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Perception of Human Motion with Different
Geometric Models

Jessica K. Hodgins, James F. O’Brien, Jack Tumblin†

Abstract

Human figures have been animated using a variety of geometric models including stick
figures, polygonal models, and NURBS-based models with muscles, flexible skin, or clothing.
This paper reports on experimental results indicating that a viewer’s perception of motion
characteristics is affected by the geometric model used for rendering. Subjects were shown a
series of paired motion sequences and asked if the two motions in each pair were “the same” or
“different.” The motion sequences in each pair were rendered using the same geometric model.
For the three types of motion variation tested, sensitivity scores indicate that subjects were
better able to observe changes with the polygonal model than they were with the stick figure
model.
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I. Introduction

Few movements are as familiar and recognizable as human walking and running. Almost any
collection of dots, lines, or shapes attached to an unseen walking figure is quickly identified
and understood as human. Studies in human perception have displayed walking motion using
only dots of light located at the joints and have found test subjects quite adept at assessing the
nature of the underlying motion[1]. In particular, subjects can identify the gender of a walker
and recognize specific individuals from light-dot displays even when no other cues are available[2,
3, 4].

In part because people are skilled at detecting subtleties in human motion, the animation
of human figures has long been regarded as an important, but difficult, problem in computer
animation. Recent publications have presented a variety of techniques for creating animations of
human motion. Promising approaches include techniques for manipulating keyframed or motion
capture data[5, 6, 7, 8], control systems for dynamic simulations[9, 10, 11, 12, 13], and other
procedural or hybrid approaches[14, 15, 16, 17, 18, 19, 20]. Each method has its own strengths
and weaknesses, making the visual comparison of results essential, especially for the evaluation
of such subjective qualities as naturalness and emotional expression. The research community
has not yet adopted a standard set of models and there is currently enormous variety in the
models and rendering styles used to present results.

Our ability to make judgments about human motion from displays as rudimentary as dot
patterns raises an important question: does the geometric model used to render an animation
affect a viewer’s judgment of the motion or can a viewer make accurate judgments independent
of the geometric model? There are three plausible but contradictory answers to this question.

Possibility 1. Simple representations may allow finer distinctions when judging
human motion. Simpler models may be easier to comprehend than more complex ones,
allowing the viewer’s attention to focus more completely on the details of the movement rather
than on the details of the model. For example, a stick figure is an obvious abstraction and
rendering flaws may be easily ignored. When more detailed models are used, subtle flaws in
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rendering, body shape, posture, or expression may draw attention away from the movements
themselves. Complex models may also obscure the motion. For example, the movement of a
jacket sleeve might hide subtle changes to the motion of the arm underneath.

Possibility 2. Complex, accurate representations may allow finer distinctions.
People have far more experience judging the position and movement of actual human shapes
than they do judging abstract representations such as stick figures. A viewer, therefore, may be
able to make finer distinctions when assessing the motion of more human-like representations.
Furthermore, complex representations provide more features to identify and track. Each body
segment in a polygonal human model has a distinctive, familiar shape, making it easier to gauge
fine variations in both position and rotation.

Possibility 3. Both simple and complex representations may allow equally fine
distinctions. The human visual system may use a displayed image only to maintain the
positions of a three-dimensional mental representation. Judgments about the motion may be
made from this mental representation rather than directly from the viewed image. Displayed
images must of course supply enough cues to keep the mental representation accurate, but
additional detail and accuracy may be irrelevant. Just as joint positions shown by light dots
are sufficient to control the mental representation, connecting the dots with a stick figure might
not improve the viewer’s perception. Similarly, encasing a stick figure within a detailed human
body shape might likewise prove unnecessary.

