
Allocation and Data Placement Using Virtual Contiguity

Randal C. Burns, Robert M. Rees Zachary N. J. Petersony, Darrell D. E. Long
Storage Systems Software Department of Computer Science

IBM Almaden Research Center University of California, Santa Cruz

Abstract

We describe an allocation and data placement technique calledvirtual contiguity that keeps the blocks of a file
“near” each other so that a file system can read many blocks of a file at the same time with a single disk head
movement. This technique avoids the disk seek penalties incurred when reading discontiguous block allocations,
without requiring allocations to be strictly contiguous. At the same time, virtual contiguity provides for the fine-
grained allocation and writing of data required to support memory-mapped I/O and efficiently perform copy-on-
write for file systems that snap-shot data. Preliminary experimental results show that virtual contiguity groups data
effectively and reduces the number of disk seeks required to read a file.

1 Introduction

We present the concept of virtual contiguity for the allo-
cation and placement of data in a file system and show
how this concept can be used to improve read perfor-
mance. In virtual contiguity, data from the same file are
grouped together in regions of storage so that the file sys-
tem reads a whole region in a single large I/O. By group-
ing many blocks of a file together and allocating these
blocks densely in a region (many blocks from the same
file in a small piece of storage), virtual contiguity reduces
the number of seeks required to read a file even when data
are not strictly contiguous. Blocks that are not part of the
file are discarded.

Our original motivation for virtual contiguity came
from the observation that a modern disk drive performs
a single 256K read faster than two small reads separated
by a seek [13]. For this reason, a file system should make
every effort to perform few large I/O operations rather
than many small ones. However, the need to organize
and manipulate data at a fine granularity competes with
our desire to perform large I/O.

Increasing the block size of a file system can be used
to improve read performance for large files. The block
size is the fundamental unit of I/O such that a file system
does all data reads and writes in multiples of this size.
The Tiger Shark file system uses blocks of 256K or larger
[5] to achieve high performance for parallel applications
and multimedia data. Large files are generally accessed
sequentially, which reduces the effectiveness of caching.
This makes read performance at the disk more important.
By choosing large block sizes, Tiger Shark reduces the

number of seeks required to read large files, allowing the
file system to realize most of the potential bandwidth of
a disk drive.

A drawback to this approach is that large blocks cre-
ate internal fragmentation, the unused storage space con-
tained in blocks allocated to a file, resulting in poor stor-
age utilization. For small files, much of the storage in
a large block is unused (consider a 1K file occupying a
256K block), and it is generally accepted that most files
are small.

More importantly, large blocks can also result in poor
caching performance. To support writes that come from
virtual memory (through paging or memory-mapped
I/O), a file system must either pin large amounts of data
in the buffer pool (cache) or performread-modify-write.
The memory system manages its own cache and conducts
operations on its boundaries – the page size – and cannot
respect the file system block size. When the page size
is smaller than the block size (Figure 1), the file system
receives a write from the memory system at a page granu-
larity, which it must write back into the file system block
in its buffer pool before writing the block to disk. The file
system either (1) retains (pins) blocks in its buffer pool
when files are memory mapped or (2) upon receiving a
write to a memory page the file systemreadsthe corre-
sponding block into its buffer pool,modifiesthe block
with the page, and thewrites the block back to disk. The
first choice wastes space in the file system buffer pool and
is not always possible because the buffer pool can be full
of mapped data blocks. The second choice results in poor
write performance analogous to the small-write problem
of RAID [3].

ySupported in part by the National Science Foundation under Grant NSF CCR-0073509 and by the Institute for Scientific Computing Research
at Lawrence Livermore National Laboratory.



Block

Page

Disk

Buffer Pool

Virtual Memory

Figure 1: Writing pages with large blocks.

The natural choice for a file system designer is to
choose the block size to be the same as the memory page
size. Memory mapped files are cached only by the virtual
memory system and reads and writes from the memory
system are aligned for file I/O. In fact, a popular approach
in modern file systems (NTFS [12] and IBM AIX’s JFS)
sets the file system block size equal to the page size and
memory maps all files. In this way the virtual mem-
ory manager determines which blocks of a file are in the
memory cache and the file system does not maintain an
independent buffer pool. However, setting the file system
block to the memory page size results in a small block
and performance generally suffers.

