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Abstract 
For mobile applications, power dissipation is crucial. Compared with disk-

based storage, MEMS-based storage provides a more low-power and robust solution 
for portable applications. This project presented several methods to reduce the total 
energy in MEMS-based storage device and analyzed the trade off between I/O 
performance and power dissipation. Based on our experiments on a real workload 
(HP snake trace), aggressively spin-down method can reduce total energy by 50%, 
merging sequential requests method can save servicing energy by 18%, and sub 
sector access method is estimated to reduce servicing power consumption by about 
30%. 

 
1. Introduction 
 
Besides of a better I/O performance by an order of magnitude, MEMS-based storage 

devices have many significant advantages over disk drives, such as small physical size, 
good portability, low power, and potential to integrate processing within the same 
substrate [1]. For portable applications such as notebook PCs, PDAs, video camcorders 
and biomedical monitoring, they need a more robust and low power consuming storage 
device, because many of these applications involve rapid device rotation (e.g., rapidly 
turning a PDA) and are prone to inducing shock (e.g. rapidly turning a PDA.). MEMS 
device has a high reliability by employing multiple sleds or RAID scheme on single sled, 
increasing actuator force, decreasing sled mass and increasing spring force to increase the 
shock tolerance [1]. But the most important advantage comes from its low power physic 
characteristics:  

(1) Sled has much less mass than disk platter and takes far less power to keep in 
motion.  

(2) The electronics of MEMS devices lower power requirements for operating the 
read/write tips. 

(3) MEMS device has a faster transition between active and standby mode. (About 
0.5ms [2]) So it can efficiently employ a standby mode—stopping sled movement during 
periods of inactivity, to save power. 

Because MEMS-based storage device is a totally brand-new device, first of all, we 
had to make clear where the power goes when the device is working. In the following 
subsections, we summarized the whole power consumption distribution in different states 
of MEMS based storage device. 

 
1.1 Power consumption model in MEMS-based storage device 
 
From [1][2], we have collected some preliminary data about MEMS device power 

consumption: each active probe tip and its signal processing electronics consume 1mW; 
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keeping Sled in motion is 0.1W. Therefore, in active mode (data access), 1,000 
simultaneously active tips, for example, would consume 1.1W totally. Also, for standby 
mode (stopping sled movement) power consumption is estimated to be 0.05W. Because 
the time switching between active and standby mode is only 0.5ms, we can easily switch 
between active mode and standby mode. 
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Figure 1. Power state switching process in MEMS-based storage device 

 
Figure 1 demonstrates how the five power states—Inactive, Startup, Seeking, 
Accessing and Idle, coordinate to work in MEMS-based storage device. Their exact 
descriptions are as follows: 

(1) “Seeking”: Sled is driven by the actuators, such that media access can be 
performed.  In this mode, only active sled contribute to power consumption. 

 
(2) “Accessing”: Sled is moving and necessary tips are activated to access servo 

information and data. Thus, active sled and active tips both consumed power. 
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(3) “Inactive” or "Standby”: Sled is not moving, with perhaps a small power drain to 
hold it in place. In this state, power only consumed by inactive sled. 

 
     (4)“Startup” means the switch mode from inactive to active mode. Because the switch 

time is only 0.5ms, we get the following function: (Energy for tips on and off omits.) 
 Switch power consumption = sled_active_power_mw * startup_time_ms / 1000000.0 

= 100 *0.5 / 1000000.0 =0.000005 J 
 

(5) “Idle” means the waiting mode for MEMS to make sure that there are no active 
requests in the queue and decide to switch from active to inactive mode. There is a 
before_inactive_delay (idle time out) parameter in the parameter file, which defines 
how long the MEMS wait to confirm previous request is the last request in the queue. 
In the idle mode sled keeps active (repeat doing seek loop) and tips are active (repeat 
accessing servo information). So if it takes a long time in idle mode, the power will 
be greatly consumed by the active tips and sled. 
 
1.2 Power distribution in MEMS-based storage device 
 

To decide which state in the whole picture dominates the total power 
consumption, we set up an experiment to calculate specific energy consumption in the 
four modes separately: 
(1) Servicing energy in active mode—seeking, accessing servo information and 
accessing data. 
(2) Inactive energy for inactive mode. 
(3) Startup energy for switch from inactive mode to active mode. 
(4) Idle energy for switch from active mode to inactive mode – seeking and accessing 
servo information until exceed idle time out.  
 

We used two workloads to test the power distribution of CMU G2 MEMS-based 
device (Idle time out is set as 1s). Trace.seagate is an internally generated synthetic 
workload (traces of validating I/O activity on Seagate ST41601N, within 
disksim/valid directory). Snake.920530.disk6.srt is a HP general-purpose web server 
real workload.  

