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Abstract

Fusing partial estimates is a critical and common problemany computer vision
tasks such as part-based detection and tracking. It ggnbelomes complicated
and intractable when there are a large number of multimoaldigh estimates, and
thus it is desirable to find an effective and scalable fusiethwod to integrate these
partial estimates. This paper presents a novel and eféegfiproach to fusing mul-
timodal partial estimates in a principled way. In this neygr@ach, fusion is related
to a computational geometry problem of finding the minimunhdmne orthotope,
and an effective and scalable branch and bound searchthlgois designed to
obtain the global optimal solution. Experiments on traglanticulated objects and
occluded objects show the effectiveness of the proposedagip.
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Chapter 1

| ntroduction

Many computer vision tasks involve the estimation of thenownx € R? from
many independent estimat®s= {y1,yo,...,yn}, Where the individual estimate
y; may be obtained from various sourcesg, different views, time and cues),
or from partial features. We refer each individual estinmegehepartial estimate
(PE) orpartial belief and the final estimation as titemplete estimatio(CE). A
PEy; gives an individual estimate of the unknownand it may only provide the
estimate on several specific dimensionspto it is called a partial estimate. As
the PEs can be quite inaccurate, a critical question is howanduse these partial
estimates for a better estimatiare. , how to obtainx = fus€(y1,y2,...,¥n)-

One concrete example is the part-based object detectiotraridng. The tar-
get is represented by its parts and each part is associatiec wedicated detector
and tracker, each of which provides a PE of the location aniiomof the target.
Because a part of the target is generally less discrimiadhian the entire target,
the matching to this part is likely to include many false gest. This is especially
true when the target is in a clutter background. TherefdsePEs tend to have
multiple modes, where most of them correspond to falseipesitatches. We re-
fer one such PE that has multiple modes asudtimodal partial estimatéMPE),
and our work is focused on the fusion of the MPEs. We want tohasig that in
our work we refer the wordnultimodalto multiple modes irone PE, rather than
multiple estimates/sensors (Fig. 1.1).

If the PES{y1,y2,...,yn} are all unimodal, it is possible to obtain a closed-
form fusion for the CK, e.g., through the best linear unbiased estimation (BLUE) [1].
However, whery; is multimodal €.g., modeled as a Gaussian mixture), the fusion
for the CE is likely to exhibit an extremely complicated fortheach MPE hasn
modes, the number of modes in the CE is in the ordes(of™). In its discrete
case, suppose each MPE consists of a set discrete estimates, the complexity
of searching for the best CE shall bén™). Such an exponential growth of the
number of modes (or the combinatorial complexity in the @itz case) makes any
form of fus€yi,ya2,...,y,) very difficult to be optimized. As the complicated
CE has an enormous number of local optima, fusion is likeherid up with a



Estimate 1:
v (x4 =1 AND x, = 1)
OR
y1®: (x; =2 AND X, = 2)

Estimate 2: Estimate 3:
vo™: (x2 =1 AND x5 = 1) vz (x; =1 AND x3 = 1)
OR OR
y2@: (x, =2 AND x5 = 1) y3?: (x; =2 AND x5 = 2)

Figure 1.1:Example of fusing three MPEs, and each MPE has two modes. fftiraa
fusion result CE is the most consistenwith all the three MPEs.

low-quality estimation unless an exhaustive search carefermed. Even when
an exhaustive search is merely viable wheis small, such a method is not scal-
able when there are many MPEs to fuse. Thus, new scalablnfaséthods are
desirable.

As the CEx = fus€lyi,y2,.-.,yn) in general may not have good analytical
properties, it is difficult to manipulate it directly. In thpaper, we convert the error
minimization in the fusion problem into a problem that findsiemimum-volume
d-orthotope inR¢ subject to some constraints. Th@nimum-volume orthotope
problem can also be viewed as a multi-class generalizafidre@losest-pair prob-
lem in computational geometry. We design an effective braared bound search
algorithm to determine the global optimal solution to thislgem with a moderate
computational complexity.