FFS [10] and many similar file systems allocate the
page-sized blocks of a file sequentially so that I/O may
be performed on contiguous block ranges. While this ap-
proach has been very successful, it has two limitations.
First, data must be allocated when they are first written
and a file system can, in general, only keep data blocks
contiguous when they are written at the same time. Also,
many file systems write data out-of-place [6, 7, 8];i.e.,
when rewriting an existing block of data, the file system
allocates a new disk location. Out-of-place writing is nec-
essary for file system snap-shot and breaks up contiguous
file ranges.

1 2 3L L L 1 2 3L L L

1 2 3 4 5 6 7P P P P P PP0

Disk

P

Old file

’

New file

Figure 2: Copy-on-write example.

Snap-shot is an increasingly important feature in
modern file systems, because it is necessary for point-
in-time consistent backups [7, 8] and can be used to aid
in fast recovery from failure [6]. Snap-shot requires a
type of out-of-place writing calledcopy-on-write(COW)
in which a new allocation is created when data are re-
written and the old allocation persists as part of a previous
snapshot (Figure 2). Through COW, frequent snapshots
destroy contiguity which decreases read performance. In
our estimation, snap-shot is fundamental to data manage-

ment and a requirement of a modern file system. There-
fore, file systems must expect out-of-place writing and
perform well under this workload.

Virtual contiguity provides a solution with some of
the best properties of both large and small blocks. Page-
sized data blocks are grouped so that reads can be per-
formed on a large number of blocks at the same time.
Also, the file system supports memory-mapped I/O with-
out poor cache performance or read/modify write. In vir-
tual contiguity, we allocate data sequentially when it is
first written and then continue to place blocks near to the
original allocation when they are re-written out-of-place.
This keeps data close and maintains read performance
even in the presence of COW.

We note that other file organizations [6, 15, 1] do not
allocate data contiguously. Instead they choose to opti-
mize writes and argue that caching takes care of read per-
formance. These organizations are particularly efficient
for writing both file meta-data and file data. In our target
architecture [2], data and meta-data are stored on separate
devices in order to separate the workloads. This approach
improves meta-data write performance [11]. Thus, we
are more concerned with the read performance of large
sequential files than we are with meta-data. Because
caching does not address read performance for large files,
write-optimized allocation policies are not suitable for
our file system.

1 2 3 4 5 6 7P P P P P PP0 P

1 2 3 4L L L L

Read Region

File

Disk

"Chaff"

Figure 3: Reading virtually contiguous file blocks.

2 Virtually Contiguous Data Allocation

The key concept in virtual contiguity is that file blocks
are placed near each other in storage, but not necessar-
ily strictly contiguous, and can be read using a single
head movement of a disk drive. In our example (Figure
3), we see a file that consists of four blocks placed non-
contiguously in a region of storage. The blocks of the
file are separated by several physical blocks (P3 andP5)
that might belong to other files, might be empty, or might
contain data from an old version (in the COW sense) of
the same file. To read this file, the disk drive reads the
physical rangeP1 to P6. Physical blocksP3 andP5 are
discarded at either the disk drive or by the file system af-
ter being read. We read a range consisting of data and



P P P P P P P P P P P P

L L L L L L L L L L L L LLLL

P P P P P P P P P P P P P P P P P P PP

Segment 1

Dense Region 1

File

Disk

Dense Region 2

Segment 2

Figure 4: Large regions of virtual contiguity.

“chaff” 1 – blocks that are not part of the file – to perform
a more efficient read.

The quality of a virtually contiguous allocation is best
measured by thedensityof the useful blocks in a region;
i.e., the fraction of all blocks in the allocated region that
contain data for the file to be read. The whole file need
not be contained in a single region and may consist of
multiple dense regions that will be read separately.