From the below figure 2, we can find that 90% energy is consumed in idle mode. 
In this mode, even though there is no active request in the queue, the sled keeps 
moving and active tips keep accessing servo information until the time exceeds the 
idle time out (1000ms). After waiting for the delay, if there are still no new active 
requests, MEMS can make sure that previous request is the last one and switch to 
inactive mode. (This mode only consumes sled inactive power—50mw.)  

Therefore, it is feasible for us to take effort in predicting when the last request 
comes and spin down sled directly from active to inactive mode. Thus, we can 
increase the spin down time and reduce the power consumption by eliminating or 
reducing the time of idle mode (waiting cost for switch from spin up to spin down). 
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Figure 3. Power consumption in snake workload 
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From Figure 3, we’ve got the similar conclusion as that of Figure 2. Idle energy 
occupies almost 50% of total energy. Because the Inactive state is the lowest power 
state, it should last as long as possible. And servicing energy is the second part after 
idle energy that we should take effort on. 

In Section 2, related work is mentioned. Section 3, 4 and 5 focus on how to 
reduce idle energy, increase inactive state time and reduce servicing energy to reduce 
the total power consumption in MEMS-based storage device. 
 
2. Related work 

      Some related work on MEMS-based storage device has been done in CMU and 
UCSC. But the previous result about power consumption in MEMS device is very 
limited. 

• Some useful assumptions in MEMS power consumption are found in [1][2]. 
• Using the physical parameters in [2], we can compute the power consumption in 

different energy state. 
• Available simulator:  

We have the DiskSim simulator, which integrated the MEMS CMU model. We 
modified related modules to do our power consumption simulations. 

 
3. Reduce Idle energy—Aggressively spinning down sled 
 
From section 1.2, we’ve known idle energy is the dominant factor (50%-90%) in 

whole power distribution. The aggressive spinning down sled method is effectively 
reduce idle energy, thus save the total power consumption. But it causes I/O performance 
suffer a little for the low power solution. 

 
3.1 Effect of different Idle time out on power consumption 
 

      We tuned the before_inactive_delay parameter to get different idle time-out and run 
simulations to see how the power consumption changes. The simulation results are 
demonstrated in the below Figure 4 about effect of idle time out on power 
consumption.
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Figure 4. Effect of idle time out on power consumption 

 
From the above figure, we can found when the Before_Inactive_Delay increase from 

0ms to 40ms, the total energy expended more than 2 times. With the longer idle time out, 
MEMS device has to wait for longer time to switch from the active state to inactive state; 
thus, it spends more time on idle state and less time on inactive state. Because more 
power is consumed in idle state than inactive state, with the greatly increase of Idle 
energy and slightly decrease in inactive energy, the total power consumption is enhanced 
with the growth of Before_Inactive_Delay. 
 
      Note:  When the Before_Inactive_Delay is greater than about 40ms, it hardly changes 
the power consumption, because of the workload I chose. For trace.seagate, there are 
always new requests coming within the delay greater than 40-50ms. So, the delay value 
makes no difference for power state switch timing when it is over 40-50ms. 
 
      Reducing the delay threshold is definitely a good choice. If it is feasible for us to take 
effort in predicting when the last request comes and spins down sled directly from active 
to Inactive mode. Thus, we can increase the inactive time and reduce the power 
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consumption by eliminating or reducing the time of idle state. The next sub section gives 
us the answer. 

 
3.2 Unfeasibility of adaptive idle time out prediction on MEMS-based storage 

device 
 
As for disk drive, it is well known that spinning the disk down when it is not in use 

can save energy. But since spinning disk back up consumes a significant amount of 
energy, spinning the disk down immediately after each access is likely to use more 
energy than is saved. So it needs an intelligent strategy for deciding when to spin down 
the disk. But this motivation is not applicable for MEMS device, from our former 
analysis, we’ve known that there only 0.5ms*100mw energy is used for MEMS to 
startup. The dilemma for deciding keeping spinning or spin down won’t exist. We can 
aggressively spin down the sled after each access. From the Figure 4, when fixed 
time_out is zero, we can get the minimal power consumption. And with the time_out 
increases, the total energy increases as well. The result is totally different for disk drive. 
From the Figure 3 in Reference [3], we found that both the biggest and smallest fixed 
time_outs consume more energy than any time_out between them. Therefore, even if we 
add in the adaptive algorithm to set up the MEMS device time_out based on learning 
sequence of idle trails, and we can get a flat line on figure about energy use of fixed time-
outs, but the energy definitely cannot be saved more than we can get if we use the 
approximate zero fixed time_out.  

 
Therefore, aggressive spinning down the sled is the best decision from the power 

consumption point of view. But whether it brings negative effects on I/O performance, 
we analyzed the trade off between I/O performance and power consumption in the next 
sub section. 