The novelty of this work includes the following three asgedtl) The fusion
of MPEs is converted to a tractable minimum-volume orthetppoblem, in which
the intricate CE is exactly optimized in a discrete view, pp@ximately opti-
mized in a continuous view. This new treatment leads to dabde solution to
fusion. (2) It reveals an interesting connection betweeabalilistic data fusion
and computational geometry. The proposed solution to thrermmaim-volume or-
thotope problem provides a non-trivial generalizationhaf tlosest-pair problem.
(3) The proposed fusion method is very scalable w.r.t. thaber of estimates,
or information sources, as the complexity is almost corstant. the number of
sources.

The paper is organized as follows: related works are briefyedbed in Chap. 2.
In Chap. 3, we formulate the problem and present the solutidfe relate our
method to computational geometry in Chap. 4. The experimesilts of articu-
lated body tracking and occluded objects tracking by fusindtiple local trackers
are shown in Chap. 5, and the conclusion is made in Chap. 6.



Chapter 2

Related Work

There have been extensive studies on distributed estirfusies. In [1], two crite-
ria for optimal fusion of unimodal Gaussian estimates arersarized. One is the
weighted least squares (WLS), and the other is the best limddased estimation
(BLUE). These fusion techniques can be applied to someiclassputer vision
problems such as the optical flow estimation [2].

When bad or fault estimates exist, WLS or BLUE cannot workl wis better
handle noisy estimates, which refer to bad or outlier esgsjaone possible solu-
tion is to allocate large variances to the bad estimated) aadn the methods of
Covariance Intersection/Union (CI/CU) [3]. In [4], the fos problem when the
measurement errors are heteroscedastic is addressedhegmubiblem is solved in
a WLS way. Another solution to handle noisy estimates is &pkgood estimates
while discarding bad ones. Variable-Bandwidth DensitgdshFusion (VBDF) [5]
falls into such a category, which performs globally, an@mits to alleviate the
influence of the outliers by gradually reducing the bandwiof the modes. By
applying VBDF, a tracking method is presented in [6]. Howeiteeannot guaran-
tee the global optimality in fusion. Another method to alkg the effect of bad
estimates is to measure the goodness of the estimateyldeallexample in [7], a
principle to estimate the fidelity of each measurement ircallped calculation is
presented.

Unfortunately, all of the above fusion methods are not desigior multimodal
cases, namely multiple modes in one estimate. To handle dfitenmodal estimates
fusion problem, there have been two types of solutions: gudistributed algo-
rithms [8, 9], or using randomized algorithms [10]. If thdiemtes can be rep-
resented in a loosely-connected graph, several techncprebe applied, such as
the variational methods [11], Belief Propagation (BP) [8]Nonparametric Belief
Propagation (NBP) [9]. However, if the graph is densely @mtad, these methods
are easily trapped by local minima, or cannot even convatge,to the loops in
the densely connected graph. To avoid local minima and tcagtee the conver-
gence, randomized algorithms can be applied. For exam@& JAC [10] has
the ability to obtain a robust estimation from noisy MPEse&¥ only one mode



is correct, and all of the others are outliers in each MPE, BAN may still ob-
tain the global optimum with some probability, but the periance of RANSAC
deteriorates when the number of modes in each MPE or the nuphiiee MPES
increases.



Chapter 3

Problem Formulation and
Solution

Given a collection of MPE$y1,y2, ..., y» }, we want to obtain the CE of the high
dimensional unknowrx € R?. To better explain our idea, we first examine the
problem of fusing discrete MPEs, then present the soluticiusing continuous
MPEs in Chap. 4.2.

For discrete MPEs, each MBE contains multiple point estimationsd. modes):

wherey{ € R" is the j-th mode ofy; in the h;-dimensional subspacé,( < d),
andy; is the number of modes ip;. Given two modes belonging to two different
subspacesy € R4 andg € R?, we define their arithmetic operations (summation,
subtraction and maximization) as below.

