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Chapter 1

Introduction

For over thirty years, magnetic disks have dominated secondary storage. During this time,

increases in the speeds and capacities of other systems components and the concomitant

demands of these components have forced storage systems researchers to attempt to keep

pace. Although efforts to increase disk performance have been successful, disks may be

nearing hard limits on bit density [3].

To close this performance gap, researchers are examining a variety of new storage

technologies. These technologies take varied forms, but share the common traits of high

density, high throughput, and high capacity. These include holographic storage [7, 13, 14],

probe-based technology based on atomic force microscopy (AFM) [4, 11], and probe-

based magnetic micro-electrical mechanical systems (MEMS) storage technologies [1, 2,

5, 6, 16].

Among these new storage technologies, probe-based data storage is a promising one.
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Probe-based data storage, including MEMS-based storage systems, will have fundamen-

tally different basic abstractions from traditional rotating magnetic (and non-magnetic)

media. While there are several alternative styles of probe-based storage currently being

studied, all of them share some common characteristics. Probe-based storage system sup-

ports probe-based reading and writing of bits, is based on non-rotating media and initially

expected to support storage densities on the order of 100 to 300 Gbit/inch2. The storage

devices are envisioned as two rectangular sleds, one with storage media and the other

with a sparse array of very small read-write heads, in the range of thousands to millions.

Seeks will requirex andy motion of one of the sleds relative to the other. These devices

are intrinsically highly parallel because some or all of the heads will be able to operate

simultaneously.

Accurate models of system components, particularly performance-limiting compo-

nents, are important for systems design. Disk models have been in use as long as disks,

and more complicated ones simulate detailed features such as controller effects, caching,

data layout, and head movement [15]. Modeling is also important for the design and

development of probe-based storage devices, especially when there are no such devices

available now.

The probe-based devices have physical and layout characteristics that determine their

performance under given workload. The objective of this thesis is to present a model

which we believe accurately describes the sled positioning, and the read/write dynamics

in the probe-based storage system. Our model, which we name it as spring model, takes
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the first step towards identifying the inherent relationship among various mechanical and

physical factors in the system and comprehensively analyzing the sled positioning and me-

dia access using the classical theory of physics and mechanics. This model is both analyt-

ically and numerically compared with another previously proposed model by Schlosseret

al. [16], which we call bang-bang model.1 We demonstrate that our spring model captures

important physical behaviors that are not reflected by simplifying assumptions.

The remainder of the thesis is organized as follows. Chapter 2 provides an overview

of the recent development in probe-based data storage. Chapter 3 describes the bang-bang

model and introduces the spring model. Chapter 4 further explores the sled movement

dynamics and compares these two models. Chapter 5 describes the modeling of read/write

time in the probe-based storage system. We summarizes our findings and conclude with

direction for future research in Chapter 6.

1“Bang-bang” is a term borrowed from servo control theory.



4

Chapter 2

Literature Review

The mechanical operations of magnetic disks have remained almost the same over the

years, although disk performance has improved dramatically. Disks consist of a collection

of platters rotating on a spindle. To read and write data, the disk controller moves an arm

with a read/write head to the appropriate track. Once the head is positioned, the media

rotates beneath the head until the correct data is beneath it.

Probe-based storage is fundamentally different from disk storage. It consists of an ar-

ray of many read/write tips over a substrate of magnetic media. These tips are very small,

and are etched out entirely from silicon using a process that is compatible with standard

IC lithography. Each tip, depending upon the design, may be situated on a small cantilever

and can individually access data at a rate of approximately 100–200 Kbit/second.

Currently there are efforts in many research centers to study and build probe-based

storage devices, most notably, Carnegie Mellon Center for Highly Integrated Information
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and Storage Systems – CHI2PS2 [2] and IBM [4, 11].

CHI2PS2 is developing science and technology leading to the creation of non-volatile

rewritable low-cost IC-based mass storage devices. Their research focus includes a selec-

tion of storage architectures that are compatible with IC fabrication technology. Another

important aspect of their design is to integrate both storage and processing in the same

chip. This incorporation can significantly improve performance, power consumption, and

cost, which will result in many new applications.

CHI2PS2 research group has developed MEMS-based prototype probe tip and posi-

tioning system, in which the media would move in a Cartesian fashion over a very limited

range of travel, and an array of thousands of microscopic read/write heads accesses the

storage media in parallel. The probe-based storage system to be discussed in Chapter 3 is

based upon the design at CHI2PS2.

Despontet al. [4] and Maminet al. [11] discuss a new technology based upon AFM.

This design, developed at IBM’s Zurich Research Laboratory, proposes using tiny inden-

tations, made in a polymer layer by AFM tips, to represent stored bits that can be read

out by the same tip that wrote them. High data rates can be achieved by the parallel op-

eration of a larger number of tiny tips in a small area. This design is believed to reach

storage densities of up to 80 Gbit/cm2, which is approximately five times greater than the

expected ultimate limit for magnetic storage.

“Millipede” is the research prototype developed at the Zurich Research Laboratory. A

large number of tips arranged in a two-dimensional array is scanned as a whole over a thin



6

polymer film that is used as storage medium. The first experimental device constructed

at the laboratory consisted of 25 tips arranged in a 5� 5 grid on a 25 mm2 silicon area.

