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Abstract

Fusing partial estimates is a critical and common problem inmany computer vision
tasks such as part-based detection and tracking. It generally becomes complicated
and intractable when there are a large number of multimodal partial estimates, and
thus it is desirable to find an effective and scalable fusion method to integrate these
partial estimates. This paper presents a novel and effective approach to fusing mul-
timodal partial estimates in a principled way. In this new approach, fusion is related
to a computational geometry problem of finding the minimum-volume orthotope,
and an effective and scalable branch and bound search algorithm is designed to
obtain the global optimal solution. Experiments on tracking articulated objects and
occluded objects show the effectiveness of the proposed approach.
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Chapter 1

Introduction

Many computer vision tasks involve the estimation of the unknownx ∈ R
d from

many independent estimatesY = {y1,y2, . . . ,yn}, where the individual estimate
yi may be obtained from various sources (e.g. , different views, time and cues),
or from partial features. We refer each individual estimateas thepartial estimate
(PE) orpartial belief, and the final estimation as thecomplete estimation(CE). A
PEyi gives an individual estimate of the unknownx, and it may only provide the
estimate on several specific dimensions ofx, so it is called a partial estimate. As
the PEs can be quite inaccurate, a critical question is how wecan fuse these partial
estimates for a better estimation,i.e. , how to obtainx = fuse(y1,y2, . . . ,yn).

One concrete example is the part-based object detection andtracking. The tar-
get is represented by its parts and each part is associated with a dedicated detector
and tracker, each of which provides a PE of the location and motion of the target.
Because a part of the target is generally less discriminative than the entire target,
the matching to this part is likely to include many false positives. This is especially
true when the target is in a clutter background. Therefore, its PEs tend to have
multiple modes, where most of them correspond to false positive matches. We re-
fer one such PE that has multiple modes as amultimodal partial estimate(MPE),
and our work is focused on the fusion of the MPEs. We want to emphasis that in
our work we refer the wordmultimodalto multiple modes inonePE, rather than
multiple estimates/sensors (Fig. 1.1).

If the PEs{y1,y2, . . . ,yn} are all unimodal, it is possible to obtain a closed-
form fusion for the CEx, e.g., through the best linear unbiased estimation (BLUE) [1].
However, whenyi is multimodal (e.g., modeled as a Gaussian mixture), the fusion
for the CE is likely to exhibit an extremely complicated form. If each MPE hasm
modes, the number of modes in the CE is in the order ofo(mn). In its discrete
case, suppose each MPE consists of a set ofm discrete estimates, the complexity
of searching for the best CE shall beo(mn). Such an exponential growth of the
number of modes (or the combinatorial complexity in the discrete case) makes any
form of fuse(y1,y2, . . . ,yn) very difficult to be optimized. As the complicated
CE has an enormous number of local optima, fusion is likely toend up with a
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Figure 1.1:Example of fusing three MPEs, and each MPE has two modes. The optimal
fusion result CE is the most consistentx with all the three MPEs.

low-quality estimation unless an exhaustive search can be performed. Even when
an exhaustive search is merely viable whenn is small, such a method is not scal-
able when there are many MPEs to fuse. Thus, new scalable fusion methods are
desirable.

As the CEx = fuse(y1,y2, . . . ,yn) in general may not have good analytical
properties, it is difficult to manipulate it directly. In this paper, we convert the error
minimization in the fusion problem into a problem that finds aminimum-volume
d-orthotope inR

d subject to some constraints. Theminimum-volume orthotope
problem can also be viewed as a multi-class generalization of the closest-pair prob-
lem in computational geometry. We design an effective branch and bound search
algorithm to determine the global optimal solution to this problem with a moderate
computational complexity.

The novelty of this work includes the following three aspects. (1) The fusion
of MPEs is converted to a tractable minimum-volume orthotope problem, in which
the intricate CE is exactly optimized in a discrete view, or approximately opti-
mized in a continuous view. This new treatment leads to a tractable solution to
fusion. (2) It reveals an interesting connection between probabilistic data fusion
and computational geometry. The proposed solution to the minimum-volume or-
thotope problem provides a non-trivial generalization of the closest-pair problem.
(3) The proposed fusion method is very scalable w.r.t. the number of estimates,
or information sources, as the complexity is almost constant w.r.t. the number of
sources.