Computation Rule 1. Addition and Subtraction
In addition or subtraction, we only perform the calculatiorspaceR4 (R?,
ie.,ifv=a+ g, then

o Oéizlzﬂi IfZGRAﬂRB
7= undefined otherwise

Computation Rule 2. Max and Min
In maximization or minimization, we perform the calculatia spaceRA U RE,
i.e., if v = max(a, 8), then

max(a;, 3;) ifi € RANRE
; if i ¢ RARP
B; if i ¢ RANRE
undefined otherwise

Yi =

An illustrative example is shown in Fig. 3.1.
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W & 8 a+ 8 max(&, £)

1 8 A
Z &y A &, + 4, maz(a,, &)
3 a2 &

Figure 3.1: An illustration of arithmetic operations over two vectorsidnging to two
different subspaces. Suppose there are two veetarsR“ and3 € RZ. We usex; to
denote the value at’s i-th dimension. For example, here= {2,3}, B = {1, 2}, which
meansy is in the 2nd and 3rd dimensions of the whole space,/Aiwdin the 1st and 2nd
dimensions of the whole space. As the figure shawss [11,12], 8 = [13,14], then
as = 11, a3 = 12, 51 = 13, B> = 14, while oy and 35 are undefined. The addition is
performed at the intersection of the subspaces, while thémization is performed at the
union of the subspaces.

3.1 TheObjective Function

A good fusion result should be consistent with the MPEs. Cataral objective is
to minimize the average estimation erroe, ,

1
in=Y) U(x,y;), 3.1
mng (%,¥:) (3.1)

where U (x,y;) is the measurement of the inconsistency. For example, we can
choose¥ (x,y;) as: ‘
\I/(X, yi) = Hljln HX - yg ”007

where the final estimatios is expected to be consistent with at least one of the
modes ofy;. Here theL., norm of a vector is ||a||« = max; |a;|. Although
other types of measurements are possible, we will show th&grthe L., norm
leads to an elegant global optimal solution.

Considering that it is difficult to minimize the average ewttion error in
Eqg. 3.1, we slightly change the original formulation by exihg the average error
with the maximum error among the MPEs:

x* = arg, min max ¥ (x,y;), (3.2)
X 7
or the median error among the MPEs:

x* = arg, min median; V(x,y;). (3.3)



We call Eq.3.2 as thenaximum fusiorwhile Eq. 3.3 as thenedian fusion
The median fusion is less sensitive to noise while the mainfusion may be
influenced by an outlier MPE, in which all its modes are ouslie~or clarity, we
mainly discuss how to solve the maximum fusion in this sectidhe solution
to the median fusion follows the same strategy and will beflyridiscussed in
Chap. 3.4 as well.

3.2 Equivalenceto Orthotope Search

X2
2 ® y1(2)
Y2(1).
L / / 1)
1 Y1(
y2(2) R Y
| |
i — | - X4
1 | j‘ )' 2
|
Z ® Y3(2)

»

X3

Figure 3.2: An illustration of orthotope search for partial estimatimsion. There are
three MPEsy: = {yi,%?}, y2 = {43,935}, y3 = {y3,%3}. The orthotopd’ contains a
mode if and only if this mode is contained ¥is projection to this mode’s subspace, e.g,
yi € V andyi ¢ V. Minimizing estimation error (Eg. 3.2) is equivalent to rinizing

the volume of the orthotop®, which must contain at least one mode from each MPE
(Eg. 3.4). In this figure, the orthotopé containsy}, y1, y3, sow(V) = 1.

The minimization of Eq. 3.2 can be converted into a min-vauanthotope
search problem, as explained in Figure 3.2. Our task is todmdrthotope (a
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high-dimensional bounding box) that can cover at least oogenfrom every MPE
y;. To minimize the maximum error in Eq. 3.2, we require the Estgedge of the
orthotope has the minimum length. Based on the above defisjtive propose the
following optimization problem

min 1V oo

st WWV)=1. (34)

Here we denote by a d-dimensional axis-aligned orthotope. An orthotdps
volumeis related to the length of its longest edge, denotefbl... W(V) is the
predicate function of the orthotogé:

1 Vi,3j,suchthay’ € V

0 otherwise (3.5)

W) = {
When a lower-dimensional moqlﬂ is inside the subspace projection of the

d-dimensional axis-aligned orthotop¥, the orthotopel” contains the modey{ ,

and we denote by{ € V (Figure 3.2).