The laboratory now has their second generation device, which has 1024 tips in a 32� 32

array in an area of 3 mm� 3 mm. Indentation sizes and spacing reach as small as 30-40

nm which leads to high storage density.

Schlosseret al. [16] and Griffinet al. [5, 6] at School of Computer Science, Carnegie

Mellon University model the data seek and access dynamics on a per request basis for a

probe-based (MEMS) storage system using first-order mechanics. They discuss the design

of the physical storage device, use simulations to explore how different physical charac-

teristics impact the device’s design trade-offs and performance, and describe a number of

interesting architectural uses for MEMS-based storage in systems. This thesis will discuss

in detail their approach in modeling the dynamics of data access and compare it with our

spring model approach.
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Chapter 3

Models for Probe-Based Data Storage

To make accurate decisions about data placement and scheduling, we need a model that

precisely describes the seek time for probe-based storage devices. This chapter describes

the design and mechanics of probe-based data storage and examine two models that rely

on macroscopic physical principles: the bang-bang model and the spring model.

3.1 Device Features and Mechanics

Probe-based storage devices can be built with a variety of parameters that yield differ-

ent performance characteristics. For example, we can vary the tip configuration, number

of sleds, and type of media. The probe-based device discussed in this thesis is based upon

the design by Carley at CHI2PS2 [2]. In this design, as shown in Figure 3.1, the probe-

based storage is composed of two parts. The upper part (the gray parallelogram in the

figure) is a movable sled of magnetic data, and the lower part is a fixed array of read/write
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Dx

Dy

ty = # tips (y)
assumed to be

even

tx = #tips (x)
assumed to be

even

bty = #bits per tip (y)

btx = # bits per tip (x)

Dx

Dy

 

Figure 3.1: Probe-Based Storage

tips which is 100 (tx) by 100 (ty). The media density is 50 nm per bit. Each tip can assess

data at a rate of 200 Kbit/second. The tip array is sparse, so each tip can manipulate a rect-

angle of bits while the sled is moving above it. This rectangle is highlighted in Figure 3.2

whereDx andDy are the distances that one tip can access respectively.

Figure 3.2 shows an example data layout scheme. This data access pattern is based

upon two assumptions: first, only one row of tips is active at a time, and second, tips are

capable of reading/writing in both directions of+y and�y. Each sector’s bits are striped

on the media along thex-axis, so the first bit is accessed by the first tip, the second by the

second tip, etc. Thus the sector is read/written by all the tips of one row in parallel, while

the sled moves above it in they direction. After one row of tips accesses data along the
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BPS = bits per sector

 

Figure 3.2: Mapping Disk Sectors to Probe-Based Storage

y-axis, the next tip row is activated and the sled reverses direction. After all the rows of

tips on the chip substrate finish reading/writing a column of bits, the sled repositions to

the next column which is then to be accessed. To minimize sled movement, the even rows

access data in�y direction, while the odd rows take the+y direction.

The media sled is suspended a couple of microns above the tip substrate by silicon

beams that act as springs, and moved around by forces generated by lateral resonant mi-

croactuators, as shown in Figure 3.3. In this figure, the shaded parts move and the white

parts do not. Electric forces applied to the fingers of the microactuator combs exert elec-

trostatic forces on the sled that cause it to move in thex andy direction, overcoming the

forces exerted by the anchors and beams that keep it in place.

To read or write data, the sled has to be moving over the tip array at a specified velocity.

Requests are queued, and after servicing one request, the sled will reposition itself so that

the tip array can access the data required by the next request. This movement is called
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Microactuator

Media Sled

Anchor

Figure 3.3: Sled and Microactuators

seek. We describe two models for this component of access time in Chapter 3. Once the

sled is in position, it moves over the data with a constant velocity. Theread/write timeis

a function of the sled velocity and the data layout, and is modeled separately, as described

in Chapter 5.

In terms of mechanics, there are three forces working on the sled when it moves: the

external electrostatic force produced by the actuator, the restoring force from the spring,

and the damping (friction) force mainly from the air. Each of the three forces affects the

sled movement. The electrostatic force generated by a single comb finger is expressed

with the equationF = �0V
2(b

g
). Here�0 is the permittivity of free space,V is the applied

voltage,b is the beam thickness, andg is the comb finger gap.
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3.2 Bang-Bang Model

The bang-bang model, our term for the model presented in a generalized form by

Schlosseret al. [16], describes the dynamics of the sled movement in probe-based data

storage system according to Newtonian laws of mechanics. The sled movement in the

bang-bang model is described by its position, velocity and acceleration. In this model,

the seek timetseek is decomposed into two parts: the positioning timetpos and the set-

tling down timetsettle. When the sleds moves from one position to another, the model

assumes that it is accelerating with maximum possible acceleration to the midpoint and

then decelerating the remaining half distance.