The paper is organized as follows: related works are briefly described in Chap. 2.
In Chap. 3, we formulate the problem and present the solution. We relate our
method to computational geometry in Chap. 4. The experimentresults of articu-
lated body tracking and occluded objects tracking by fusingmultiple local trackers
are shown in Chap. 5, and the conclusion is made in Chap. 6.
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Chapter 2

Related Work

There have been extensive studies on distributed estimatesfusion. In [1], two crite-
ria for optimal fusion of unimodal Gaussian estimates are summarized. One is the
weighted least squares (WLS), and the other is the best linear unbiased estimation
(BLUE). These fusion techniques can be applied to some classic computer vision
problems such as the optical flow estimation [2].

When bad or fault estimates exist, WLS or BLUE cannot work well. To better
handle noisy estimates, which refer to bad or outlier estimates, one possible solu-
tion is to allocate large variances to the bad estimates, such as in the methods of
Covariance Intersection/Union (CI/CU) [3]. In [4], the fusion problem when the
measurement errors are heteroscedastic is addressed, and the problem is solved in
a WLS way. Another solution to handle noisy estimates is to keep good estimates
while discarding bad ones. Variable-Bandwidth Density-based Fusion (VBDF) [5]
falls into such a category, which performs globally, and attempts to alleviate the
influence of the outliers by gradually reducing the bandwidth of the modes. By
applying VBDF, a tracking method is presented in [6]. However, it cannot guaran-
tee the global optimality in fusion. Another method to alleviate the effect of bad
estimates is to measure the goodness of the estimates locally. For example in [7], a
principle to estimate the fidelity of each measurement in a localized calculation is
presented.

Unfortunately, all of the above fusion methods are not designed for multimodal
cases, namely multiple modes in one estimate. To handle the multimodal estimates
fusion problem, there have been two types of solutions: using distributed algo-
rithms [8, 9], or using randomized algorithms [10]. If the estimates can be rep-
resented in a loosely-connected graph, several techniquescan be applied, such as
the variational methods [11], Belief Propagation (BP) [8],or Nonparametric Belief
Propagation (NBP) [9]. However, if the graph is densely connected, these methods
are easily trapped by local minima, or cannot even converge,due to the loops in
the densely connected graph. To avoid local minima and to guarantee the conver-
gence, randomized algorithms can be applied. For example, RANSAC [10] has
the ability to obtain a robust estimation from noisy MPEs. Even if only one mode
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is correct, and all of the others are outliers in each MPE, RANSAC may still ob-
tain the global optimum with some probability, but the performance of RANSAC
deteriorates when the number of modes in each MPE or the number of the MPEs
increases.
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Chapter 3

Problem Formulation and
Solution

Given a collection of MPEs{y1,y2, ...,yn}, we want to obtain the CE of the high
dimensional unknownx ∈ R

d. To better explain our idea, we first examine the
problem of fusing discrete MPEs, then present the solution of fusing continuous
MPEs in Chap. 4.2.

For discrete MPEs, each MPEyi contains multiple point estimations (i.e.modes):

yi = {y1
i , · · · ,yνi

i },

wherey
j
i ∈ R

hi is thej-th mode ofyi in thehi-dimensional subspace (hi ≤ d),
andνi is the number of modes inyi. Given two modes belonging to two different
subspaces,α ∈ R

A andβ ∈ R
B, we define their arithmetic operations (summation,

subtraction and maximization) as below.

Computation Rule 1. Addition and Subtraction
In addition or subtraction, we only perform the calculationin spaceRA

⋂

R
B,

i.e. , if γ = α ± β, then

γi =

{

αi ± βi if i ∈ R
A

⋂

R
B

undefined otherwise

Computation Rule 2. Max and Min
In maximization or minimization, we perform the calculation in spaceRA

⋃

R
B ,

i.e. , if γ = max(α, β), then

γi =



















max(αi, βi) if i ∈ R
A

⋂

R
B

αi if i ∈ R
A

⋂

R
B

βi if i ∈ R
A

⋂

R
B

undefined otherwise

An illustrative example is shown in Fig. 3.1.
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Figure 3.1: An illustration of arithmetic operations over two vectors belonging to two
different subspaces. Suppose there are two vectorsα ∈ R

A andβ ∈ R
B. We useαi to

denote the value atα’s i-th dimension. For example, hereA = {2, 3}, B = {1, 2}, which
meansα is in the 2nd and 3rd dimensions of the whole space, andβ is in the 1st and 2nd
dimensions of the whole space. As the figure shows,α = [11, 12], β = [13, 14], then
α2 = 11, α3 = 12, β1 = 13, β2 = 14, while α1 andβ3 are undefined. The addition is
performed at the intersection of the subspaces, while the maximization is performed at the
union of the subspaces.