To justify our formulation as an orthotope search problem pnove the equiv-
alence between Eq. 3.2 and Eq. 3.4 in Theorem 1. We furtherediére property
under the condition of unique optimal solution in TheoremTae proof of both
theorems are in the appendix.

Max Fusion Theorem 1. The equivalence of the optimization in Eqg. 3.2 and

Eq. 3.4
Let
v] = min max ¥ (x,y;)
and
vy = mvi_nHVHoo, st. W(V)=1
Then

1)1:2}2/2.

Max Fusion Theorem 2. If Eq. 3.2 has a unique optima* and V' * is the optimal
solution to Eq. 3.4, ther™ is the center oV *.

3.3 A Branch and Bound Solution

According to Theorem 2, we solve Eq. 3.2 by optimizing Eq., 3vhich is to
find a minimum-volume orthotope satisfying the predicateoidder to obtain the
global optimal solution in the high-dimensional space, wappse a branch and
bound search algorithm to find the best orthotope efficiedttyan efficient search
method, branch and bound has been applied to object detdd®) and action
detection [13]. Our solution is related to [12, 13], but werk a high-dimensional
discretized space.



Algorithm 1. Maximum Fusion of MPEs

input : Multimodal partial estimates (MPEY = {y1,y2,.-.,¥n}
output: Complete estimation (CR

Initialize V as the collection of all orthotope candidates indh@imensional
space.

Initialize an empty priority queu@, in which the element with the smallest
key value pops first.

repeat
split V into V' andV”
if W(V’) = 1then

| V' — Q by the key valug|V’||»
if W(V”) = 1then

| V" — Q by the key valug|V"||»
retrieve the top elemenrit from Q
until V contains only one element
retrieve the only element™ of V
return x as the center point df *

Our branch and bound search algorithm is presented in Algorl. LetV =
{V;} be anorthotope-setwhere eaclv; is an orthotope in thé-dimensional space.
The union ofV, denoted byV, is the minimum orthotope which satisfig¥ <
V,V D V. The intersection o¥/, denoted by, is the maximum orthotope which
satisfiesvV € V,V C V. We provide an illustrative example in Figure 3.3.

| V
v
V V,

Figure 3.3:An example showing the upper and lower bound¥ofThe two black rect-
angles aré/; andVs, andV = {V;, V5 }. V is the red rectangle which contaib and V5,
andV is the blue rectangle which is containedByand V5.

Given the original orthotope-s#&t, our task is to find a minimum-volumié* <
V satisfying the predicate, and the optimal €& R? can be uniquely determined
by V*. In each iteration in Algorithm 1, we spli¥ into two partsV’ and V",
and the splitting point is the middle point of the longest divsion ofV in the
orthotope-set space.
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We use the bound properties BfandV: If the union of V cannot satisfy the
predicate, it impossible for any € V to satisfy the predicate. As a result, only
if V satisfies the predicate, it is worth to perform a further &h@tV. Otherwise
this V can be safely pruned.

We indexV with a key value||V||~. This key value provides a lower bound,
eV € V,[|V]w < [|[V]leo. We use a priority queu@ to store the orthotope-
sets by their key values. Each time we retrieve fr@ma candidate orthotope-s#&t
with the smallest key value. The retrieving process keejpsggantil the retrieved
V contains only one orthotopé*, thenl"* has to be the optimal solution because
V* satisfies the predicate and has a minimum volume comparddaliother
possible orthotopes i@.

3.4 Median Fusion

As mentioned earlier, the limitation of the maximum fusienthat it is sensitive
to noisy MPEs. To address this issue, we can modify our dlge@iinction to a
robust form by using the median fusion in Eq.3.3. The cowadmg orthotope
search problem can still be formulated in Eq. 3.4, but withfferent predicate
function:

1 for at least half of, 3 j, such thaty! € V

0 otherwise (3.6)

W) = {

Using W(V') in Eq. 3.6 and the same branch and bound procedure as in Algo-
rithm 1, we can obtain the optimal solution to the mediandusiThe theorems in
max fusion can be extended in median fusion.