First, the calculation of positioning timetpos uses the following standard formula:

xpos = x0 + v0tpos +
1

2
atpos

2 (3.1)

Here we get the positionxpos given initial positionx0, initial velocityv0, timetpos, and ac-

celerationa. Because the bang-bang model uses constant acceleration and initial velocity

of zero, we can derive the following equation for the time to reach half the distance:

1

2
xpos = x0 +

1

2
atmid

2

wheretmid is half of the total positioning time. Withx� = xpos � x0, the above equation

yields

tmid =

r
x�

a

In the bang-bang model, the total positioning time doubles the time spent on moving half
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the distance. Therefore,

tpos = 2tmid = 2

r
x�

a
(3.2)

The sled needs an additional time to settle down, which is the time required for the

oscillation of the spring-mounted sled to damp enough for the probe tip to function. The

bang-bang models assumes a constant settle down time. If including this time, we get the

total seek time as proposed by the bang-bang model:

tseek = 2

r
x�

a
+ tsettle (3.3)

Based upon Equation (3.3), the total seek time depends upon the ratio of the distance

moved and the acceleration. When the sled moves a longer distance, it takes more time

with a fixed. On the other hand, to move the same distance, when accelerationa is larger,

it takes less time. According to Equation (3.3) other mechanical characteristics of the

probe-based storage device such as spring force and damping force do not directly affect

the seek time. They are absorbed by acceleration. Equation (3.3) can be used to calculate

the sled’s seek time in eithery or x dimension. When the sled moves in both directions,

the seek time is the maximum of those inx andy directions.

In practice, and as our results will show, Equation (3.3) is an aggressive assumption

leading to underestimates of seek time. Acceleration is not a constant in sled movement;

it changes over time. And velocity does not vary linearly over time. Besides, the bang-

bang model takes constant settle down time while intuitively the seek time is substantially

small when the distance moved approaches zero.
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In the recent paper by Griffinet al. [6], the above model is modified so that the accel-

erationa could change along with position. It uses the piecewise-constant approximation

to allow the acceleration to change according to the spring force at different positions of

the sled. It breaks the whole sled’s movement process into a set of smaller “chunks”, with

the net acceleration in each chunk being the sum of the acceleration due to the actuators

and the acceleration due to the springs. This causes the acceleration to change discon-

tinuously in the sled movement. When the number of “chunks” becomes infinitely large,

this discrete modeling practice is close to a continuous version of modeling approach,

which is essentially the spring model we describe in Section 3.3. This paper will focus on

Equation (3.3) when talking about the bang-bang model.

We believe that the bang-bang model, while useful for understanding some of the

characteristics of probe-based storage, leaves out important features of the underlying

architecture. The spring model, which is to be described in Section 3.3, is based more

closely upon the mechanics involved in the sled movement.

3.3 Spring Model

This section presents our approach to model the sled’s movement in the probe-based

storage system, which is the major contribution of the thesis. The spring model describes

the dynamics of the probe-based device using classic mechanics theory. In the model, the

movement of the sled is determined by the following three forces: the external force, the

spring force, and the damping force. Equation (3.4) is the key equation of describing the
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mechanics:

m�x + � _x + kx = F (t) (3.4)

Here,x is the position of the sled at timet, m is the mass of the moving sled,� is

the damping coefficient,k is the coefficient of the elasticity of the restoring force (spring

constant), andF (t) is an external force.

The left-hand side of Equation (3.4) consists of three terms. The termm�x describes

the movement of sled with massm according to Newton’s Second Law of Motion, where

�x is the acceleration rate. The higherF is, the larger the acceleration, and vice visa.

The second term� _x describes the impact of damping upon the movement, where_x is

the movement velocity. With force given, large damping or friction will lead to lower

velocity. The third term of Equation (3.4),kx, is about the effect of the restoring springs

which indicates that the stronger the spring is (largerk), the smaller distance the sled

could move (lessx) at a given level ofF . For example, it is harder to compress a stronger

spring.

The actual movement of the sled over time is complicated because at any time point

the sled position, velocity and acceleration are determined by the above-mentioned three

forces simultaneously. Solving this Equation (3.4), which is a classical second-order non-

homogeneous differential equation, two steps are used according to Zeldovichet al. [17].

For more detailed derivation of the solution, please see Appendix A.

Section 3.3.1 and Section 3.3.2 present the two steps to derive the key Equation (3.4)

and provide the insights as to how the physical and mechanical nature of the sled device
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affects the whole movement process, its dynamic behavior, and seek time.

3.3.1 Solution of Spring Model with No External Force

The first step considers free oscillation,i.e., the case without external forceF . Equa-

tion (3.4) then becomes the homogeneous equation:

m�x + � _x+ kx = 0 (3.5)

It turns out that the solution to Equation (3.5) depends upon the sign of the discrimi-

nantD,

D = �2 � 4mk (3.6)

When�2 > 4mk, the solution for Equation (3.5) is as follows:

xt = C1e
�at + C2e

�bt (3.7)

whereC1 andC2 are constants to be determined by the initial conditions of the sled,

anda andb are positive and they are functions of�, k, andm (see Appendix A).