3.1 The Objective Function

A good fusion result should be consistent with the MPEs. One natural objective is
to minimize the average estimation error,i.e. ,

min
x

1

n

∑

i

Ψ(x,yi), (3.1)

whereΨ(x,yi) is the measurement of the inconsistency. For example, we can
chooseΨ(x,yi) as:

Ψ(x,yi) = min
j

‖x − y
j
i ‖∞,

where the final estimationx is expected to be consistent with at least one of the
modes ofyi. Here theL∞ norm of a vectorα is ‖α‖∞ = maxi |αi|. Although
other types of measurements are possible, we will show laterthat theL∞ norm
leads to an elegant global optimal solution.

Considering that it is difficult to minimize the average estimation error in
Eq. 3.1, we slightly change the original formulation by replacing the average error
with the maximum error among the MPEs:

x∗ = argx min
x

max
i

Ψ(x,yi), (3.2)

or the median error among the MPEs:

x∗ = argx min
x

medianiΨ(x,yi). (3.3)
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We call Eq.3.2 as themaximum fusionwhile Eq. 3.3 as themedian fusion.
The median fusion is less sensitive to noise while the maximum fusion may be
influenced by an outlier MPE, in which all its modes are outliers. For clarity, we
mainly discuss how to solve the maximum fusion in this section. The solution
to the median fusion follows the same strategy and will be briefly discussed in
Chap. 3.4 as well.

3.2 Equivalence to Orthotope Search

Figure 3.2:An illustration of orthotope search for partial estimationfusion. There are
three MPEs,y1 = {y1

1 , y
2
1}, y2 = {y1

2, y
2
2}, y3 = {y1

3 , y
2
3}. The orthotopeV contains a

mode if and only if this mode is contained inV ’s projection to this mode’s subspace, e.g,
y1

1
∈ V andy1

3
/∈ V . Minimizing estimation error (Eq. 3.2) is equivalent to minimizing

the volume of the orthotopeV , which must contain at least one mode from each MPE
(Eq. 3.4). In this figure, the orthotopeV containsy1

1
, y1

2
, y2

3
, soW(V ) = 1.

The minimization of Eq. 3.2 can be converted into a min-volume orthotope
search problem, as explained in Figure 3.2. Our task is to findan orthotope (a
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high-dimensional bounding box) that can cover at least one mode from every MPE
yi. To minimize the maximum error in Eq. 3.2, we require the longest edge of the
orthotope has the minimum length. Based on the above definitions, we propose the
following optimization problem

min ‖V ‖∞

s.t W(V ) = 1.
(3.4)

Here we denote byV a d-dimensional axis-aligned orthotope. An orthotopeV ’s
volume is related to the length of its longest edge, denoted by‖V ‖∞. W(V ) is the
predicate function of the orthotopeV :

W(V ) =

{

1 ∀ i,∃ j, such thatyj
i ∈ V

0 otherwise
(3.5)

When a lower-dimensional modeyj
i is inside the subspace projection of the

d-dimensional axis-aligned orthotopeV , the orthotopeV contains the modeyj
i ,

and we denote byyj
i ∈ V (Figure 3.2).

To justify our formulation as an orthotope search problem, we prove the equiv-
alence between Eq. 3.2 and Eq. 3.4 in Theorem 1. We further derive the property
under the condition of unique optimal solution in Theorem 2.The proof of both
theorems are in the appendix.

Max Fusion Theorem 1. The equivalence of the optimization in Eq. 3.2 and
Eq. 3.4

Let
v1 = min

x
max

i
Ψ(x,yi)

and
v2 = min

V
‖V ‖∞, s.t. W(V ) = 1.

Then
v1 = v2/2.

Max Fusion Theorem 2. If Eq. 3.2 has a unique optimalx∗ andV ∗ is the optimal
solution to Eq. 3.4, thenx∗ is the center ofV ∗.