11



Chapter 4

Beyond Basic Formulation

Although we obtain the global optimal solution under thecti$e MPE case, the
MPE fusion is more difficult when each MPE provides a contimiestimation. In
this section, we firstly show the connection between ourrétgn and the bichro-
matic pair problem in computational geometry, then we ekisur solution to the
continuous MPE fusion and provide a probabilistic intetatien of our approach.

4.1 Link to Computational Geometry

The bichromatic pair problem [14] is formulated as

min |y — yi®)|, (4.1)

3(1),5(2)

where the objective is to find the closest pyt{}(l) € yy; and yé@) € yo from
different classey; andys.

We extend this problem to multiple classes, as well as neltgubspaces,
wherey; andy; are two MPEs and can belong to different subspaces.niiig-
chromatic pair problems similar to Eq. 4.1:

: 3(#) j(k)
- 00 4.2
min max Iy =yl (4.2)
where the goal is to find a mode from each MPE, such that thermamidistance
among all mode-pairs is minimized. Accroding to the follogyiTheorem, the

multichromatic pair problem is equivalent to Eg. 3.4, tiiere it can be solved by
our proposed branch and bound method as well.

Max Fusion Theorem 3. The equivalence of Eq. 3.4 and Eq. 4.2.
Let
ve = min ||V ||, st. W(V)=1
and

o i@ _ i(k)
Ug_r;l(l.?fo?;ﬁuf,k”y’ Vi lloc

12



Then
Vg = V3.

The proof of Theorem 3 is in the appendix.
Corollary 1. Optimizing Eqg. 3.2, Eq. 3.4 and Eq. 4.2 are equivalent.

In summary, fusing discrete MPEs can be converted to findimgiramum
orthotope containing at least one mode from each MPE, anlddseguivalent to
the multichromatic pair problem.

4.2 MPE Fusion in aProbabilistic View

Now we consider the fusion of continuous MPEs. Suppose thaelt MPEy;
generates a multimodal distributign(x|y;):

pixly) = > pyDk(x —y), (4.3)
J

wherep(y?) is the prior of modey?. If k;(-) is the Gaussian kernel, then(x|y;)
is a Gaussian Mixture (GM). In our definition &f(-), we callp;(x|y;) an Infinity
Mixture (IM), ask;(-) uses thel ., norm:

fi(0) = Crexp(~ 1°0e2), (4.4

wheres is the kernel bandwidth, ar@; is the normalization term. This IM justifies
our previous optimization method in a probabilistic view.

Denote byY = {y1,y2,...,¥n}. Supposen(x|Y) follows the Products of
Experts (PoE) model [15], the distribution becomes:

p(x[Y) o Hpi(xb’i)7 (4.5)

2

wherep;(x|y;) is the partial estimation, or partial belief af from y;, and we
assume thap, (x|y;) are independent. Our objective is to find an estimate R?
with the highest probability:

x* = argm}zgxp(x]Y), Y ={y1,y2," " ,¥n} (4.6)
Searching(x|Y) in the high dimensional space is an extremely difficult prob-
lem. For an arbitrari € R?, we consider the orthotopé centered at x. If we

only count the modes located inside the orthotope, whilerigg the modes out-
side the orthotope, we obtain the following lower bouncEf|Y') by combining

13



Eq. 4.3,4.4and 4.5:

p(x|Y) C1HZP (yDk(x —yl)
261H2pyi (x—y))
o

—C1H2py20exp 1% yz”oo)

>C1H2p yZ )C; exp(— HVHOO)

wherej only counts the modes insidé, andC; is a constant. The first inequality
is obtained by ignoring the contribution from the modes iigt$he orthotope, and
the second inequality is obtained frdfr — y/||oc < ||V ||oo/2 Wheny! € V.

By taking the logarithm of the above equation, we obtain

logp(x|Y) > Co — n% + ZlOg(Z p(yg))
i (4.7)

= L(V),

where(, is a constantp is the number of MPEs, thefi(V) is the lower bound
of log p(x|Y). Searching for the optimat* now amounts to finding* with the
largest£(V*), i.e. maximizing the lower bound dbg p(x|Y). Wheno is very
small (the extreme case és — 0, and it is degenerated to the discrete case), the
% term is dominant. Under this condition, maximizidgl’) is equivalent to
minimizing || V||, Which is equivalent to our discrete solution.