Solution (3.7) is applicable when there exists a strong damping force or dense friction

(� is bigger than
p
4mk). In this situation, the moving mass does not oscillate at all but

returns to its equilibrium as quickly as possible. A typical example involving strong fric-

tion is the case that when an object is dipped into oil, the amplitude of vibration dies out

exponentially as the energy of oscillation is transformed into frictional heating. However,

in the probe-based data storage model, because the major damping factor is from air, the

case of large damping does not apply and the sled oscillates before it finally settles down.
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When�2 < 4mk, the general solution to the Equation (3.5) becomes:

xt = C3e
�rt cos!t+ C4e

�rt sin!t (3.8)

where

r =
�

2m
(3.9)

! =

r
k

m
� �2

4m2
(3.10)

! is defined as resonant frequency, andC3 andC4 are two constants to be determined

by the initial condition of the sled. Equation (3.8) is different from Equation (3.7) because

it includes oscillation partscos!t andsin!t.

This solution is called small damping or slight friction, in which the sled movement

oscillates while it gradually moves towards the final equilibrium. The smaller� is, the

oscillation plays a bigger role during the movement. When�2 = 4mk, the solution is

called critical damping.

3.3.2 Solution of Spring Model with External Force

The solution to the Equation (3.4) is not yet complete, because we have not considered

the external force. Here we assumeF is non-zero and the mechanics of the sled becomes

a forced oscillation. To simplify the model, throughout this paper, the external force

is assumed to be a constant during one sled movement. In other words, to move any

particular distancex, F has a constant value and does not change over time. However, to

move the sled to a new position,F must take on a different value.
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AssumingF is independent of timet, Equation (3.4) becomes

m�x + � _x+ kx = F (3.11)

Equation (3.11) has a specific solution which occurs when the sled stops, namely, the

sled reaches its equilibrium state. At that time both sled acceleration and velocity are

zero, i.e., �x = _x = 0. If we definex� as that final position that the sled settles down,

Equation (3.11) becomes

0 + 0 + kx� = F

which yields the following equation:

x� =
F

k
(3.12)

According to Zeldovichet al.[17], the final solution for Equation (3.11) is obtained by

adding the solution of Equation (3.12) to the general solution of Equation (3.8), as given

by Equation (3.13).

xt = C3e
�rt cos!t+ C4e

�rt sin!t+
F

k
(3.13)

Herer and! are calculated from Equation (3.9) and Equation (3.10). The constants

C3 andC4 can be obtained by using the following two equations about the starting position

x0 and initial speed_x0 of the sled:

x0 = C3 + 0 + F
k

_x0 = C3[�re�rt cos!t+ e�rt sin!t(�!)]jt=0 +C4[�re�rt sin!t+ e�rt cos!t!]jt=0

Solution of the above system of equations is as follows:
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C3 = x0 � F
k

C4 =
_x0+rC3

!

In this thesis we assumex0 and _x0 are zero. No generality is lost by this assumption

because when the initial position is defined as zero,x is simply defined as the distance

moved instead of corresponding to the real coordinates. Thus the two constants become

the following:

C3 = �F
k

, and

C4 =
rC3

!
where the values ofr and! can be found using Equation (3.9) and (3.10).

The behavior ofx over t could take different shapes depending upon parameters, as

illustrated by Figure 3.4a through 3.4d. Here we use hypothetical values only for the

purpose of illustration. Figure 3.4a the case for very small damping wherem = 3� 10�4

kg, � = 0:1 kg/s, k = 700 N/m, andF = 700 � 10�4 N. Because� is small relative

to k andm, the sled oscillates frequently before it finally stops. Figure 4b also uses

a small damping force wherem = 3 � 10�4 kg, � = 0:4 kg/s, k = 700 N/m, and

F = 100� 10�4 N. The damping force in Figure 3.4b is slightly stronger compared with

that of Figure 3.4a. Both Figure 3.4a and Figure 3.4b are based upon Equation (3.13).

Figure 3.4c is a critical damping case,�2 = 4mk, m = 12 � 10�4 kg, � = 1:8 kg/s,

k = 700 N/s, andF = 100�10�4 N. Finally, Figure 3.4d that is based upon Equation (3.7)

illustrates large damping in which�2 > 4mk, m = 12� 10�4 kg, � = 2:5 kg/s,k = 700

N/m, andF = 100� 10�4 N. The sled does not oscillate at all but slowly converges to the

new position.
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Equation (3.13) is the key equation for the spring model in this paper, which is in-

strumental for expressing how various mechanical and physical factors affect the device

functioning. It also enables us to find the velocity and acceleration rate at anyt by taking

first- or second- order differentiation. The velocity equation is derived as follows:

vt = (!C4 � rC3)e
�rt cos!t� (!C3 + rC4)e

�rt sin!t

and the acceleration equation is as below:

at = [(r2 � !2)C3 � 2r!C4]e
�rt cos!t+ [2r!C3 � (!2 � r2)C4]e

�rt sin!t

The essence of the sled movement is represented by the right-hand side of Equa-

tion (3.13), where the first two terms are oscillation parts with a constant resonant fre-

quency!, and the third term is based upon the final position of the sled. Whent is large

enough, the first two terms of Equation (3.13) become so small that the final position is

solely determined by the third term.