3.3 A Branch and Bound Solution

According to Theorem 2, we solve Eq. 3.2 by optimizing Eq. 3.4, which is to
find a minimum-volume orthotope satisfying the predicate. In order to obtain the
global optimal solution in the high-dimensional space, we propose a branch and
bound search algorithm to find the best orthotope efficiently. As an efficient search
method, branch and bound has been applied to object detection [12] and action
detection [13]. Our solution is related to [12, 13], but works in a high-dimensional
discretized space.
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Algorithm 1: Maximum Fusion of MPEs

input : Multimodal partial estimates (MPEs)Y = {y1,y2, . . . ,yn}
output: Complete estimation (CE)x

Initialize V as the collection of all orthotope candidates in thed-dimensional
space.
Initialize an empty priority queueQ, in which the element with the smallest
key value pops first.

repeat
split V into V

′ andV
′′

if W(V′) = 1 then
V
′ → Q by the key value‖V′‖∞

if W(V′′) = 1 then
V
′′ → Q by the key value‖V′′‖∞

retrieve the top elementV from Q
until V contains only one element
retrieve the only elementV ∗ of V

return x as the center point ofV ∗

Our branch and bound search algorithm is presented in Algorithm 1. LetV =
{Vi} be anorthotope-set, where eachVi is an orthotope in thed-dimensional space.
The union ofV, denoted byV, is the minimum orthotope which satisfies∀V ∈
V, V ⊇ V . The intersection ofV, denoted byV, is the maximum orthotope which
satisfies∀V ∈ V, V ⊆ V . We provide an illustrative example in Figure 3.3.

Figure 3.3:An example showing the upper and lower bounds ofV. The two black rect-
angles areV1 andV2, andV = {V1, V2}. V is the red rectangle which containsV1 andV2,
andV is the blue rectangle which is contained byV1 andV2.

Given the original orthotope-setV, our task is to find a minimum-volumeV ∗ ∈
V satisfying the predicate, and the optimal CEx ∈ R

d can be uniquely determined
by V ∗. In each iteration in Algorithm 1, we splitV into two partsV

′ and V
′′,

and the splitting point is the middle point of the longest dimension ofV in the
orthotope-set space.
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We use the bound properties ofV andV: If the union ofV cannot satisfy the
predicate, it impossible for anyV ∈ V to satisfy the predicate. As a result, only
if V satisfies the predicate, it is worth to perform a further check on V. Otherwise
this V can be safely pruned.

We indexV with a key value‖V‖∞. This key value provides a lower bound,
i.e. ∀V ∈ V, ‖V‖∞ ≤ ‖V ‖∞. We use a priority queueQ to store the orthotope-
sets by their key values. Each time we retrieve fromQ a candidate orthotope-setV

with the smallest key value. The retrieving process keeps going until the retrieved
V contains only one orthotopeV ∗, thenV ∗ has to be the optimal solution because
V ∗ satisfies the predicate and has a minimum volume compared with all other
possible orthotopes inQ.

3.4 Median Fusion

As mentioned earlier, the limitation of the maximum fusion is that it is sensitive
to noisy MPEs. To address this issue, we can modify our objective function to a
robust form by using the median fusion in Eq.3.3. The corresponding orthotope
search problem can still be formulated in Eq. 3.4, but with a different predicate
function:

W(V ) =

{

1 for at least half ofi,∃ j, such thatyj
i ∈ V

0 otherwise
(3.6)

Using W(V ) in Eq. 3.6 and the same branch and bound procedure as in Algo-
rithm 1, we can obtain the optimal solution to the median fusion. The theorems in
max fusion can be extended in median fusion.
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Chapter 4

Beyond Basic Formulation

Although we obtain the global optimal solution under the discrete MPE case, the
MPE fusion is more difficult when each MPE provides a continuous estimation. In
this section, we firstly show the connection between our algorithm and the bichro-
matic pair problem in computational geometry, then we extend our solution to the
continuous MPE fusion and provide a probabilistic interpretation of our approach.

4.1 Link to Computational Geometry

The bichromatic pair problem [14] is formulated as

min
j(1),j(2)

|y
j(1)
1 − y

j(2)
2 |, (4.1)

where the objective is to find the closest pairy
j(1)
1 ∈ y1 andy

j(2)
2 ∈ y2 from

different classesy1 andy2.
We extend this problem to multiple classes, as well as multiple subspaces,

whereyi andyk are two MPEs and can belong to different subspaces. Themulti-
chromatic pair problemis similar to Eq. 4.1:

min
j(·)

max
for all i, k

‖y
j(i)
i − y

j(k)
k ‖∞, (4.2)

where the goal is to find a mode from each MPE, such that the maximum distance
among all mode-pairs is minimized. Accroding to the following Theorem, the
multichromatic pair problem is equivalent to Eq. 3.4, therefore it can be solved by
our proposed branch and bound method as well.

Max Fusion Theorem 3. The equivalence of Eq. 3.4 and Eq. 4.2.
Let

v2 = min ‖V ‖∞, s.t. W(V ) = 1.

and
v3 = min

j(·)
max

for all i, k
‖y

j(i)
i − y

j(k)
k ‖∞.
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Then
v2 = v3.