We maximize Eqg. 4.7 by using a similar branch and bound medisad Algo-
rithm 1. To further speed up the branch and bound process evieedhe lower
and upper bounds & (V') — Co, respectively:

= zlog<z;p<yz>>

V)= !VHoo _|_Zlog Zp )

Here f™ (V) is obtained by putting all of the modes insitfeat the center of the
orthotopeV/, andf~ (V) is obtained by putting all the modes insideat the bound-
ary of the orthotopd’. Neglecting the constant termg! (V') and f~ (V') provide
upper and lower bounds @f(V'), respectively. The branch and bound technique
can be further accelerated by using these upper and lowedsdar more efficient
pruning.
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Chapter 5

Experiments

We evaluate our new MPE fusion methods in two tracking s¢esiaione is to
track articulated objects (testing the max fusion), ancbther is to track occluded
objects (testing the median fusion).

5.1 Tracking Articulated Objects

To track an articulated object, the object is decomposedsieteral parts, and each
part is tracked by an individual part-tracker, as explaindeigure 5.1. As the part-
trackers are connected and influence each other, the fiokirtgaresult is obtained
by fusing the results from the set of part-trackers.

(x1,x2) // (x5, x6)
/

(x3, x1)

Figure 5.1: Example of a two-part articulated body. The CE & =
[x1, X2, X3,X4,X5,Xg]. MPE 1 provides the estimation dk;, x2, x3, x4], and MPE2
provides the estimation ¢k, x4, x5, Xg)-

The flowchart of our tracking is shown in Figure 5.2. In our exments, each
part-tracker is manually initialized by a fixed size rectenghich covers one part
of the object. During the tracking process, each part-Backndomly samples
image patches in its neighborhood regions. These imagbemtre of the same
size as the initialized rectangle. To track these patches;hveck if their appear-
ances are similar to their initialized appearanes. using the sum-of-squared-
differences (SSD) measurement. When the similarity sshégher than a prede-
fined threshold, we treat the corresponding coordinatelseofrtatched location as
one mode in the partial estimate of the location of the paxtker. The collection
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Initialize each
partial tracker l

(Manually)
r{ Partial tracker 1 I——b| MPE 1 (y4)

:II Partial tracker 2 I——t| MPE 2 (y2)
. Our fusion /
Incoming frame . . RANSAC Result

‘I Partial tracker n I——D| MPE n (yn)

Figure 5.2:The flow chart of our tracking experiments.

of all such modes gives the MPE of the corresponding tracKer.tolerate ap-

pearance variations, we use a less rigid matching critéhianleads to many false
positive modes (Figure 5.3). In our approach, we resampbeitab,000 patches
and obtain about 20200 modes for each part-tracker.

Figure 5.3: The left figure is the input frame, and the right figure shoves itiodes of
two part-trackers. Two part-trackers handle the upper angil arms, respectively. Each
part-tracker generates 2200 modes (shown in green rectangles) in one frame.

After the MPEs are obtained, we apply our new fusion methatl@mpare
its performance to RANSAC. In the RANSAC approach, we ierg000,000~
5,000,000 times. In each iteration, we randomly select ooéarirom each MPE
to obtain the CE by averaging the selections. Then we chdmseldsest mode to
CE from each MPE and calculate the SSD. The experiment getéire the same
in our approach as in RANSAC, except for the fusion step. Bydasing the
number of iterations in RANSAC, it can give good results @clking a two-part
arm. However, for an articulated object that has more tharpavts, the RANSAC
method performs poorly even if we increase the number ddtitans in RANSAC.
The execution time of our algorithm is almost fixed when weeéase the number
of modes in each part-tracker. This shows the good scadlabfliour algorithm to
the number of modes from each MPE.

16



Figure 5.4: Tracking articulated objects. From top to hottdéhe articulated ob-
jects are splitinto 3, 4, 5 parts, respectively.