3.3.3 Impact of Mechanical and Physical Characteristics

This section explores the relationship among various parameters and how they affect

the sled movement and seek time under small damping. Their relationship is based on

Equation (3.10) which computes the resonant frequency! and Equation (3.12) which

describes the sled’s final equilibrium. The purpose of studying these interactions is to

optimize the physical design of the storage device in order to achieve the desired level of

performance.
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Increase in Value Description x� ! t

F external force + 0 +
k spring coefficient � + �
m sled mass 0 + +
� damping coefficient 0 � �

Table 3.1: Impact of Parameters upon Distance Moved, Resonant Frequency, and Seek Time in
the Spring Model

Table 3.1 summarizes these parameters and their impact upon oscillation frequency!,

seek timet, and distancex�. In Table 3.1, a “+” indicates an increase, a “�” indicates a

decrease, and “0” indicates no change.

First, a stronger forceF will lead to a greater sled movementx� but does not change!,

as indicated by Equation (3.10). And because the distance is longer, seek timet increases.

The spring coefficientk is closely related to bothx� and!. If other factors are held

constant, if the spring is more resilient (higherk), the sled moves less distancex� accord-

ing to Equation (3.12). A smallerx� results in less time when other parameter values are

unchanged. On the other hand, the value of the resonant frequency! increases.

An increase in the mass of the sledm has no impact upon the distancex� but it in-

creases the resonant frequency!. Because it is more difficult to change the velocity of a

moving sled if it is heavier, it takes longer time to move to a new position, which results

in greater seek time.

Finally, a higher damping force coefficient� changes the dynamics of sled movement

by reducing its resonant frequency!. When the friction is intense, the sled is less likely to

oscillate. Taking an extreme case as an example, when� is large enough, the dynamics of
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the sled will switch from Equation (3.8) to Equation (3.7), causing the oscillation behavior

to disappear. On the other hand, change of� does not alter the final distance movedx�.

But seek time is smaller in the oscillatory region because it is easier for the sled to settle

down under stronger friction.

The foregoing analysis indicates that the impacts are multi-dimensional and vary with

different parameters. In small damping, for a fixed position, if a faster reposition time is

desired, we could can a lower massm, a largerk, a greater�, or combination of them.

The spring model addresses these parameters. Based upon the above discussions, the

change of these parameters will affect the performance of probe-based storage devices,

which is useful when designing such devices. However, the bang-bang model leaves out

these interactive parameters when describing the physical movement of the sled in the

device.

Chapter 4 will present our experiments to further understand the two models.
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Chapter 4

Numerical Simulation

Chapter 3 shows that the sled movement is a process determined by several forces and

affected by various mechanical and physical characteristics. This chapter presents simu-

lation experiments to further recognize the difference in modeling repositioning dynamics

between the spring model and the bang-bang model. Experiments are taken for the pur-

poses of computing the seek time, exploring the sensitivity to the variation of parameters,

and developing further insights about the dynamics.

4.1 Experiment Design

The key equations used to calculate the seek time are Equation (3.3) for the bang-

bang model and Equation (3.13) for the spring model. These two equations involve two

different sets of parameters, which makes numerical comparison difficult. For example,

for a given acceleration, the final distanced movedx� is changing in the bang-bang model
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but not in the spring model. We make the comparison consistent by applying the inherent

relationship among various parameters.

First, we choose a series ofx� that the sled is going to reach. In the bang-bang model,

the calculation of the seek time is straightforward as Equation (3.3) can be analytically

applied with givenx�. However in the spring model, the dynamics equation does not

directly involvex� but we could varyF to get each value ofx� based upon Equation (3.12).

Because when the final distance is chosen, the force needed is determined by Equation

(3.12) in the spring model. Each obtainedF is then plugged into Equation (3.13) to

calculate the dynamics ofxt and then calculate the seek time.

Givenxt, a numerical solution is used, which regenerates the dynamics ofx against

time t. By plottingx againstt and imposing a tolerance range, we can calculate the seek

time.

It is necessary for the spring model to set a tolerance range because with the presence

of restoring and damping forces, the sled is continuously oscillating, though the amplitude

is decreasing. We say the sled stops when its oscillation amplitude no longer exceeds a

pre-specified range, called tolerance. Because the distance between two neighboring bits

is 50 nm, we choose a tolerance value as�25 nm. When recording the change ofx along

with t in the simulation, we keep the most recent time whenx is still outside the tolerance

range, which helps us to determine how long it takes the sled to settle down.
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Parameter Description Values
m mass (1; 2; 3)� 10�4 kg
F external force (0; 10; 20; : : :; 500)� 10�4 N
k spring coefficient 300; 500; 700 N/m
� damping coefficient 0:445; 0:482; 0:626; 0:743; 0:763 kg/s
! resonant frequency 220 Hz
a acceleration 115 m/s2

tsettle settle down time 1:447 ms

Table 4.1: Parameter Values in the Simulation

4.2 Choice of Parameter Values

Table 4.1 summarizes the parameters and their value ranges adopted in the thesis.

First, the value form is approximated according to the size of the sled. Because the

polysilicon density for the sled is 2.3 g/cm3,m for the moving media sled is2:3�10�4 kg

(2:3�10�10�1�10�6) if the sled has the dimensions: length (1 cm), width (1 cm) and

height (1 mm). The size of sled can vary and so does the mass. Therefore we choose the

following three reasonable values for massm in the experiments:1� 10�4 kg, 2� 10�4

kg and3� 10�4 kg.

