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Abstract

Disk is approaching its performance limits in next decade. The performance gap between
the main memory and the secondary storage device tends to be large. Research for new storage
device is underway, among which the probe-based(MEMS) storage device [1, 2] is promising.
It provides much better response time and bandwidth comparing to the modern disk.

In this paper, we exploit the performance improvement using MEMS device as the disk
write buffer. Our result shows that several hundred MBs MEMS device will eliminate almost
all the raw write traffic to disk. The average response time will be improved by factor of 8 to
10 comparing to modern disk.

1 Introduction

In the computer storage hierarchy, performance has suffered from the significant access, bandwidth
and cost gaps between processor, RAM and Disk. Especially the RAM/Disk gap, which was
widening to 6 order of magnitude in 1999, continues to widen at about 50% per year [15]. The
widening gap will face more worse situation when disk reach its performance limits due to the
superparamagnetic effect.

To allivate the impact of the widen performance gap, people employ the memory buffer. As
the main memory become cheaper and cheaper, a large memory buffer is possible. A significant
percentage of the raw disk traffic has be absorbed by the buffer. But most of the writes, especially
the small meta-data writes have to be sent to disk to guarantee the system consistence and get
little benefit from the large memory buffer. Thus the traffic between the disk and main memory is
dominated by the small writes [14]. To find a effcient way to reduce the write traffic is a key issue
to improve the overall system performance.

Many techniques has been employed to reduce the small write problem. LFS [13] uses large
main memory to collect small writes and write them back to disk in a long sequential write. Write
performance will be improved signficantly. But the writen data has to be kept in volatile ram for
a relative long time, the reliability of the LFS is a big issue. Another way to attack this problem
is using the non-volatile ram(NVRAM) [14]. shows that only small amount of the non-volatile
ram will greatly reduce the meta-data write traffic. But the high cost of NVRAM limits us to
widely use NVRAM as write buffer. With the size of the workload expanding fast, small NVRAM
can’t exploit the locality of the workload, thus a quite amount of write requests are still exposed to
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disk. Yiming Hu et.al propose another solution: using a small log disk as the write buffer of the
disk(DCD) [8]. Each incoming write request could be served at the small disk by writing down the
data in current log. The write response time is greatly decreased because the small log disk will
write down the request in current track instead of seeking and writing. During the interval of the
coming requests, small disk will write its content back to data disk. Moreover, they use a small
RAM to collect the writes in log and write it to log disk whenever the log disk is idle.

As a new emerging technology, MEMS(MicroElectroMechanical System) storage device gives
us a promising method to solve the write problem. Generally estimated, mems-based storage
device has cost significantly lower than NVRAM and its access times is an order of magnitude
faster than conventional disk. Our results show that several hundred MBs MEMS write buffer will
elminate almost all the raw write traffic (more than 96%) to the disk; at the same time, around 30%
raw read traffic hits the MEMS write buffer. The average response time will drematicly decrease
from around 64 ms to around 8 ms.

Section 2 gives brief introduction of MEMS storage device and its performance. Section 3
descripts our design and implementation of the MEMS write buffer for disk. The simulation results
could be found in section 4. And the final section summarize the major results of our work as well
as mention some of the future works.

2 Background

For a long time, when we mention the storage device, most of the time we mean the disk. The
mechanical parts of the disk limits it performance improvements which makes it hard to keep up
with the processor and memory’s performance. And in next several years, the superparamagnetic
effect will make the slow improvement even impossible. It is time to exploit the new storage
device.

Researchers are developing a variety of new devices based on holography [6, 11, 12], probe-
based(AFM) storage [3, 9], and probe-based(MEMS) storage [1, 2]. Among those new pos-
sibility, probe-based(MEMS) storage is attractive. Because the core component of the probe-
based(MEMYS) storage device is the MicroElectroMechanical System which position the read/write
head to get the data, we will reference it as MEMS device in following text.

MEMS device consists of a substrate of magnetic media suspended over an array of read/write
tips, as shown in Fig. 1(a). These tips are etched on the silicon die using the silicon-wafer-
fabrication processes. Each of the tips manipulate a small rectangle of the bits on the media sled
moving over it. Depending on the design, the transfer rate of each tip could be 100Kb/s to 1Mb/s.