We test our new fusion method on tracking different artitedaobjects, and
some sample results are shown in Figure 5.4 and 5.5. Figdishbws the experi-
ment results of tracking articulated objects. By optimiggiobally, our algorithm
can keep tracking the structure of the articulated objeobrmRop to bottom, the
articulated objects have 3, 4, 5 parts, respectively. [Eidub shows the com-
parison between our algorithm and RANSAC. The 1st and 2ndafoilie figure
shows the tracking results of a two-part articulated arnd, laoth our algorithm
and RANSAC can provide good results. The 3rd and 4th row ofithee shows
the tracking results of a three-part articulated finger,algorithm is able to track
the finger successfully, but RANSAC fails to give correctutes it begins to drift
after several frames. From further experiments, we obgbateour fusion method
is able to successfully find a global optimum, and outperloRANSAC. In gen-
eral, we observe that the more parts we have in the fusiotgtier our new fusion
method achieves comparing with RANSAC.

5.2 Tracking Occluded Objects

We evaluate the median fusion in tracking an occluded obj&tie experiment
setting keeps the same as that in the articulated objectdgrica The only differ-

ence is that each part-tracker follows a certain part of thjead, rather than an
articulated part. For example, in the face sequence showigure 5.6, the face is
modeled by eight overlapping parts. Instead of trackingvthele face, we track
the eight overlapping face patches. Although every indigldbart-tracker tracks
one of the eight parts and induces many false estimatesusimnfof all the part-
trackers leads to a strong tracker which is very robust tigdarcclusion. As long

as half of the eight patches are visible, the median fusiabie to successfully
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Figure 5.5: Comparison between our algorithm and RANSACd @uvs: our
results; even rows: RANSAC results.

Figure 5.6:Tracking occluded face (sequence from [16]).

handle the severe occlusion.
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Chapter 6

Conclusions

Fusing partial estimates from different sources is chgilamn because of the mul-
timodal nature of the partial estimates: a multimodal dibjedfunction can make
the optimization process easily trapped in local minimanésally, it is difficult
to obtain the global optimal estimation, especially in ahhiimensional parame-
ter space. By revealing the connection between the pros@bitlata fusion and
computational geometry, we present a novel approach tdothveechallenges. We
relate the error minimization problem of MPE fusion to a cotational geome-
try problem of finding the minimum-volume orthotope in thegraeter space. A
branch and bound search algorithm is designed to obtainlth@lgoptimal solu-
tion. Our proposed new fusion method is scalable w.r.t. timalver of estimates
and its complexity is almost constant w.r.t. the number ofiglaestimates. Our
proposed algorithm can be applied to a wide variety of apfibos €.g. artic-
ulated objects tracking, occluded objects tracking), wheffective information
fusion from separate sources is needed.
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Appendix A

Max Fusion Theorems

A.1 Max Fusion Theorem 1

We provev; < vy/2 first. Assumevs’s corresponding optimum orthotope 15"

Then for alli, there existg*(7), such thayg*(i) € V*. We construck™ located at
the center of/*, then

1" = ¥7 Vlloo < 1V lloo/2 = v2/2,
and we obtain
vy = m}in max U(x,y;)
< max U(x*,y;)
— a0
< max [x" — v V|
< wy/2.
We then prove); > v9/2. Assume
v = mxin max U(x,yi)

— max | —y! V|,
1

we then consider the orthotopg’ centered ak’ and with volumé| V|| = 2v;.
For anyi,

%’

¥ ez = ¥ VeV
Therefore,V’ satisfies Eq. 4, and
vy < 201 = V1 22}2/2.

Thereforep; = vy/2.
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A.2 Max Fusion Theorem 2

We proof this theorem by contradiction. Assumeis not the center of*, then
we denote the center &f* x’ andx’ # x*. From the proof of Theorem X' is
the optimal solution of Eq. 2, this contradicts the condittbatx* is the unique
optimal solution. Therefore, the assumption does not faldx’ = x*.

A.3 Max Fusion Theorem 3

We provev, > v first. Assumeys’s correspondlng optimal orthotope Ws". Then
for all 7, there existg* (i), such tha’gyJ ) € V*. Then for alli,k, it satisfies

i
17 =3 Plloe <1V loc = 22,
and we obtain
v3 = min max Hy y](k lloo
j(-) forall¢ k
< (@) (k)
< foggﬁfkllyz Vi lloo
< va.