Once we knowm anda, forceF is determined by

F = ma (4.1)

Schlosseret al. [16] sets the accelerationa 115 m/s2. If m is 2 � 10�4 kg, F is

230 � 10�4 N (115 � 2 � 10�4). This is an approximate and we allowF to vary in our

experiments to explore the effect of differentF upon the dynamics.F ranges from a

minimum of zero to a maximum of500� 10�4 N which roughly doubles the estimate of

230� 10�4 N.
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The spring constantk is chosen according to sled’s final equilibrium equation (3.12),

which determines the value ofk givenF andx�. The maximum length that a sled can

move is about100 �m according to Schlosseret al.[16] and Carley [2]. Thus we can have

an idea about possible values fork. AssumingF is 230�10�4 N andx� is 50 �m,k is 460

N/m. This is one reasonable estimate. However, we determine the range of values used

in this experiment by looking at how realistic the seek time is. We wish to limit the seek

time to several milliseconds at most. Ifk becomes too small compared with the external

forceF , the sled will spend a lot of time oscillating and the seek time will be too long.

Therefore, we varyk in the experiments from300, 500, to 700 N/m.

In the spring model,� is set through the following two methods. First, according to

the frequency equation (3.10),� is calculated from the values ofm, k, and!. Schlosser

et al. [16] points out that! is 220 Hz in their first generation model, which is consistent

with thex-dimension settling down time of 1.447 ms. The same frequency of220 Hz is

used for the two models, which results in the value of 0.626 kg/s for�, givenk = 500

N/m andm = 2� 10�4 kg respectively.

The second method of determining� is by looking at EquationD = �2 � 4mk. With

small damping, i.e.,�2 � 4mk < 0, then givenm = 2 � 10�4 kg andk = 500 N/m,

� should be less than0:632 kg/s (
p
4� 2� 10�4 � 500). Both methods suggest that�

should be around 0.6 kg/s or smaller, with the upper limit depending uponm and k.

Therefore, throughout the experiments,� is calculated from Equation (3.10). When using

the default value of massm = 2� 10�4 kg, it is to take the following three values:0:482
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Figure 4.1: Dynamics of Sled Movement in Spring Model

kg/s fork = 300 N/m, 0:626 kg/s fork = 500 N/m, and0:743 kg/s fork = 700 N/m.

In the experiment when massm changes, it has different values which will be discussed

later in Section 4.3.

4.3 Dynamics of Models

Figure 4.1a shows the movement of the sledx over timet from initial position to

the final position of 100�m, where the parameters are set at their default values:F =

500 � 10�4 N, � = 0:626 kg/s,m = 2 � 10�4 kg andk = 500 N/m respectively. All

the figures in the rest of this paper use default values of the parameters unless explicitly

discussed. The two horizontal lines indicate upper and lower tolerance that determines

the seek time for the spring model. These two lines are within50 nm of each other.

Figure 4.1b is a more detailed picture of the sled’s dynamics when it is close to settling

down, i.e.,t is between 4.5 ms and 8 ms. The seek timetseek for 100�m distance is about
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Figure 4.2: Dynamics of Sled Movement in Bang-Bang Model

6:6 ms because after that time point the sled oscillation will no longer exceed both the

upper (100�m + 25 nm) and lower (100�m - 25 nm) tolerance lines.

Figure 4.2 displays the movement of the sled over time for the bang-bang model where

acceleration equals its default value in Table 3.1 andx is 100�m. In contrast to the

dynamics of the spring model in Figure 4.1, the speed of the sled is linearly increasing

during the first half of time and then is linearly decreasing during the second half. The

overall shape of the dynamics curve is convex first and then concave.

Figure 4.3a plots the seek time estimated by the two modes against the distance moved.

This figure indicates that for both models the seek time increases along withx� but at a

decreasing rate. Figure 4.3a also show the difference in the seek time estimated by the two

models. More specifically, the seek time estimated by the bang-bang model is smaller for

almost every possible value of distancex�. When the spring model estimates that it takes
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Figure 4.3: Plot of Seek Time against Distance in two Models

the sled 6.6 ms to move a distance of 100�m, the bang-bang estimates the seek time to

be3:3 ms.

Figure 4.3b gives us a zoom-in view for Figure 4.3a. We can see that when the seek

distance is extremely small, the seek time estimates by bang-bang model are greater. This

is because the bang-bang model assumes a constant settling down time of1:447 ms, no

matter how small the distancex� is, which is inaccurate because positioning time ap-

proaches zero when the distance moved is infinitely small.

There is a straight line in Figure 4a and 4b, which is plotted according to Equation (3.3)

but here the value of accelerationa changes. It displays the situation in whicha is re-

set along with the variation ofF according toF = ma. The reason for doing this is to

indicate that the two models take different assumptions. In bang-bang model, acceleration

is constant. For example, moving twice the distance,F in the spring model doubles.

However, Ifa in the bang-bang doubles as well, the result would be a constant seek time
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because the increase ofa andx offset each other (see Equation (3.3) and Equation (3.12)).