For our experiments, we have chosen to break logi-
cal file address space up into fixed size segments of 256K
that are composed of 64, 4K blocks. We allocate the logi-
cal blocks of each segment into a dense region of physical
storage (Figure 4) and read each dense region with a sin-
gle I/O operation. Therefore, the number of disk seeks
required to read a file is proportional only to the file size
and is invariant to the manner in which the file is written.
This policy for allocation is simple and deterministic and
therefore easy to implement.

Many more sophisticated policies for allocating dense
regions are possible (see Section 4). However, allocating
fixed size dense regions also allows us to directly com-
pare virtual contiguity to both small block allocation (4K)
and large block allocation (256K), in which the segment
is analogous to the large block. We have chosen a simple,
static policy for allocation in order to achieve our goal of
validating the concept of virtual contiguity.

2.1 Reallocation

Considered together, copy-on-write and virtual contigu-
ity present a unique allocation problem. For traditional
block allocation protocols, reallocating a block – creating
new storage to COW an existing block – is no different
than an original allocation. In contrast, when reallocating
a block with virtual contiguity, we place the new alloca-
tion as close as possible to the original allocation.

The manner in which traditional dynamic storage al-
location algorithms consume free space conflict with the
goals of virtual contiguity and reallocation. For reallo-
cation we desire free space near an original allocation in
which to place the COW blocks. However, traditional
algorithms like Next-Fit, First-Fit, Best-Fit, and Buddy
system (for all algorithms refer to Knuth [9]) allocate free
space on an empty disk from first block to last block se-

1As in separate the wheat from the chaff.

quentially, leaving no room for reallocations. Over time,
as objects are deallocated, free space will appear. But, we
would like to initially place objects in a manner that in-
creases the likelihood that nearby free space is available
for reallocation.

A randomized dynamic storage allocation improves
the probability that a previous allocation has free space
nearby. Rather than consuming space sequentially for
initial allocations, we randomly (uniform over all space)
select a start offset and begin searching forward from that
start offset for a contiguous allocation. By randomizing
the start offset, we attempt to keep the density of allocated
blocks uniform across the disk. This algorithm does not
systematically consume contiguous block offsets as do
previous algorithms.

3 Experimental Results

In order to understand how virtual contiguity affects a
file system, we conducted a trace-driven simulation of
data placement and allocation. These preliminary exper-
iments compare three different allocation policies:small
block (SB) allocation,large block(LB) allocation, and
virtually contiguous (VC) allocation. SB allocation uses
a 4K file system block, a next-fit policy for finding free-
space on the disk, and sequentially allocates data. SB em-
ulates the allocation and data placement policies of FFS
[10]. LB uses a 256K block, a next-fit policy for finding
free-space, and does not allocate data sequentially. LB
approximates allocation and data placement in the Tiger-
Shark file system [5]. Finally, VC uses a 4k file system
block and forms dense regions of data on 256K segments.
VC allocates the first write to a segment sequentially and
finds disk space for this allocation by searching with ran-
domized start offsets (Section 2.1). Subsequent alloca-
tions and out-of-place writing through COW to an exist-
ing segment are allocated as near as possible to existing
data. We designed these experiments so that VC would
be directly comparable to SB and LB. VC uses the same
4K block size as SB. The 256K segments are analogous
to the blocks of LB, so that in keeping data dense VC
approximates the read performance of LB allocation.

To drive our simulation, we used system call traces
developed at the University of California [14]. These
traces recorded every system call made by the HP-UX



operating system running on Hewlett-Packard 700 work-
stations over the period of about 3 months in 1997. From
these traces we extract the logical block addresses of a
file that are written over time. We assume that daily
snapshots were taken (as needed to support daily back-
ups). Therefore, out-of-place writing through COW oc-
curs only if a trace contains writes to a file on multiple
days. Data that are re-written on the same day are written
back to the existing allocation.

Traces were taken over three distinct workloads: a
group of fourinstructionalmachines used by undergrad-
uates in a computer lab, a group of fourresearchma-
chines used by faculty and staff for research projects,
and a single machine used aweb serverfor an online
library project. In terms of allocation, the instructional
and research workloads are nearly identical, consisting
of many small files with little COW. However, the web
server trace contains an order of magnitude more actively
written files than other workloads. These files are much
larger (a handful of files larger than 1GB) and exhibit a
high degree of re-written blocks requiring COW.