 
3.3 Effect of aggressive spin-down on I/O performance 
 
We used two metrics to evaluate the I/O performance—average throughput and 

average response time. The following results still come from the simulation on snake 
workload. 

From Figure 5, we found with the Before_Inactive_Delay decreases from 40ms to 
0ms, the average response time increases around 66%. In other words, if we want to use 
smaller Before_Inactive_Delay to get lower power consumption, we have to suffer from 
the worse response time.  

Note:  For the same reason in previous power analysis, the delay value makes no 
difference for power state switch timing when it is over 40-50ms. So, there is no extra 
time consumed in extra state switch. After about 40ms, the average response keeps the 
same with the growth of Before_Inactive_Delay. 
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Figure 5. Effect of idle time out on average response time 
 

From the below Figure 6, we can find that the throughput doesn’t have a great change 
with the growth of size of fixed time_out. When time_out decreases from 10000ms to 
0ms, the throughput only decreases over 4%. This means if we use zero fixed time_out, 
throughput won’t suffer a lot. 
     Reconsider Figure 5, the biggest difference in response time is about 0.5 ms, which is 
the estimated value for startup time out. Thus, when aggressive spinning down sled, 
almost each request has a startup time out overhead. In the next sub section, we 
concerned about the effect of startup time on I/O performance. 
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Figure 6.  Effect of idle time out on average throughput 
 

3.4 Sensitivity of startup time out 
 
With no rotating parts and little mass, the media sled’s startup time is very small 

(estimated at under 0.5ms in CMU model [1]). And based on our previous experiments 
on synthetic workload, the average seeking time in MEMS is about 1ms. So, startup time 
is comparable to seeking time and it should be sensitive to I/O performance. We used 
DiskSim’s validation workload—trace.seagate (10,000 requests, 50% reads, 30% 
sequential, requests is exponential distributed with a mean size of 8KB) to testify the 
sensitivity of Startup time. 

 The following figures show that startup time cause the average response time and 
throughput change linearly. Because we use the immediately spin down method (idle 
delay is 0) on the sparse workload, an extra startup overhead is added for almost each 
request. 
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Figure 7. Effect of startup time on average throughput 

 
Startup time out is a physical parameter for MEMS-based storage device. Its great 

sensitivity to throughput and response time cause the lost of I/O performance on 
aggressive spinning down sled method.  
  
       In general, from previous analysis results, we’ve got that because of rapid transition 
between power-save and active modes, MEMS sled can greatly save power by aggressive 
spinning sled down as soon as the I/O queue is empty, obviating the need for complex 
idle delay prediction. The power wasted in idle state will reduce to zero with a little 
power overhead in spinning sled back up; and the overall power consumption can be 
saved by more than 50%, compared with the energy consumed when idle delay is 1s. As 
for I/O performance, the average throughput may not be suffered by the immediate 
spinning down method, while response time may increase 0.5ms for undesirable startups. 
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Figure 8. Effect of startup time on average response time 

 
4. Reduce Service energy—Merging sequential requests 
 
Except the idle energy (now it can be zero), servicing energy ranks the second most 

part in the whole power distribution. We used “merging requests” method to reduce 
servicing energy and evaluated their effect on I/O performance. 

 
4.1 Simple implementation 
 
From the Figure 4 of [4], we can see the mapping of logical block numbers to 

physical location is optimized for sequential accesses. Sequential logical blocks are 
mapping to 64 same-position sectors from adjacent tip sets. So, logically sequential 
blocks can be accessed simultaneously in MEMS. Because the most of I/O requests are 
sequential and very busty, we can merge sequential I/O requests in the queue and 
simultaneously activate more tips to service the combined larger request with shorter 
time. This method increase the parallelism of concurrent active tips to increase I/O 
bandwidth and reduce response time. And it may not cause the overhead in power 
consumption by activating more tips simultaneously. For MEMS, when accessing data, 
not only the active tips consume power, the sled also uses power to keep moving. If the 
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accessing time decreases by merging sequential requests, the power will be saved in the 
sled part. (For the tips part, power consumption keeps the same.1000 tips activated for 
0.5 ms use the same power as 500 tips activated for 1ms.)  

We used a simplest implementation of this method to evaluate the performance-- For 
adjacent two requests in the I/O queue, if they are both read requests and their logical 
block number are sequential, they are combined to one big request and replace the 
original separate two requests. (Of course, there are some constraints for the merging. For 
example, if the combined request needs to use more tips than the simultaneously active 
tip number limit defined by the device physical parameter, they cannot be combined.)  

 
4.2 Experiment setup 
 
We used snake workload on CMU G3 MEMS device simulation. G3 generation 

MEMS device can simultaneously activate 3200 tips. Average request size is 8K in snake 
workload, which means for each request, almost16*64 tips are activated at the same time. 
If two 8K requests are merging, 1024*2 tips are active to access data. 