The above experiments use tolerance of�25 nm, half of a bit width. When the toler-

ance varies, the seek time changes as well, as shown in Figure 4.4, in which the tolerance

is set to�10 nm,�25 nm, and�40 nm. The change of the tolerance does not affect the

estimated seek time for the bang-bang model which uses a fixed settle down time based

upon resonant frequency!. For the spring model, the more lenient the tolerance, the

smaller is the seek time. But the estimated seek time is still much longer in the spring

model than for the bang-bang model even if a lenient tolerance is applied.

Figure 4.5 studies the impact of mass parameterm upon the seek time, in whichm is

1 � 10�4 kg, 2 � 10�4 kg, and3 � 10�4 kg. For the spring model, the change of mass

m leads to different values of� according to Equation (3.10). Withk = 500 N/m given,

� = 0:445 kg/s form = 1 � 10�4 kg, � = 0:626 kg/s form = 2 � 10�4 kg which is
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Figure 4.5: Plot of Seek Time against Distance under Different Mass

the default value, and� = 0:763 kg/s form = 3 � 10�4 kg respectively. In the bang-

bang model, acceleration varies correspondingly. WithF = 230� 10�4 N, according to

Equation (4.1),a = 230 m/s2 for m = 1 � 10�4 kg, a = 115 m/s2 (default value) for

m = 2� 10�4 kg, anda = 76:7 m/s2 for m = 3� 10�4 kg. The results indicate that for

both models, with other factors unchanged, the heavier the sled, the greater the seek time,

which is also consistent with Table 3.1. The seek time in the spring model is higher than

that in the bang-bang model for each of the mass values.

The impact of different values ofk upon seek time is shown in Figure 4.6, wherek is

300 N/m, 500 N/m, and700 N/m. For the plotting of the spring model, the parameters�

is adjusted whenk changes according to the resonant frequency (!) Equation (3.10). This

is because the resonant frequency is fixed at 220 Hz for both models. Differentk does not

change the seek time for the bang-bang model because Equation (3.3) does not involve
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Figure 4.6: Plot of Seek Time against Distance under Different Spring Coefficients

this parameter. Figure 4.6 shows that the seek time estimated by the spring model is larger

than that of the bang-bang estimates, under each value ofk. Whenk changes, the spring

model suggests that seek timet should vary, but the seek time by the bang-bang model

stays the same.

In the above, we have compared the dynamics and seek times of the bang-bang model

and the spring model. The spring model more precisely models the underlying mechanics

of probe-based storage and has more parameters specifically describing those mechanics.

With consistent physical parameters, seek times estimated by the spring model are longer

than those of the bang-bang model except for very short seeks. This is because the bang-

bang model optimistically uses a constant maximum acceleration, and the spring model

describes the variation of acceleration in time. The spring model incorporates settle time

calculation as a function of seek distance, tolerance, and resonant frequency, whereas the
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bang-bang model uses a constant settle time based on estimates of these parameters. Thus,

we think the spring model is more accurate than the bang-bang model.
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Chapter 5

Read/Write Time for Both Models

This chapter analyzes the read/write time for both the spring and bang-bang models. In

probe-based data storage system, the access time for a data request is the sum of the seek

time and the read/write time. After the sled reaches the required position, the tips start

reading/writing data.

Here we consider a constant read/write speed. Let us definevrw to be the velocity at

which tips read and write. The read/write timetrw could be decomposed into four parts:

actual read/write timetA, turnaround timetB, tip switch timetC , andx-movement time

tD as shown in Equation (5.1).

trw = tA + tB + tC + tD (5.1)

In Equation (5.1),tA is derived by dividing the total distance traveled by the sled in

reading/writing with the velocityvrw; tB is calculated by multiplying the total number

of turnarounds with the time used on one turnaround;tC is obtained by multiplying the
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Figure 5.1: Read/Write Time

number of tip switches with the time spent on one tip switch; andtD is also calculated

accordingly.

In Equation (5.1), turnaround timetA is necessary because the sled’s direction may

be reversed during the process of reading/writing. AndtB is the time needed for the

activation and switch of tips. In our probe-based device, only one row of tips is active at a

time. After one row finishes reading/writing data, the next row is activated.x-movement

is required for the sled to move from one column of bits to the next column inx-dimension

which is a seek activity and will involve the mechanics discussed in Chapter 3.

5.1 Experiments of Read/Write Time

Equation (5.1) is used to calculate the read/write time. The calculations of the first

three terms are the same for the spring and the bang-bang models. But for the last term,

i.e., thex-movement time, the two models take different approaches because we must
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reposition the sled from one column of bits to the next one. According to the dynamics

models developed in Chapter 3, the time on one movement inx-dimension can be calcu-

lated by using the following three methods. Here the distance moved is 50 nm, one bit

size.

� Using bang-bang model and omitting the settling down timetsettle because we think

it may not take a constant time of 1.447 ms to settle down for such a small distance

of 50 nm. The result is 0.0417 ms.

� Using the bang-bang model with the settling down time. The time is 1.49 ms.

� Using the spring model, which depends upon parameters values. Givenm = 2 �

10�4 kg, � = 0:74 kg/s,k = 700 N/m, andF = 3:5 � 10�5 N, the result is 0.893

ms.

Thex-movement time obtained through the above three methods is different. In our

experiments, we takevrw = 0:01 m/s,a = 115 m/s2. According to first-order mechanics,

time for one turnaround is2� vrw
a

= 0:174 ms. The tip switch time is assumed to be zero

because it takes almost zero time to activate and switch tips.