We then proves, = v3 by contradiction. Assume, # vs, thenvy > v3. Let

J(k)

v = mg?fo?;ﬁ‘?k 2 =l
_ 3" (k)
forall Hy L HOO

We construct the orthotopg’, and its two opposite vertex araing ; y{ '@ and

maXa| ; yg,(i). Then

7' (%)

IV lloo = Il maxy; ™ — n}lllr;yk Mloe
o - (k)
forall Hy yk HOO
= Us.

Therefore,||V'||c = v3 < v, this contradicts, is the optimal solution of
Eq. 3.4. Thus, the assumption # v3 is not true, and; = vs3.
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Appendix B

Median Fusion Theorems

B.1 Notations

All the theorems in maximum fusion can be extended to mediaiofi. To make
the presentation clear, we define the validity function fedin fusion as

W(V) = 1 forat Igast half of, 3 j, such thaty; € V (B.1)
0 otherwise
and the corresponding optimizations become

min median; ¥ (x,y;), (B.2)

min 1V oo
(B.3)

st W({WV)=1

i [FEAREA (8.4)

] max
) forhalfi,ke{1,2,--- ,n}

Similar to max fusion, optimizing Eq. B.2, Eqg. B.3 and Eqg. Bré equivalent,
and related theorems and proofs are shown below.

B.2 Median Fusion Theorem 1

The equivalence of Eq. B.2 and Eq. B.3
Let

v] = minmedian; V(X,y;)
X

and
v = min || V|0, st. WV)=1.

Then
vy = vy/2.
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We provev; < vy/2 first. Assumewsy’s corresponding optimum orthotope is

V*. For at least half of, there existsj*(i), such thatyf*(i) € V*. We then
constructx™® located at the center df*, then for at least half of,

I1x* = y7 Do < V¥ ]loo/2 = v2/2 — median;|x* — y! Va0 < v2/2,
SO

vy = minmedian; ¥ (x,y;)
X
< median; ¥ (x*,y;)

median; m(1§1 l|x* — yg(i) lloo
T

median;||x* — yg*(i) lloo

<
< 1)2/2.
We then prove); > v9/2. Assume
vy = minmedian; ¥ (X,y;)
X

= median;||x" — yf'(i) [

we then consider the orthotopg’ centered ak’ and with volumé|V'|| - = 2v;.
For at least half of,

'y e sn = ¥ Ve

[Bs
Therefore,V’ satisfies Eq. B.3, and
vy <201 = vy >v9/2.

Thereforep; = vy/2.

B.3 Median Fusion Theorem 2

If Eg. B.2 has a unique optimal* and V* is the optimization result of Eq. B.3,
thenx* is the center ol *.
The proof is identical with proof of Theorem 2 of Max Fusion.

B.4 Median Fusion Theorem 3

The equivalence of Eq. B.3 and Eq. B.4.
Let

ve = min ||V ||, st. W(V)=1
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and

3(4) j(k)
v3 = min max 7(1) _ ‘
’ j(-) forhalfike{1,2,--,n Hyl Yk HOO

Then
Vg = V3.
We provevs > vj first. Assumezg‘s corresponding optimum orthotope Us'.
Then there existtJ C {1 -+ ,n} such thafU| > n/2 and for alli € U, there
exists;* (), such tha’gyj ) € V*. Then for alli, k € U, it satisfies

Iy = 3L oo < Voo = v2,
and we obtain
memin e, I
< min omax_ AR
< foramggeU\\Yf*( A [
< vo.

We then proves, = v3 by contradiction. Assume, # vs, thenvy > v3. Let

. 3 (3) J(k)
V3 = Imin max
3 '()forhalfik€{1,2, n ”y =Y oo

_ J (k)
for aII Hy’ RL loo
We construct the orthotopE’, and its two opposite vertex arging; ¢ U yj @

andmaxa|; ¢ U yi 7™ Then

(@) k)
1Vl = | ey —M??Uh,\h
_ 3’ (3)
foraIIE keUHy yk HOO
= V3.

Therefore,||V'|| = v3 < v, this contradicts, is the optimal solution of
Eq. 3.4. Thus, the assumption # v3 is not true, andi; = vs3.
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