, system manufacturers put
great effort in optimizing their systems for these ratings.

Considering the tremendous cost advantages of using predictive
models and such accurate predictions, the use of our models could
provide a significant competitive advantage. Another point that
should be mentioned is that the parameters used in the models are
not only processor parameters; other parameters related to
memory and bus of the system are chosen by our models and
contain high importance factors.

3. PREDICTIVE MODELS
In this paper, we use predictive modeling techniques from

machine learning to obtain estimates of performance of systems by
using information about their components as the input. We use
three different models. The linear regression model is described in
the next section. Section 3.2 discusses the two neural network
based models developed in this work.

3.1 Linear Regression (LR) Model
Regression analysis is a statistical technique for modeling

relationship between variables [6]. We have n observations;
y=y1,…,yn called the response variables, and xi=xi,1,…,xi,p for
i=1..n that are predictor or regressor variables. The simplest linear
regression is of the form y=β0+ β1x+ε. In this formula β represents
the coefficients used in describing the response as a linear function
of predictors plus a random error ε.

We used the linear regression model inside the SPSS
Clementine [9] tool. In Clementine there are 4 available methods
for creating the linear regression models: Enter (LR-E), Stepwise
(LR-S), Forwards (LR-F), and Backwards (LR-B). In our
experiments, for sampled design space we have seen that the
Backwards (LR-B) method produced the best results. Therefore,
we only present results for LR-B. The Backwards method builds
the equation in steps. In this model, the initial model contains all
of the input fields as predictors, and fields can only removed from
the model. Input fields that contribute little to the model are
removed form the model until no more fields can be removed
without significantly degrading the model. Generally, we found
that the linear regression models can be built quickly for our
system. It took on the order of milliseconds to generate the models
from our input data set.

3.2 Neural Network (NN) Models
Neural networks, or more accurately, Artificial Neural

Networks (ANN), have been motivated by the recognition that the
human brain processes information in a way that is fundamentally
different from the typical digital computer [6]. A neural network,
sometimes called multilayer perceptron, (feedforward ANN) is a

multivariate statistical model used to relate p predictor variables
x1,…,xp to q response variables y1,…,yq. The model is very flexible
containing many parameters and it is this feature that gives a
neural network a nearly universal approximation property.

We used the SPSS Clementine tool to build the ANN models.
The neural network node provides five different training methods:
Quick (NN-Q), Dynamic (NN-D), Multiple (NN-M), Prune (NN-
P), and Exhaustive Prune (NN-E). In our methods, we use two
methods. The first one is the Single layer (NN-S) method (a
modified version of NN-Q) and has a constant learning rate. This
method uses only one hidden layer, which is smaller than the other
methods. As a result, the models are faster to train. This model is
similar to the one developed by Ipek et al. [2]. Note that Ipek et al.
use this model for estimating the results of processor simulations.
The other method that we use is Exhaustive prune (NN-E) method.
In this model, network training parameters are chosen to ensure a
very thorough search of the space of possible models to find the
best one. This method is the slowest of all, but often yields the best
results. During our analysis of the models, we have observed that
the time it takes to build the neural network models vary
significantly. While the NN-S model takes on the order of seconds
to build, the NN-E models can take up to tens of minutes for the
largest input data sets. However, relative to the time and cost of
building a real system, these development times are still
negligible.

3.3 Cross-validation
Clementine software does not provide the estimated predictive

error for the model it creates. Therefore we have used 2 different
sets of 5-fold cross-validation. In the first set of cross-validation,
the training data is divided into 5 groups and 4 of them are used to
create the predictive models using different methods. Then, the
developed model is tested on the left out data group to calculate
the estimated error. Afterwards, the group selection is rotated. The
second set of cross-validation that we have used employs 3 sets to
create the model, and 2 sets of data to calculate the estimated error.
We similarly perform group rotation to extract the 5-fold cross-
validation. We have observed that these 2 different cross-
validation schemes produce similar results, and in general the
second one produces estimations that are closer to the true error
rates. However, since the former cross-validation uses more
records during training, its true error rates can be lower. Therefore
we always use the average of these 10 folds to calculate the true
and estimated errors. Note that true error rates of the models are
calculated by using the created models on the whole (100%) data.