It is our assertion that virtual contiguity is beneficial
in two distinct aspects of file system allocation. Like SB,
it allocates data at a fine granularity, which results in min-
imal internal fragmentation and support of fine-grained
I/O for memory-mapped files. At the same time it pro-
vides the read performance benefits afforded to us by LB
allocation.

Workload Small Block VC Large Block

Instructional 66.84% 66.84% 98.45%
Research 71.47% 71.47% 97.61%
Web Server 16.97% 16.97% 82.88%

Table 1: Internal fragmentation.

Fragmentation results, which measure the amount of
unused space in partially filled disk blocks allocated to
files, verify the benefits of fine-grained allocation. Table
1 looks at the percentage of internal fragmentation over
the different allocation policies. Owing to the large num-
ber of samples, confidence intervals on all of our results
are tight (smaller than the precision of the published num-
ber) and therefore not included. Because most files are
small, almost all space allocated to files in LB is unused.
Even a file of 1 byte consumes a 256K block.2 Virtual
contiguity shares the same block size as FFS, therefore
the internal fragmentation incurred on the system is the
same. The markedly different results from the web server
trace reflect a larger average file size.

We use two metrics, number of seeks and file system
density, to evaluate read performance. Experiments are

2Tiger Shark reduces internal fragmentation by fragmenting blocks
so that many files share a single disk block.

preliminary because we do not attempt to measure or sim-
ulate [4] the performance characteristics of a disk drive.
Rather, we rely on the following expression to describe
the time to read a file:X

k2K

�
�k +

jkj

��k

�
: (1)

A file consist ofK regions each of sizejkj, density�k,
and time to seek to the region�k. The read rate of the disk
drive is�. We contend that this equation is dominated by
�k and that by reducing the number of seeks, the time to
read a file decreases. We include density in Equation 1 to
make it general enough to describe VC in addition to SB
and LB, which have unit density.

Workload All Files COWed Files COWed Segs:

Instructional 97.00% 91.10% 88.42%
Research 99.59% 91.82% 90.96%
Web Server 99.70% 96.73% 86.35%

Table 2: Density of a virtual contiguous region.

In terms of read performance, VC differs from LB
only by having lower density and therefore taking slightly
longer to read data. Table 2 contains density results over
the three workloads. The column titledAll Filesdescribes
the average density over all files in the trace.COWed
Files are files that have been re-written out-of-place and
COWed Segsis the density of only the segments of files
that have been re-written. Results show that VC keeps
data densely allocated on disk even in the presence of
COW.

Workload FFS FFS (COW) VC VC (COW)

Instructional 1.51 7.85 1.07 1.21
Research 1.11 4.63 1.07 1.27
Web Server 1.94 68.26 1.88 1.86

Table 3: Average number of seeks.

The main advantage of VC lies in reducing the num-
ber of seeks needed to read a file as compared to SB.
Table 3 presents the average number of seeks to read
a file over various file system allocation policies. Re-
sults compare the average number of seeks over all files
and those files that have been re-written using COW for
both VC and SB. Note, by definition LB and VC have
the same number of seeks. VC consistently outperforms
SB in number of seeks and therefore in overall read per-
formance. VC can be as much as 36 times better, in the
case of the web server, when reading files on which copy-
on-write has been performed. In SB, files become non-
contiguous in two ways: (1) copy-on-write and (2) files
are written through multiple write commands issued sep-
arately. VC improves performance in both cases through



re-allocation of data near existing allocations. While SB
performs reasonably in comparison to VC when averaged
over all files, it is important to perform well on every
file. In particular, files that have been COWed are files
that have been accessed on more than one day, providing
some indication of their importance.

4 Discussion and Directions

We present preliminary results on a rudimentary imple-
mentation of virtual contiguity that indicate the promise
of this technique. Our findings can be furthered both in
expanding our work on data placement and allocation and
by improving our experimental techniques.