The media sled is suspended above the tip substrate by silicon beams that act as springs, and
moved by forces generated by lateral resonant microactuators, as shown in Fig. 1(b). In this figure,
the shaded parts move and the unshaded parts are stationary. Electric forces applied to the fingers
of the microactuator combs exert electrostatic forces on the sled that cause it to move in the x and
y direction, overcoming the forces exerted by the anchors and beams that keep it in place. To serve
a request, the media sled first position itself so that the tips could start read/write. This period is
what we call seek time. Once the sled finishs seeking, data access is accomplished by moving the
media at a constant velocity in the Y direction while the data is read or written by the stationary
probe tips.
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Figure 1: Probe-based(MEMS) storage device model
RAM Future Disk G1 Model G2 Model G3 Model
Bandwidth | 3.2 — 6.4GB/s | 0.10 — 0.15GB/s | 0.23GB/s | 0.8GB/s 1.14GB/s
avg. access time 2.5 —bns 3 —4ms 1—2ms | 0.8 —1.0ms | 0.4—0.Tms
density N/A 0.1GB/cm? A4GB/cm? | 6.25GB/cm? | 11.1GB/cm?

Table 1: MEMS device, disk and RAM performance comparision. G1, G2 and G3 Model are the
CMU three generation model of the MEMS device. We predict the possible performance of disk
in next five years and reference it as Future Disk.

In this research, we use the CMU three generation model of MEMS device [5]. The general
comparision of these models with disk and RAM can be found in Table 1. This table esteem the
possible performance of the disk and RAM in next five years and compares them with the CMU
MEMS models. The MEMS device’s performance is laying between the RAM and the disk. Its
bandwidth outperform disk by an order of magnitude, while still an order of magnitude less than
RAM. For the access time, MEMS device is still far slow than the RAM because it is bounded by
the mechanical components. But it is much better than disk. The high density as well as the IC
lithography product process make it possible to get small, high density, on-chip storage device.

3 Design and Implement MEM S Write Buffer

For our experiments, we implement our MEMS write buffer model based on the disksim [4].
Disksim is a well validated disk simulator which includes several fastest commerical disk mod-
els current we have. Ganger et al., the author of the disksim, is working on MEMS device and
implement the CMU MEMS model in disksim.
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Figure 2: The Structure of the MEMS Write Buffer Driver

Our simulator drives two threads of disksim. One simulates the disk, which we use the Quan-
tum Atlas 10K model. Another implements the MEMS device which is acting as the disk write
buffer. To better simulate the write cache, we close the prefecting function in the MEMS device
because we focus more on the write performance of the MEMS device and the read requests hits
into write buffer is relative small. Thus the prefecting, especially deep prefecting in disksim, will
have little benefit for write buffer. In some case, prefecting will have the adverse effect on write
performance. For example, when some write requests comes after a read hit in write cache, those
writes might not be served right away, which delays the response time. Another important reason
to abandon the prefecting is that we use the log to collect the writes to MEMS buffer, which we
will descript in following paragraph.

Fig. 2 shows the general structure of the MEMS write buffer dirver which is based on the DCD
driver [10]. The core implementation is the In-memory data structure, which is composed of three
parts: Data Lookup Table, Segment List, Main Memory Buffer. Because the size of the MEMS
cache might scale from several MBs to several GBs, the corresponding data structures in main
memory could be as large as several tens of MBs. Thus we need carefully design to make sure that
our implementation doesn’t use too much main memory.



Cache Management: data in cache is organized into logs. Each log fits into one segment
of cache. The size of cache segment is 128 KB, 1 KB of which is used to keep the segment
information, called segment head. The rest is the user data and divided into 1KB slots. Each
requests will occupy one or several slots. The cache segment size is chosen randomly. Once the
write request comes, we first check the cache usage. If it is beyond the high predefined water mark,
the current write request will be suspended and the cache cleaning process will start until the cache
usage reach the low water mark again. Currently, we clear one segment at one time. If the cache is
ready for write, the incoming requests will be appanded to the end of the current log. By doing so,
we hope to reduce the seek time because most of requests only need a relative small Y direction
seek in MEMS device and avoid the time-comsuming X direction seek. Our simulation shows that
under the write-intensive workload, the MEMS cache plus Disk is even working a little better than
the pure MEMS device which totally replaces the disk as the secondary storage device.
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Figure 3: The Data Lookup Table