3.4 Data Preparation and Input Parameters
Data preparation is an important part of the predictive

modeling. In our experiments, Clementine software automatically
scales the input data to the range 0-1 to prevent the effect of scales
of different parameters. The linear regression methods expect the
input parameters to be numerical. Therefore some of the inputs to
Clementine need to be mapped to numeric values. For some other
input parameters this kind of transformation is not possible, hence
these are omitted by Clementine. However, neural network models
can have any type of input (numeric, flag, categorical), and are
automatically transformed and scaled for model generation usage.

 In this work, we feed all the input available parameters to
Clementine. Then the program automatically measures the
importance of the parameters, and depending on the methodology
adds or removes predictor variables to the model. In some of the
chronological design space experiments Clementine omits some
predictor variables because these input parameters does not have
any variation (e.g. single L2 cache size configuration). Other than
this kind of predictor elimination, we don’t discard any input.

4. PREDICTION RESULTS
There are several possible methods of presenting SPEC

numbers. The most commonly used one, SPECint2000 rate is the
geometric mean of the ratios (of execution to the base system) for

967

 3

Model Error - Opteron

0

2

4

6

8

10

12

14

2 3 4 5 10

Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

NN-S NN-S-est

Model Error - Opteron

0

2

4

6

8

10

12

14

2 3 4 5 10

Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

NN-E NN-E-est

Model Error - Opteron

0

2

4

6

8

10

12

14

2 3 4 5 10

Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

LR-B LR-B-est

the 12 integer applications. In this work, we are mostly interested
in being able to estimate this rate, because it is the most important
metric used for determining the system performance, price, and
marketability. Hence, we present the accuracy of our techniques
for this rate (similar results were obtained for SPECfp2000 too).

SPEC contains results announced since 1999. Specifically, the
SPEC results contain announcements from Intel, Alpha, SGI,
AMD, IBM Power PC, Sun Ultra SPARC, etc. based systems.
Among these, we have chosen to analyze the systems based on
AMD Opteron (Opteron), AMD Opteron Dual (Opteron 2), Intel
Pentium 4 (Pentium 4), and Intel Xeon (Xeon). The main reason
for this selection is that these systems are the most commonly used
systems. We analyze the systems based on the processor type
because we have observed that when different processor types are
used, the system configurations were significantly different from
each other, preventing us from making a relative comparison.

An important property of the announcements is that even
within a single processor family, the performance numbers showed
significant variation: Opteron based systems has 210 records with
a range of 2.21 times (i.e., the best system has 2.21 times better
performance than the worst system) and variation of 0.15; Opteron
2 based systems have 197/2.47/0.15, Pentium 4 based systems
have 241/7.70/0.37 and Xeon based systems have 216/1.34/0.09
records/range/variation values. The SPEC announcements contain
information about the systems and as well as execution times of
each application. Each announcement provides the configuration
of 32 system parameters: Company, system name, processor
model, number of processors and configuration, bus frequency,
floating point unit, total cores and chips, SMT, Parallel, L1
instruction and data, L2 and L3 and L4 data cache configuration,
memory size and frequency, hard drive size, speed and type, and
extra components. Currently, there are 7032 announced results
(3550 integer and 3482 floating-point).

4.1 Sampled Design Space Modeling
In this section we present results investigating the accuracy of

our models. In these models, we randomly sampled 2% to 10% of
the data to build our models, and then used the entire data set to
predict the accuracy of our models. As described in Section 2, this
approach can be used to reduce the design space size and hence
accelerate the design space exploration. The percentage error is
calculated by the formula: 100*|ŷi-yi|/ yi, where ŷi is the predicted
and yi is the true (reported) number for the ith record in the data
used. By using only the training set during cross-validation (c.f.
Section 3), we also extract estimated error rates for each model.

Figure 2 presents the results for the estimated and true error
rates for the linear regression backwards LR-B (leftmost), neural
.

network with exhaustive prune NN-E (middle), and neural
network with single layer NN-S (rightmost) methods on Opteron
based systems for varying the sampling rate. For the linear
regression, we observe that the difference between the estimated
and true error rates is generally small. In the neural network
methods, we see that the exhaustive method has a slightly higher
error rate than the single layer method. The backwards method of
linear regression produces the best results, and has a prediction
accuracy of 95.68% accuracy at 4% sampling.

The results for the Opteron 2 system are similar to the Opteron
based systems, 8.5% and 4.2% error rate for LR model at 2% and
5% sampling, respectively. We can conclude that the estimation
error is generally small for small sampling rates, and becomes very
accurate with increasing data set size. An important property of all
the presented results is that as the training set size is increased, the
accuracy of the models generally increases. This is expected
because with a larger training set, the variations in the design
space can be modeled better.