In our evaluation of performance, we disregard the
physical properties of disk drives. Note that seek time
(�k in Equation 1) is a complex variable that depends on
placement of data, position of the head, and device prop-
erties. Integrating our experiments with a disk-drive sim-
ulator [4] will allows us to accurately model seek time.

Because our simple, static allocation policy has some
shortcomings, we are actively exploring other policies
that adapt to the current layout of data on disk and inte-
grate disk drive parameters (like track size and seek pro-
file). The fixed size segments that we have described can
result in arbitrarily bad allocations when the disk nears
capacity. For example, when re-writing a segment, the
allocator will search as far as necessary to find the near-
est free blocks, which can result in very low densities.
We are currently working on an adaptive algorithm that
allows for segments to grow very large as long as they
remain dense and also allow for segments to be divided
up when re-allocation would result in low density.

5 Conclusions

Experimental results verify our claim that virtual contigu-
ity captures the benefits of both small and large block al-
location, while avoiding the detrimental features of each.
For all workloads examined, the advantages of virtual
contiguity can be clearly seen. We reallocate blocks
“near” to the original allocation, producing dense regions
of related blocks that can be read using a single disk
I/O. At the same time, internal fragmentation of data is
low. Virtual contiguity supports page granularity copy-
on-write, allowing a file system to take snap-shots with-
out degrading read performance. It is our belief that the
addition of virtually contiguous allocation and data place-
ment to a file system will provide significant improve-
ments for I/O performance, particularly for large files that
are read sequentially and files that exhibit copy-on-write.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-

son, D. S. Roselli, and R. Y. Wang. Serverless network
file systems.ACM TOCS, 14(1), February 1996.

[2] R. C. Burns. Data management in a distributed file sys-
tem for Storage Area networks. PhD thesis, University of
California at Santa Cruz, 2000.

[3] A. L. Drapeau, K. W. Shirriff, J. H. Hartman, E. L. Miller,
S. Seshan, R. H. Katz, and D. A. Patterson. RAID-II: A
high-bandwidth network file server. InProceedings of the
21st Int’l Symposium on Computer Architecture, 1994.

[4] G. R. Ganger. System-Oriented Evaluation of I/O Sub-
system Performance. PhD thesis, University of Michigan,
Ann Arbor, 1995.

[5] R. L. Haskin. Tiger shark – A scalable file system for
multimedia. IBM Journal of Research and Development,
42(2), 1998.

[6] D. Hitz, J. Lau, and M. Malcom. File system design for an
NFS file server appliance. InProceedings of the USENIX
San Francisco 1994 Winter Conference, January 1994.

[7] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system.ACM
TOCS, 6(1), February 1988.

[8] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apos-
tolides, B. A. Bottos, S. Chutani, C. F. Everhart, W. A.
Mason, S. Tu, and R. Zayas. DEcorum file system archi-
tectural overview. InProceedings of the Summer USENIX
Conference, June 1990.

[9] D. E. Knuth. The Art of Computer Programming, vol-
ume 1. Addison Wesley Longman, 3 edition, 1998.

[10] M.K. McKusick, W.N. Joy, J. Leffler, and R.S. Fabry. A
fast file system for UNIX. ACM Transactions on Com-
puter Systems, 2(3), August 1984.

[11] K. Muller and J. Pasquale. A high performance multi-
structured file system design. InProceedings of the 13th
ACM Symposium on Operating Systems Principles, 1991.

[12] R. Nagar. Windows–NT File System Internls: A Devel-
oper’s Guide. O’Reilly and Associates, September 1997.

[13] J. Palmer. Private correspondence: The performance prop-
erties of modern disk drives. IBM Almaden Research
Center, 1999.

[14] D. Roselli and T. E. Anderson. Characteristics of file sys-
tem workloads. Reserach report, University of California,
Berkeley, June 1996.

[15] M. Rosenblum and J. K. Ousterhout. The design and im-
plementation of a log-structured file system.ACM Trans-
actions on Computer Systems, 10(1), February 1992.


