EECS 452 – Lecture 10
Chip Multiprocessors

Instructor: Gokhan Memik
EECS Dept., Northwestern University
Chip-Multiprocessors

- Place multiple, relatively simple cores on a single chip
 - E.g., 32 RISC cores on a chip
 - E.g., 8 4-way VLIW
 - E.g., 4 3-way superscalar (Intel Core 2 Quad)
 - E.g., 8 8-way SMT (Sun Niagara 2)

- Simple idea, infinite possibilities/issues
Superscalar execution
Superscalar execution

![Diagram showing time and execution resources with highlighted horizontal and vertical waste areas.](image)
CMP execution
I/T-LP Architectures

<table>
<thead>
<tr>
<th></th>
<th>Superscalar</th>
<th>Multiprocessor</th>
<th>Fine-grain MT</th>
<th>SMT</th>
</tr>
</thead>
</table>
Chip-Multiprocessors – Why?

- Wide superscalar is not the way to go
 - Trades fast clock for minor IPC gain
 - Design and verification complexity
- Multiple simple processors (e.g., 2-way or 4-way superscalar)
 - Exploit TLP
 - Moderate ILP plus fast clock
- Have we seen this before?
 - Parallel processors (since the 60’s)
Designing CMPs

- The design-space for chip-multiprocessors is much larger and different than that for Shared-Memory Multiprocessors (SMPs)

- SMPs
 - Take state-of-the-art uni-processor
 - Connect several together with suitable network
 - using defined interfaces
 - Expend hardware to provide cache-coherence
 - with defined interfaces
Examples

- IBM
 - Power4, Power5 — dual-core processors in production for several years
 - Cell processor (in cooperation with Sony)
 - BlueGene chip — dual core
- Sun
 - UltraSPARC IV — dual-core
 - Niagara — 8 SMT cores
- Fujitsu
 - SPARC 64 VI — dual-core
Examples (contd)

- **AMD**
 - Quad-core Opteron

- **Intel**
 - Smithfield — dual-core Pentium4
 - Montecito — dual-core Itanium2
 - Yonah — dual-core mobile Pentium4
 - ...
 - 80-core research chip (behemoth)

- ... and others
Examples (contd)

- ARM MPcore — a quad-core synthesizable IP-core
- Broadcom SILyte — 2-4 core MIPS64 CMP
- Cavium Octeon — 2-16 (!) core MIPS64 CMP
- Freescale PowerPC 8641 — dual-core PowerPC CMP
- PMC Sierra RM11200 — dual-core MIPS64 CMP
- Clearspeed - ~1000 cores
Examples (contd)

- IBM Cell
Cores

- **SPE (synergistic processing elements)**
 - 128-bit SIMD
 - 16 8-bit integers, 8 16-bit integers, 4 32-bit integers, or 4 single precision floating-point numbers in a single clock cycle
 - 256 KB local store: instruction and data cache
 - 3.2 GHz
Alternatives – I (true CMP)

- Standard architecture
- Easily extended from existing core architectures
- Coherent L1 data caches
- Shared L2 cache reduces need for pin bandwidth

Used in:
- Piranha
- Stanford Hydra
- UltraSPARC IV
- Power4/5, BlueGene
- ARM MPcore (modified)
- Broadcom SiByte
- Cavium Octeon
Alternatives – II (SMP on a chip)

- Standard architecture
- Easily extended from existing core architectures
- Coherent L1 data caches
- Coherent L2 caches

Used in:
- AMD dual-core Opteron
- Freescale MPC8641
- PMC-Sierra
- Intel ...
Case for Chip-Multiprocessors

- The Case for a Single-Chip Multiprocessor
 - Kunle Olukotun, et al. [ASPLOS ’96]
- Introduces the notion of chip-multiprocessors
 - Put multiple cores on a single chip
- Excellent evaluation
 - What is really a good way to go
Aggressive Superscalars

- Multiple instruction issue, dynamic scheduling, speculative execution, non-blocking caches,…

- Trend
 - Wider instruction issue
 - Larger amounts of speculative execution

- However,
 - Limited amounts of ILP
 - Fundamental circuit limitations

⇒ Better resource utilization: Multiple processors on a chip
Dynamic Superscalar CPU

- Instruction queue often implemented as multiple instruction queues for different types of instructions

- Stages
 - Fetch
 - Issue
 - Execute
Fetch

- Goal: Present a large window of decoded instructions

- Constraints:
 - 1. Mispredicted branches
 - 2. Instruction misalignment
 - 3. Cache misses
Fetch (contd)

- Mispredicted branches
 - Branch predictor buffers (e.g., 64 kbits)
 - Selective branch predictor
 - Reduce misprediction < 5%

- Instruction misalignment
 - Necessary to align a packet of instructions for decoder
 - If issue width > 4, then with high probability, need fetch across a branch for a single packet of instructions
 - Need fetch from 2 cache lines and merge
 - Scheme: Divide the instruction cache into banks and fetch from multiple banks
Fetch (contd)

- Cache misses
 - High miss rate → limit ability to maintain large window
- Can hide some cache miss latency by executing other instructions already in the window (dynamically scheduled CPUs)

⇒ Overall: Fetch not limit
Issue

- Packet of renamed instructions is inserted into instruction issue queue
 - An instruction is issued when all operands are ready

- Ways of implementing renaming
 - 1. Explicit table to map architectural registers to physical ones → Problem: #ports
 - 2. Combination of reorder buffer/instruction queue
Issue (contd)

- Once instruction in instruction queue
 - Instructions that issue must update their dependences
 - Many comparators (e.g., HP-PA8000: 20% die area)

- Also: large window to find independent instructions
 - Size of instruction issue queue is large
 - Need broadcast of tags → **Wires are slow**

⇒ Overall: Instruction issue queue will limit cycle time
Execution

- **Operand values**: fetched from register file or bypassed from earlier instructions
- **Wide superscalar has problems with**
 - Register file
 - Larger to accommodate more renamed registers
 - Many ports
 - Complexity $\sim \#\text{ports}^2 \sim \text{issue width}^2$
 - Bypass logic
 - Complexity $\sim \#\text{execution units}^2$
 - **Wire delay**
 - Functional units
 - More ports needed to data cache
Single Chip-Multiprocessors

- **Technology push**
 - Benefits of wide issue are limited
 - Decentralized microarchitecture: easier to build several simple fast processors than one complex processor

- **Application pull**
 - Applications exhibit parallelism at different grains
 - < 10 instructions/cycle (INT applications)
 - > 40 instructions/cycle (loops in FP applications)
CMP

- INT applications
 - Use moderate issue processor (e.g., 2-way or 4-way) with very high clock rate

- FP applications
 - Need compiler to parallelize
 - If cannot parallelize or serial section, CMP runs slow
Architecture Comparison

- **SS**: 6-way superscalar (@ 500MHz)
- **CMP**: Four 2-way superscalars (@ 500MHz)

Figure 2. Floorplan for the six-issue dynamic superscalar microprocessor.

Figure 3. Floorplan for the four-way single-chip multiprocessor.
Results

- ILP only
 - SS is 30% better than CMP
- ILP & fine grain threads
 - SS and CMP comparable
- ILP & coarse grain threads
 - CMP is 1.5–2× better