The proof of Theorem 3 is in the appendix.

Corollary 1. Optimizing Eq. 3.2, Eq. 3.4 and Eq. 4.2 are equivalent.

In summary, fusing discrete MPEs can be converted to finding aminimum
orthotope containing at least one mode from each MPE, and is also equivalent to
the multichromatic pair problem.

4.2 MPE Fusion in a Probabilistic View

Now we consider the fusion of continuous MPEs. Suppose that each MPEyi

generates a multimodal distributionpi(x|yi):

pi(x|yi) =
∑

j

p(yj
i )k(x − y

j
i ), (4.3)

wherep(yj
i ) is the prior of modeyj

i . If ki(·) is the Gaussian kernel, thenpi(x|yi)
is a Gaussian Mixture (GM). In our definition ofki(·), we callpi(x|yi) an Infinity
Mixture (IM), aski(·) uses theL∞ norm:

ki(α) = Ci exp(−
‖α‖∞

σ
), (4.4)

whereσ is the kernel bandwidth, andCi is the normalization term. This IM justifies
our previous optimization method in a probabilistic view.

Denote byY = {y1,y2, . . . ,yn}. Supposep(x|Y) follows the Products of
Experts (PoE) model [15], the distribution becomes:

p(x|Y) ∝
∏

i

pi(x|yi), (4.5)

wherepi(x|yi) is the partial estimation, or partial belief ofx from yi, and we
assume thatpi(x|yi) are independent. Our objective is to find an estimatex ∈ R

d

with the highest probability:

x∗ = arg max
x

p(x|Y), Y = {y1,y2, · · · ,yn}. (4.6)

Searchingp(x|Y) in the high dimensional space is an extremely difficult prob-
lem. For an arbitraryx ∈ R

d, we consider the orthotopeV centered at x. If we
only count the modes located inside the orthotope, while ignoring the modes out-
side the orthotope, we obtain the following lower bound ofp(x|Y) by combining
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Eq. 4.3, 4.4 and 4.5:

p(x|Y) = C1

∏

i

∑

j

p(yj
i )k(x − y

j
i )

≥ C1

∏

i

∑

ĵ

p(yj
i )k(x − y

j
i )

= C1

∏

i

∑

ĵ

p(yj
i )Ci exp(−

‖x − y
j
i ‖∞

σ
)

≥ C1

∏

i

∑

ĵ

p(yj
i )Ci exp(−

‖V ‖∞
2σ

)

whereĵ only counts the modes insideV , andC1 is a constant. The first inequality
is obtained by ignoring the contribution from the modes outside the orthotope, and
the second inequality is obtained from‖x − y

j
i ‖∞ ≤ ‖V ‖∞/2 wheny

j
i ∈ V .

By taking the logarithm of the above equation, we obtain

log p(x|Y) ≥ C2 − n
‖V ‖∞

2σ
+

∑

i

log(
∑

ĵ

p(yj
i ))

= L(V ),

(4.7)

whereC2 is a constant,n is the number of MPEs, thenL(V ) is the lower bound
of log p(x|Y). Searching for the optimalx∗ now amounts to findingV ∗ with the
largestL(V ∗), i.e. maximizing the lower bound oflog p(x|Y). Whenσ is very
small (the extreme case isσ → 0, and it is degenerated to the discrete case), the
‖V ‖∞

2σ
term is dominant. Under this condition, maximizingL(V ) is equivalent to

minimizing ‖V ‖∞, which is equivalent to our discrete solution.
We maximize Eq. 4.7 by using a similar branch and bound methodas in Algo-

rithm 1. To further speed up the branch and bound process, we derive the lower
and upper bounds ofL(V ) − C2, respectively:

f+(V ) =
∑

i

log(
∑

ĵ

p(yj
i ))

f−(V ) = −n
‖V ‖∞

2σ
+

∑

i

log(
∑

ĵ

p(yj
i )).

Heref+(V ) is obtained by putting all of the modes insideV at the center of the
orthotopeV , andf−(V ) is obtained by putting all the modes insideV at the bound-
ary of the orthotopeV . Neglecting the constant terms,f+(V ) andf−(V ) provide
upper and lower bounds ofL(V ), respectively. The branch and bound technique
can be further accelerated by using these upper and lower bounds for more efficient
pruning.
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Chapter 5

Experiments

We evaluate our new MPE fusion methods in two tracking scenarios: one is to
track articulated objects (testing the max fusion), and theother is to track occluded
objects (testing the median fusion).