For the Pentium 4 based systems, the error rates for the
prediction accuracy are higher than the previously discussed
systems unless a high sampling rate is used. One reason for this
inaccuracy is that the range of Pentium 4 machines is very wide
(the fastest machine is more than 7.7 times faster than the slowest
machine). Hence, the systems are very different from each other
and the selected training points are not always representative of
the whole design space. However, when a larger data set is used
for model creation, the accuracy increases rapidly. The estimated
error rates are also close to the true error rates. When compared to
other systems, we see that neural networks are optimistic when
estimating the error rates. A similar observation can be made for
the Xeon systems (presented in Figure 3). The prediction accuracy
is generally better when there is little variation among the different
systems. As a result, the training set used during the development
of the model tends to contain similar records and particularly the
neural network models are able to fit to these elements tightly.
This results in very low estimated error rates.

The models developed in this section include 5 to 7 predictor
variables. Within these, there are usually two or three factors that
are significantly more important than others. The important factors
and their order of importance change from a processor family to
another. For example, for the Pentium 4 systems, the most
important parameters for neural networks (with their relative
importance presented in parenthesis) are processor speed (0.503)
L2 cache size (0.501), memory size (0.279), bus frequency (0.145),
and L1 instruction cache size (0.115). Note that the importance
factor denotes the relative importance of the input factor (0
denoting that the field has no effect on the prediction and 1.0

Figure 2. Estimated vs. true error rates for Opteron based systems

Figure 3. Estimated vs. true error rates for Xeon based systems

Model Error - Xeon

0

1

2

3

4

5

6

2 3 4 5 10
Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

NN-S NN-S-est

Model Error - Xeon

0

1

2

3

4

5

6

2 3 4 5 10

Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

NN-E NN-E-est

Model Error - Xeon

0

1

2

3

4

5

6

2 3 4 5 10

Training Sample Size [%]

P
e
rc

e
n
ta

g
e
 E

rr
o
r
[%

]

LR-B LR-B-est

968

 4

Chronological Predictions - Opteron

0

1

2

3

4

5

6

7

8

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E NN-S
Predictive Model

P
e
rc

e
n
ta

g
e
 E

rr
o
r

[%
]

Figure 4. Chronological predictions for Opteron systems

completely determines the prediction). For the same predictions
LR model has processor speed, memory size and L2 cache size
with standardized beta coefficients of 0.510, 0.406 and 0.123,
respectively. Standardized beta coefficients show the relative
importance of the predictor variable.

4.2 Chronological Predictive Modeling
This section presents the results for chronological predictive

models, which use historical performance announcements to
predict the performance of future systems. In these models we
have used announcements from 2005 as the training data and then
the 2006 announcements have been used as the testing data.

In this section we have created models and calculated the
prediction error for different LR and NN methods for Opteron,
Opteron Dual, Pentium 4 and Xeon systems. The percentage error
is calculated as described in the previous section. In general we
see that LR models perform better than NN. One of the main
reasons for this is the model built using 2005 data is very accurate
for predicting 2005, however when we try to predict 2006, the
over-fitting in NN causes larger errors in estimations. However,
LR does not have this problem and is successful predicting 2006
results. Another point is that, for some systems we see that there
are not significant changes to the configurations, e.g., L2 cache
configuration. Hence the records are similar to each other allowing
the LR model to perform well.

In Opteron systems (Figure 4), we see the best accuracy is
achieved using with LR-B method of linear regression with an
error rate of 2.1%. Going to a more complex system, Opteron-2,
we have a higher minimum error rate of 3.1% with the stepwise
method. Pentium 4 and Xeon systems have 1.5% and 2.4% error
rates with LR-E method, respectively. We must note that various
parameters are used during the predictions. For example, for the
Opteron systems, the most important parameters for neural
networks are processor speed (0.659), memory frequency (0.154),
L2 being on or off chip (0.147), and L1 data cache size (0.139).
For the same predictions, the linear regression model has
processor speed and memory size with standardized beta
coefficients of 0.915 and 0.119.