Data Lookup Table is used to located the data in MEMS cache. In above paragraph, we
mention that we use log to collect the write requests. Thus the incoming request could be map
to any block in MEMS device. In order to efficiently address those data, we implement the Data
Lookup Table as hash table. Another complex factor is the size of the request. In many unix
systems, the requests sent to the disk device have variable length and may be overlapped. Thus the
entry key to the hash table should be carefully chosen. We can’t simply use the request’s LBA as
the search key, because if this request is overlapping with other request, the searching result might
be wrong. For example, if we use the request LBA as the search key, when a new read request
comes we use its LBA, S, to index the hashtable; assume that another request which is overlapping
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with current request is in cache and its LBA is S’, since S is not equal S’, we could not found the
S in cache. Then we will send this request to disk. Obviously, this will result in wrong data. As
shown in Fig. 3, each entry in the hash table contains the information of the blocks in cache. The
entry is aligned to 8KB block boundary. All entries in hash table with the same hash value are
linked together in a doubly-linked list. Based on the statistics of the disk trace data, most requests
will fulfill one entry in hash table. Though still some requests are in small size, but at least they are
all aligned to 1K boundary. Thus, for each entry in hash table, there is a fragment entry point. If
the entry contains entire 8KB block, then the fragment entry point is NULL. If the entry contains
different fragments, then we can find the associated information through the fragment entry point.
For each incoming request, we round its LBA to the start LBA of 8K-aligned block, and then use it
to index in hash table. The request could be found in MEMS cache in one 8K block, or in MEMS
cache with several fragments or partial in MEMS and partial in disk. All these situation adds the
complexity of implementation.

Segment List is the list of segment head in main memory. Segment head have two copies,
one is linked in the Segment List; another is located on the MEMS cache. Segment head stores
the mapping informantion as well as the statistics data of the segment. It is used when clean the
segment. Each time we append new data or invaild old data, we should modify the segment head.
But it is too costly to update the on-MEMS segment head. Thus, we decide only the in memory
segment head needs to be update concurrently. The on-MEMS segment head will be update after
the whole segment be writen or after certain among of time. Thus, we can recover the in-memory
data structure from the on-MEMS segment heads by replaying them.

Main Memory Buffer has two types: one is the clean buffer; another is the log buffer. Clean
buffer is use to clean the cache. During the cache cleaning, several segments will be read into
clean buffer in one sequential read from the MEMS cache. Those blocks in those segements will
be combined into requests as large as possible and write back to disk. Log buffer is used to collect
incoming write request when the cache is busy. In our implement, we didn’t make benefit from
the log buffer. But we expect that clustering the requests in Log buffer into large request and write
it to MEMS cache when it is available might greatly improvement the performance. During the
simulation, we notice that a large amount of write requests arrive in very small period of time. If
we serve those requests one by one, the service time of each request is almost same: around 1 ms.
Thus the total response time of these requests will be large. If we could combine all those waiting
requests into one large request, the average response time will be decreased significantly.

Cache Cleaning: currently we only implement the simplest method. When the used size of
cache is beyond the high water mark, the clean process starts. The oldest segment will be read
into clean buffer, then the valid blocks are combined and write back to disk. As soon as the
corresponding data structure has been updated, MEMS cache could serve request again. This
method has an obvious shortcome: the request will be blocked until the disk writes is finished and
the data structure is updated even thought the MEMS cache is available during the disk write. [7]
discuss the NVRAM cache management policies which could be applied to our research too. We
are going to improve our model use different cache management policies.



4 Simulation Result

In this section, we will discuss the simulation results using our MEMS write buffer model. We use
the two piece of traces to run our simulation. Both traces are got from HP lab. One is collected
from Snake server disk 6 in 1992. The model of this disk is HP 97560 and its size is 1.3GB.
Due to limited time, | use only one day trace to perform our experiment. During one day period,
totally 77372 requests have been recorded, among which 43% is read. The detail description of
this traces could be found in [14]. Another trace is collected recently from HP Lab’s Cello server,
a time sharing server, in 1999. The disk we focus is 17G seagate hard disk. During one day period,
totally 1621165 requests have been generated and 30.1% of them are reads.

In our simulation study, we use the Quantum Atlas 10000RPM disk to act as our base disk,
and use the CMU G2 model to imitate the MEMS write buffer. We first run the model under snake
trace. Snake trace is relative old trace. The average request rate is a little samll than one request
per second. In order to study the our model performance, we scale the trace from one request per
second to sixteen requests per second.
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Figure 4: MEMS Write Buffer Model Avg. Response Time. X axis is the scaling factor, which
means the trace interarrivel time are divide by the given factor. Y axis is the model average response
time. Each curve in the figure represent one configeration of MEMS cache size.