5.1 Tracking Articulated Objects

To track an articulated object, the object is decomposed into several parts, and each
part is tracked by an individual part-tracker, as explainedin Figure 5.1. As the part-
trackers are connected and influence each other, the final tracking result is obtained
by fusing the results from the set of part-trackers.

Figure 5.1: Example of a two-part articulated body. The CE isx =
[x1,x2,x3,x4,x5,x6]. MPE 1 provides the estimation of[x1,x2,x3,x4], and MPE2
provides the estimation of[x3,x4,x5,x6].

The flowchart of our tracking is shown in Figure 5.2. In our experiments, each
part-tracker is manually initialized by a fixed size rectangle which covers one part
of the object. During the tracking process, each part-tracker randomly samples
image patches in its neighborhood regions. These image patches are of the same
size as the initialized rectangle. To track these patches, we check if their appear-
ances are similar to their initialized appearance,e.g. using the sum-of-squared-
differences (SSD) measurement. When the similarity score is higher than a prede-
fined threshold, we treat the corresponding coordinates of the matched location as
one mode in the partial estimate of the location of the part-tracker. The collection
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Figure 5.2:The flow chart of our tracking experiments.

of all such modes gives the MPE of the corresponding tracker.To tolerate ap-
pearance variations, we use a less rigid matching criterionthat leads to many false
positive modes (Figure 5.3). In our approach, we resample about 1,000 patches
and obtain about 20∼200 modes for each part-tracker.

Figure 5.3: The left figure is the input frame, and the right figure shows the modes of
two part-trackers. Two part-trackers handle the upper and lower arms, respectively. Each
part-tracker generates 20∼200 modes (shown in green rectangles) in one frame.

After the MPEs are obtained, we apply our new fusion method and compare
its performance to RANSAC. In the RANSAC approach, we iterate 1,000,000∼
5,000,000 times. In each iteration, we randomly select one mode from each MPE
to obtain the CE by averaging the selections. Then we choose the closest mode to
CE from each MPE and calculate the SSD. The experiment settings are the same
in our approach as in RANSAC, except for the fusion step. By increasing the
number of iterations in RANSAC, it can give good results on tracking a two-part
arm. However, for an articulated object that has more than two parts, the RANSAC
method performs poorly even if we increase the number of iterations in RANSAC.
The execution time of our algorithm is almost fixed when we increase the number
of modes in each part-tracker. This shows the good scalability of our algorithm to
the number of modes from each MPE.
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Figure 5.4: Tracking articulated objects. From top to bottom, the articulated ob-
jects are split into 3, 4, 5 parts, respectively.

We test our new fusion method on tracking different articulated objects, and
some sample results are shown in Figure 5.4 and 5.5. Figure 5.4 shows the experi-
ment results of tracking articulated objects. By optimizing globally, our algorithm
can keep tracking the structure of the articulated object. From top to bottom, the
articulated objects have 3, 4, 5 parts, respectively. Figure 5.5 shows the com-
parison between our algorithm and RANSAC. The 1st and 2nd rowof the figure
shows the tracking results of a two-part articulated arm, and both our algorithm
and RANSAC can provide good results. The 3rd and 4th row of thefigure shows
the tracking results of a three-part articulated finger, ouralgorithm is able to track
the finger successfully, but RANSAC fails to give correct results: it begins to drift
after several frames. From further experiments, we observethat our fusion method
is able to successfully find a global optimum, and outperforms RANSAC. In gen-
eral, we observe that the more parts we have in the fusion, thebetter our new fusion
method achieves comparing with RANSAC.

5.2 Tracking Occluded Objects

We evaluate the median fusion in tracking an occluded object. The experiment
setting keeps the same as that in the articulated objects tracking. The only differ-
ence is that each part-tracker follows a certain part of the object, rather than an
articulated part. For example, in the face sequence shown inFigure 5.6, the face is
modeled by eight overlapping parts. Instead of tracking thewhole face, we track
the eight overlapping face patches. Although every individual part-tracker tracks
one of the eight parts and induces many false estimates, the fusion of all the part-
trackers leads to a strong tracker which is very robust to partial occlusion. As long
as half of the eight patches are visible, the median fusion isable to successfully
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Figure 5.5: Comparison between our algorithm and RANSAC. Odd rows: our
results; even rows: RANSAC results.