The results are demonstrated in the Figure 9 and Figure 10. 
 

Figure 9. Effect of merging method on servicing energy 
 

From Figure 9, we can see the simple merging method can save about 18% servicing 
energy. 
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Figure 10. Effect of merging method on average response time 

 
Figure 10 denotes the merging sequential requests method can reduce average 

response time by about 20%. 
 
There is a lot of improvement space for the smart merging requests method. For 

example, we can combine more than two adjacent requests in the queue. Also, the logical 
sequential requests don’t have to be adjacent in the queue. Both read and write requests 
can also be combined. Further, requests can also be separated and recombined to enhance 
parallelism. 

 
5. Reduce Service energy—Accessing sub sector 
 
MEMS-based storage device has the ability to adjust its power consumption during 

data accesses by reading or writing at a smaller granularity than standard 512 byte blocks. 
Since active tips dissipate more power than moving sled, reading/writing only necessary 
data could save power. The device only needs to activate as many tips as necessary to 
satisfy a request, which should result in power savings. 

 
5.1 Low level data layout on CMU MEMS model 
 
The smallest accessible unit of data in MEMS is a “tip sector”, consisting of servo 

information (10 bits) and encoded data/ECC (80bits = 8 bytes encoded data bytes). 
Groups (or tip sets) of 64 tip sectors from same position of separate regions are be 
combined into 512-byte “logical sectors”, analogous to logical blocks in SCSI. The 
logical-to-physical mapping is demonstrated in Figure 4 of [4]. During a request, only 
those logical blocks needed to satisfy the request are accessed and the corresponding tip 
sets are activated; unused tips remain inactive to conserve power.  
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5.2 Assumption of sub sector access in MEMS-base storage device 
 
Accessing sub sectors in MEMS is feasible, because the error correcting codes can be 

computed over data striped across multiple tips. In CMU model, each 512-byte logical 
block and its ECC are stripped across 64 tips. Accessing sub sectors cannot affect internal 
faults recovery in MEMS. 

 
5.3 Experiment setup 
 
DiskSim simulator only supports the trace formats for file system level workload. 

Snake workload is a file system level trace. (Arrival time, start LBN and LB numbers is 
provided for each request.) As for one request, only its last logic block is possible to be 
accessed as a sub sector, if the corresponding operation system level workload is 
provided. So I used the snake workload to simulate the sub sector accessing. For the last 
block within each individual request, the sub sector size is uniformly distributed. I 
randomly select the active tip number from 1 to 64 for the last sub sector and keep the 
other tips within that tip set inactive.  

 
We used Snake trace and CMU G3 device parameters to simulate accessing sub 

sector method. The results of its effect on power consumption and I/O performance are 
compared with that of original simulator are as follows: 

  
Scale Factor to Trace Inter-Arrival Time = 0.1: 
 

 Original  Subsector 
Total energy (J) 224.232490 223.985658 
Servicing energy (J) 10.817354 10.570522 
Startup energy (J) 1.882250 1.882250 
Inactive energy  (J) 211.532886 211.532886 
Response time average (ms) 1.524451 1.524451 

 
 
Scale Factor to Trace Inter-Arrival Time = 0.01: 
 

 Original  Subsector 
Total energy (J) 29.991416 29.744633 
Servicing energy (J) 9.880290 9.633507 
Startup energy (J) 0.247550 0.247550 
Inactive energy  (J) 19.863575 19.863575 
Response time average (ms) 129.842917 129.842917 

 
 
 From the above results, we can see that the sub sector method can save servicing 

energy about 3% without affecting average response time. The improvement is not 
obvious for the following reasons: 
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• The snake trace is a file system level trace and its average request size is 8KB, 
much larger than 512B 

• The method I used only assumed the last logical block within one request is 
accessed as a sub sector. If we assume each request in the workload can be 
accessed as a sub sector, the servicing energy is estimated to save by around 30%.  

If we can use real operation system level trace, the results will be more convincible. 
And for parallel file system trace, the average request size is about 200B (< 512B) other 
than 8KB in Unix file system, the sub sector method will have a significant improvement 
in power saving.  We will continue to study this method in the future. 

 
6. Conclusion 
 
For MEMS-based storage device, idle energy is the dominant part in whole power 

distribution. Using immediate spin-down method, the total energy can be saved by about 
50% and the overhead is the increase of average response time caused by undesirable 
startups. Merging sequential requests method can save 18% servicing energy and benefit 
the power consumption and I/O performance at the same time. Accessing sub sector 
method is where we can gain more in the future, because when accessing data, more 
power drains by thousands of tips than by single sled. By the above methods, the low-
power MEMS-based storage device will approach the optimal energy efficient goal and 
has significant applications in mobile computers. 
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