5. Related Work
There have been numerous works in the area of design space

exploration. Eyerman et al. [10] uses different heuristics to model
the shape of the design space of superscalar out-of-order
processors. Ipek et al. [2] use artificial neural networks (with
cross-validation to calculate their prediction accuracy) to predict
the performance of memory, processor and CMP design spaces.
Meanwhile, Lee et al. [4] use regression models to predict
performance and power usage of the applications found in the
SPECjbb and SPEC2000 benchmarks. In both of these references
the data points are created using simulations. Kahn et al. [14] uses
predictive modeling to tackle the problem of accurately predicting
the behavior of unseen configurations in CMP environment.
Ghosh et al. [11] have presented an analytical approach to the
design space exploration of caches that avoids exhaustive
simulation. The problem that they are trying to solve is small
compared to our work. Dubach et al. [13] has used a combination
of linear regressor models in conjunction with neural networks to
a model that can predict the performance of programs on any
microarchitectural configuration with 32 further simulations. In

this work, we target system performance rather than processor
performance. To the best of our knowledge there has not been any
work done in this area. The closest work is by Ipek et al [12],
where they use neural networks to predict the performance of
SMG2000 applications run on multi-processor systems, where
they change the application inputs and the number of processors
used. Unlike our work, they do not explore system parameters.

6. CONCLUSION
In this work, we have developed two different statistical

modeling techniques, linear regression and neural network, to
predict the performance of computer systems. First we have used a
small fraction of the whole design space to create prediction
models that are then used to predict performance numbers on the
whole design space. To show the accuracy of this performance
prediction models, we have used the published SPECint2000
benchmark results. We create our models using 2% to 10% of the
whole data. While the models are built, we also calculate an
estimate for their accuracy using cross-validation. With the use of
the sampling of the input data set and the predictive models, our
results reveal 95.3% accuracy rate on average using only 5% of
the possible machines in the design space. We generally observe
that the estimated error rates are close to these true error rates.
Secondly, we have shown that the performance of future systems
can be estimated with less than 2.2% error rate on average by
using the data from previous systems. These results indicate that
the designers can estimate the performance of new systems using
the limited data available for the already built systems and use
them to estimate similar as well as future systems. The system
manufactures can use current system configuration and the
important factors provided by the models to start the search
towards a system that will provide the highest performance.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CNS-0406341, CNS-

0551639, IIS-0536994, CCR-0325207, CNS-0720691, IIS-0613568,

CCF-0541337, and DOE's SCIDAC and FASTOS programs.

8. REFERENCES
[1] Moya F., Moya J. M. and Lopez J. C., Evaluation of Design Space
Exploration Strategies. In Proc. of the EUROMICRO Conference, Sep
1999, York, England
[2] Ipek E., McKee S. A., deSupinski B. R., Schultz M. and Caruana
R. Efficiently Exploring Architectural Design Spaces via Predictive
Modeling. In Proc. of the ASPLOS, Oct. 2006, San Jose, CA.
[3] Cavazos J., Dubach C., Fursin G. and Temam O. Automatic
Performance Model Construction for the Fast Software Exploration of
New Hardware Designs. In Proc. of the Int. Conference on Compilers,
Architecture and synthesis for embedded systems. 2006, Seoul Korea.
[4] Lee B. C. and Brooks D. M. Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Prediction.
In Proc. of the ASPLOS. Oct 2006, San Jose, CA.
[5] The Standard Performance Evaluation Corporation, http://spec.org
[6] Tan P., Steinbach M. and Vipin K. Introduction to Data mining.
Addison-Wesley, 2005.
[9] SPSS Clementine version 11, http://www.spss.com/clementine
[10] Eyerman S., Eeckhout L. and Bosschere K. D. The Shape of the
Processor Design Space and its Implications for Early Stage
Explorations. In Proc. of Int. Conf. on ACMOS. Mar 2005, Prague,
Czech Republic.
[11] Ghosh A. and Givargis T. Analytical Design Space Exploration
of Caches for Embedded Systems. In the Proc. of the DATE
Conference. Mar 2003, Munich Germany.
[12] Ipek E., de Supinski B. R., Schulz M. and McKee S. A. An
Approach to Performance Prediction for Parallel Applications. In
Proc. of the Euro-Par. May 2005, Monte de Caparica, Portugal.
[13] Dubach C., Jones T. M. and O’Boyle M. F. P. Microarchitectural
Design Space Exploration Using An Architecture-Centric Approach.
In Proc. of the 40th MICRO, Dec 2007, Chicago, IL.
[14] Khan S., Xekalakis P., Cavazos J. and Cintra M. Using Predictive
Modeling for Cross-Program Design Space Exploration in Multicore
Systems. In Proc. of Int. Conf. on PACT, Sep 2007, Brasov, Romania.

969