Figure 5.6:Tracking occluded face (sequence from [16]).

handle the severe occlusion.
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Chapter 6

Conclusions

Fusing partial estimates from different sources is challenging because of the mul-
timodal nature of the partial estimates: a multimodal objective function can make
the optimization process easily trapped in local minima. Generally, it is difficult
to obtain the global optimal estimation, especially in a high-dimensional parame-
ter space. By revealing the connection between the probabilistic data fusion and
computational geometry, we present a novel approach to the above challenges. We
relate the error minimization problem of MPE fusion to a computational geome-
try problem of finding the minimum-volume orthotope in the parameter space. A
branch and bound search algorithm is designed to obtain the global optimal solu-
tion. Our proposed new fusion method is scalable w.r.t. the number of estimates
and its complexity is almost constant w.r.t. the number of partial estimates. Our
proposed algorithm can be applied to a wide variety of applications (e.g. artic-
ulated objects tracking, occluded objects tracking), where effective information
fusion from separate sources is needed.
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Appendix A

Max Fusion Theorems

A.1 Max Fusion Theorem 1

We provev1 ≤ v2/2 first. Assumev2’s corresponding optimum orthotope isV ∗.

Then for alli, there existsj∗(i), such thatyj∗(i)
i ∈ V ∗. We constructx∗ located at

the center ofV ∗, then

‖x∗ − y
j∗(i)
i ‖∞ ≤ ‖V ∗‖∞/2 = v2/2,

and we obtain

v1 = min
x

max
i

Ψ(x,yi)

≤ max
i

Ψ(x∗,yi)

= max
i

min
j(·)

‖x∗ − y
j(i)
i ‖∞

≤ max
i

‖x∗ − y
j∗(i)
i ‖∞

≤ v2/2.

We then provev1 ≥ v2/2. Assume

v1 = min
x

max
i

Ψ(x,yi)

= max
i

‖x′ − y
j′(i)
i ‖∞,

we then consider the orthotopeV ′ centered atx′ and with volume‖V ′‖∞ = 2v1.
For anyi,

‖x′ − y
j′(i)
i ‖∞ ≤ v1 ⇒ y

j′(i)
i ∈ V ′.

Therefore,V ′ satisfies Eq. 4, and

v2 ≤ 2v1 ⇒ v1 ≥ v2/2.

Therefore,v1 = v2/2.
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A.2 Max Fusion Theorem 2

We proof this theorem by contradiction. Assumex∗ is not the center ofV ∗, then
we denote the center ofV ∗ x′ andx′ 6= x∗. From the proof of Theorem 1,x′ is
the optimal solution of Eq. 2, this contradicts the condition thatx∗ is the unique
optimal solution. Therefore, the assumption does not hold,andx′ = x∗.

A.3 Max Fusion Theorem 3

We provev2 ≥ v3 first. Assumev2’s corresponding optimal orthotope isV ∗. Then
for all i, there existsj∗(i), such thatyj∗(i)

i ∈ V ∗. Then for alli,k, it satisfies

‖y
j∗(i)
i − y

j∗(k)
k ‖∞ ≤ ‖V ∗‖∞ = v2,

and we obtain

v3 = min
j(·)

max
for all i, k

‖y
j(i)
i − y

j(k)
k ‖∞

≤ max
for all i, k

‖y
j∗(i)
i − y

j∗(k)
k ‖∞

≤ v2.

We then provev2 = v3 by contradiction. Assumev2 6= v3, thenv2 > v3. Let

v3 = min
j(·)

max
for all i, k

‖y
j(i)
i − y

j(k)
k ‖∞

= max
for all i, k

‖y
j′(i)
i − y

j′(k)
k ‖∞.

We construct the orthotopeV ′, and its two opposite vertex areminall i y
j′(i)
i and

maxall i y
j′(i)
i . Then

‖V ′‖∞ = ‖max
all i

y
j′(i)
i − min

all k
y

j′(k)
k ‖∞

= max
for all i, k

‖y
j′(i)
i − y

j′(k)
k ‖∞

= v3.

Therefore,‖V ′‖∞ = v3 < v2, this contradictsv2 is the optimal solution of
Eq. 3.4. Thus, the assumptionv2 6= v3 is not true, andv2 = v3.
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Appendix B

Median Fusion Theorems

B.1 Notations

All the theorems in maximum fusion can be extended to median fusion. To make
the presentation clear, we define the validity function for median fusion as

W(V ) =

{

1 for at least half ofi,∃ j, such thatyj
i ∈ V

0 otherwise,
(B.1)

and the corresponding optimizations become

min
x

medianiΨ(x,yi), (B.2)

min ‖V ‖∞

s.t W(V ) = 1.
(B.3)

min
j(·)

max
for half i,k∈{1,2,··· ,n}

‖y
j(i)
i − y

j(k)
k ‖∞, (B.4)

Similar to max fusion, optimizing Eq. B.2, Eq. B.3 and Eq. B.4are equivalent,
and related theorems and proofs are shown below.