Fig. 5 shows that when the requests of workload become more intensive, the disk fail to give
good response time to each request: it even let each request wait for nearly one second when the
scaling factor beyond seven. Employing the MEMS write buffer could prevent the fast increasing
response time. Comparing to disk, MEMS write buffer model reduce the average response time
by factor of nearly ten. The *pure’ MEMS device works even better. It doesn’t be affected by
the scaling factor. The average response time stay unchanged. The MEMS write buffer model
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Figure 5: MEMS Write Buffer Model Avg. Response Time. Y axis is logical scale. In this figure,
we compare the MEMS write buffer model with the disk and mems device performance. The
uppest curve is the Quantum Atlas 10000RPM performance without the write buffer. The lowest
curve is the “pure” MEMS device performance which totally replace the disk.

seems performing not so good regarding the *pure’ MEMS’s performance. The most important
reason is the reads request which occupy 43% of all requests. Even the MEMS write buffer absorb
almost all the write request, still a large portion of requests can’t be served by the fast MEMS
cache, which counts most of the delay time. Another reason is that the scaling method will make
the trace more bursty. Especially we know that the Unix file system like to flush data from cache
every 30 seconds. Scaling those traces will result in very bursty workload. Because MEMS device
is ten time faster than disk, those scaling bursty has litte effect on it. While disk is suffer a lot
from this bursty. For example, assuming the service time of MEMS device and disk are 0.6ms and
6ms, if the interarrive time of requests is 1ms, then the average response time for MEMS device
is still 0.6ms while the average response time of disk becomes 21ms. The small data set is also a
important reason to explain why MEMS device perform so good. The orginal disk of snake trace
is only 1.3G. While our "pure” MEMS device size is around 3.2GB. Thus only small portion of the
MEMS device is exercised which result in relative small seek time.

Fig. 4 shows that increase the cache size will result in better performance. Most of the im-
provement will be credit to the more cache read hits and decreasing clean writes. But when the
cache size reach 64MB, the improvement becomes slow. And the 512MB cache even have the
same performance as the 256MB cache.

We use the cello trace to drive our simulation. Fig. 6 reflects the total decreased disk raw
traffics. If we didn’t use the MEMS write buffer, all the traffics will directly face the disk. By
using 16MB MEMS write buffer, the total amount of requests to disk is sharply decreased to 30%
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of orginal traffic. Larger write buffer, such as 256MB, will even reduce the disk traffic to 20% of
orginal traffic. As we can see from the graph, no matter how large the write buffer is, all the write
requests are absorb by the buffer and only very small amout of the clean write been generated.
Most benefits gain from the large write buffer is the increasing read hit ratio. Larger write buffer
makes it possible to exploit more on read locality. More reads could hit a copy in the MEMS write
buffer.

Fig. 7 shows the average response time of the MEMS cache, disk and ’pure’ MEMS device
under the cello trace. Similar to the snake trace result, MEMS cache could improve disk average
response time by factor from 6 to 9. One significant difference from the snake trace result is that
the MEMS cache performance is close to the *pure” MEMS device. This is because less bustiness
of the cello trace comparing to the scaled snake trace. We also notice that only 30% of raw disk
requests are read, which means the potential disk access is lowered. Actually, Fig 6 shows that only
20% of orginal requests still reach disk when we use 256MB MEMS cache. Due to the less busty
of cello trace, the average response time of the disk and the MEMS cache are drematicly decreased
comparing to the snake trace scaled by factor 16. But the ’pure’ MEMS device is greatly increase.
After examining the data we collect, we found this is most because the larger data set the cello
trace has. Large data set requires some parameters of the MEMS device changed to incorporate



64.6

H Ave Resporse "Tine

W & & 4 8 3

=

Disk 1eMB o&4MNMEB 256MEB MEMNVS
MEMS Cache

Figure 7: MEMS Write Buffer Model Performance using Cello Traces

with the capacity, which results in performance decrease.

5 Conclusion

From this simulation study, we learn that the MEMS write buffer could significantly improve the
disk performance. Large write buffer could absorb nearly 80could be reduced by the factor of ten
in the intensive workload.

There are still a lot of improvement could be applied to our model. We are going to implement
the different cache management policies to exploit the best performance. And the “clustering”
waiting request is another interesting technique that might improve the performance.
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