Figure 5.1a plots the read/write time needed against the number of sectors processed

when considering four cases: time without including those spent on turnaround andx-

movement; total read/write time with thex-movement time using bang-bang model but

omitting settle down time; total read/write time with thex-movement time using bang-

bang model; total read/write time with thex-movement time using spring model. The
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number of sectors ranges from 0 to7; 692; 000which is the maximum number that the sled

can accommodate per request according to our design. We assume there are 512 bytes per

sector in the experiments. The figure shows that the read/write time for7; 692; 000 sectors

is around 2000 seconds. Accordingly, we get the throughput 1.9 Mbyte/second which is

consistent with the access rate of100 � 200 Kbit/second per tip (there are 100�100 tips

in the design).

Figure 5.1a shows that read/write time increases linearly with the number of sectors.

The majority part of the time is spent on actual reading/writing. Because the overhead time

is quite small, the total time plotted by using three differentx-movement time calculations

is similar(the three lines overlap).

Figure 5.1b displays the results with much less number of sectors: 1, 2, ..., up to

100. Here we plot two lines representing the read/write time with or without overhead

(turnaround andx-movement). Being identical to Figure 5.1a, this figure suggests that

overall linear relationship still holds even though small amount of data are processed

through the probe-based system.
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Chapter 6

Conclusion

This thesis develops the spring model, a new approach to analyze the dynamics of sled

movement in probe-based storage system by using classical physics and mechanics theory,

and identifies major factors that contribute to this process.

The spring model is different from the previous bang-bang model in probe-storage sys-

tem modeling because it describes how acceleration varies continuously in time. It models

the physical system at a lower level, and can accommodate a wider range of parameters. It

provides a more accurate calculation of the settle time, based on these underlying physical

and mechanical parameters. Higher-level system design decisions depend upon accurate

models of low-level behavior, and we have described important differences in the two

modeling approaches that warrant further investigation.

While we believe the spring model is a promising approach for the new generation

of probe-based storage system, there are several research areas that could be examined
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further. Firstly, the assumption of externalF being independent oft can be reconsidered

because the electric voltage of the probe-based storage system may vary with time. So

it is interesting to understand how the alternation of this assumption may change the dy-

namics process and seek time estimation. Secondly, we need to study how the two models

estimate the read/write time when considering the repositioning mechanics involved in

x-dimension movement from one column of bits to the next one. And thirdly, it needs fur-

ther examination on how the estimated seek time by the two models differ in simulations

using application benchmarks.
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Appendix A

Solution to the Second-Order

Differential Equation

This appendix provides the solution for the second-order differential Equation (3.5) where

m, �, and k are parameters. The deduction of solution closely follows Zeldovichet

al. [17]. In many aspects, the properties of this equation are similar to those of first-

order homogeneous linear equations. For instance, it is easy to verify that ifx1(t) is a

particular solution of (3.5), then also isCx1(t), whereC is any constant; that ifx1(t) and

x2(t) are two particular solutions of (3.5), then their sumx(t) = x1(t) + x2(t), is also a

solution of that equation.

From the above, then if we have found two particular solutionsx(t) = x1(t) andx2(t),

then their linear combination,

x(t) = C1x1(t) + C2x2(t) (A.1)
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whereC1 andC2 are two arbitrary constants, is also a solution of that equation. The

general solution of a second-order differential equation is obtained via two integrations

which results in two arbitrary constants. Therefore the expression (A.1) can be used as

the general solution of Equation (3.5). It is obvious thatC1 andC2 should not be linearly

dependent with each other.

In order to find the two independent solutions of Equation (3.5), we use Euler’s ap-

proach which takes the form

x(t) = ept (A.2)

wherep is a constant to be found. Substituting (A.2) into (3.5) we get the following

characteristic equation

mp2 + �p+ k = 0 (A.3)

In solving the above equation, there are different cases, depending upon the sign of

the discriminant:

D = �2 � 4mk

If the friction is great, namely, if�2 > 4mk, then (A.3) has real roots:

p1;2 =
�h�p�2 � 4mk

2m

Let p1 = �a andp2 = �b. Then, on the basis of (A.1) and (A.2), we get the general

solution of (3.5) in the form of Equation (3.7). According to this equation, in the case of
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strong friction, the deviation of a point from the equilibrium tends to zero exponentially

with t without oscillations.

If the friction is small, that is to say, if�2 < 4mk, then (A.3) has imaginary conjugate

roots:

p1;2 =
�h
2m

� i

r
k

m
� h2

4m2
= �r � i!

wherer and! are represented in Equation (11) and (12). Then we get the general

solution (A.1)

x = C3e
�rt+i!t + C4e

�rt�i!t = e�rt(C3e
i!t + C4e

�i!t) (A.4)

The termsC3e
i!t andC4e

�i!t are periodic functions with frequency!. Applying

Euler’s formula, we could rewrite Equation (A.4) into Equation (3.13).

In the case when�2 = 4mk, we have two equal real roots, the solution will become:

x = C5e
�at + tC6e

�at

HereC5 andC6 are two arbitrary constants.