B.2 Median Fusion Theorem 1

The equivalence of Eq. B.2 and Eq. B.3
Let

v1 = min
x

medianiΨ(x,yi)

and
v2 = min ‖V ‖∞, s.t. W(V ) = 1.

Then
v1 = v2/2.
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We provev1 ≤ v2/2 first. Assumev2’s corresponding optimum orthotope is

V ∗. For at least half ofi, there existsj∗(i), such thatyj∗(i)
i ∈ V ∗. We then

constructx∗ located at the center ofV ∗, then for at least half ofi,

‖x∗ − y
j∗(i)
i ‖∞ ≤ ‖V ∗‖∞/2 = v2/2 → mediani‖x

∗ − y
j∗(i)
i ‖∞ ≤ v2/2,

so

v1 = min
x

medianiΨ(x,yi)

≤ medianiΨ(x∗,yi)

= mediani min
j(·)

‖x∗ − y
j(i)
i ‖∞

≤ mediani‖x
∗ − y

j∗(i)
i ‖∞

≤ v2/2.

We then provev1 ≥ v2/2. Assume

v1 = min
x

medianiΨ(x,yi)

= mediani‖x
′ − y

j′(i)
i ‖∞,

we then consider the orthotopeV ′ centered atx′ and with volume‖V ′‖∞ = 2v1.
For at least half ofi,

‖x′ − y
j′(i)
i ‖∞ ≤ v1 ⇒ y

j′(i)
i ∈ V ′.

Therefore,V ′ satisfies Eq. B.3, and

v2 ≤ 2v1 ⇒ v1 ≥ v2/2.

Therefore,v1 = v2/2.

B.3 Median Fusion Theorem 2

If Eq. B.2 has a unique optimalx∗ andV ∗ is the optimization result of Eq. B.3,
thenx∗ is the center ofV ∗.

The proof is identical with proof of Theorem 2 of Max Fusion.

B.4 Median Fusion Theorem 3

The equivalence of Eq. B.3 and Eq. B.4.
Let

v2 = min ‖V ‖∞, s.t. W(V ) = 1.
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and
v3 = min

j(·)
max

for half i,k∈{1,2,··· ,n}
‖y

j(i)
i − y

j(k)
k ‖∞.

Then
v2 = v3.

We provev2 ≥ v3 first. Assumev2’s corresponding optimum orthotope isV ∗.
Then there existsU ⊆ {1, 2, · · · , n} such that|U| ≥ n/2 and for alli ∈ U, there

existsj∗(i), such thatyj∗(i)
i ∈ V ∗. Then for alli, k ∈ U, it satisfies

‖y
j∗(i)
i − y

j∗(k)
k ‖∞ ≤ ‖V ∗‖∞ = v2,

and we obtain

v3 = min
j(·)

max
for half i,k∈{1,2,··· ,n}

‖y
j(i)
i − y

j(k)
k ‖∞

≤ min max
for all i, k ∈ U

‖y
j(i)
i − y

j(k)
k ‖∞

≤ max
for all i, k ∈ U

‖y
j∗(i)
i − y

j∗(k)
k ‖∞

≤ v2.

We then provev2 = v3 by contradiction. Assumev2 6= v3, thenv2 > v3. Let

v3 = min
j(·)

max
for half i,k∈{1,2,··· ,n}

‖y
j(i)
i − y

j(k)
k ‖∞

= max
for all i, k

‖y
j′(i)
i − y

j′(k)
k ‖∞.

We construct the orthotopeV ′, and its two opposite vertex areminall i ∈ U y
j′(i)
i

andmaxall i ∈ U y
j′(i)
i . Then

‖V ′‖∞ = ‖ max
all i ∈ U

y
j′(i)
i − min

all k ∈ U

y
j′(k)
k ‖∞

= max
for all i, k ∈ U

‖y
j′(i)
i − y

j′(k)
k ‖∞

= v3.

Therefore,‖V ′‖∞ = v3 < v2, this contradictsv2 is the optimal solution of
Eq. 3.4. Thus, the assumptionv2 6= v3 is not true, andv2 = v3.
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