Objective evidence is needed to determine which of these possibilities is correct. We argue
that definitive experiments to select between possibilities 1 and 2 are impractical. The question
of which style of geometric model is more useful for judging motion is likely to be highly complex
and context dependent, affected by all of the variables of both the motion and the rendering.
If possibility 3 were correct, and model style were largely irrelevant, then we would be able
to perform critical comparisons of the motion synthesis techniques in the literature by direct
comparison of the substantially different geometric models used in each publication. This paper
provides experimental evidence to disprove possibility 3 by showing that viewer sensitivities to
variations in motion are significantly different for the stick figure model and the polygonal model
shown in Fig. 1. In particular, for the types of motion variation we tested, viewers were more
sensitive to motion changes displayed through the polygonal model than through the stick figure
model. This result suggests that stick figures may not always have the required complexity to
ensure that the subtleties of the motion are apparent to the viewer.

II. Background

Several researchers have used light-dot displays, also referred to as biological motion stimuli,
to study perception of human movements and to investigate the possibility of dynamic mental
models[21]. The light-dot displays show only dots or patches of light that move with the main
joints of walking figures (Fig. 2), but even these minimal cues have been shown to be sufficient
for viewers to make detailed assessments of the nature of both the motion and the underlying
figure.

The ability to perceive human gaits from light-dot displays has been widely reported to be
acute and robust. Early experiments by Johansson reported that 10-12 light dots “evoke a
compelling impression of human walking, running, dancing, etc.”[1]. Because such displays
provide motion cues independent of form or outline, other investigators have used them to
study human motion perception. Work by Cutting and Kozlowski showed that viewers easily
recognized friends by their walking gaits on light-dot displays[2]. They also reported that the
gender of unfamiliar walkers was readily identifiable, even after the number of lights had been
reduced to just two located on the ankles[3]. In a published note, they later explained that
the two light-dot decisions were probably attributable to stride length[4]. Continuing this work,
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Fig. 1. Images of an animated human runner. The pair on the left compares two running motions
rendered using a polygonal model. On the right, the same pair of motions are rendered with a stick figure
model. Modifications to the motion were controlled by a normalized parameter, λ, that varied between
λ = 0 and λ = 1. These images are from the motion generated for the additive noise test discussed in
Section III-C. The difference in posture created by the additive noise can be seen in the increased angle
of the neck and waist in the right image of each pair (λ = 1).

Fig. 2. The dot pattern on the left shows the joint locations of a human runner at a single point in time.
On the right, these joint locations are shown over the course of one step in the running cycle. Although it
is difficult to determine the nature of these patterns from a still image, studies show that most people are
able to recognize the motion and even to make fine judgments when shown moving sequences of similar
images.

Barclay, Cutting, and Kozlowski showed that gender recognition based on walking gait required
between 1.6 and 2.7 seconds of display, or about two step cycles[22]. Our experiments used
pairs of running stimuli 4 seconds in duration that displayed about six strides. We noticed that
test subjects often marked their answer sheets near the midpoint of the second stimuli which is
consistent with Barclay’s results.

Motion is apparently essential for identifying human figures on light-dot displays. The Cutting
studies reported that while moving light-dot displays were recognized immediately, still light-dot
displays of a walking figure were not recognized as human. Poizner and colleagues also noted
that movement is required for accurately reading American Sign Language gestures[23].

This capacity to recognize moving figures was shown to be robust in the presence of masking
by additional light points. In a modified experiment, subjects were shown light-dot displays of
walkers facing either left or right and asked to determine walking direction. Only complex masks
of extraneous light dots moving in patterns that were similar to those of the walking figure were
able to disrupt viewer judgments[24].

Appropriate synthetic movements are easily accepted as human when rendered as light-dot
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displays. Cutting and colleagues found that apparent torso structure and rotation were strongly
correlated with judgments of walker gender[25]. Cutting then constructed a simple mathematical
model of light-dot motion for human walkers and computed displays of synthetic walkers.
Viewers easily identified the synthetic displays as human walkers and accurately determined
the intended gender of the walkers. These experiments clearly showed that variations in torso
rotation are important for gender judgments. Accordingly, we chose to measure viewer sensitivity
to torso rotations in one of our experiments.

Proffitt and colleagues found that occlusion of light dots by clothing or human body segments
plays an important role in gait judgment and may also provide information about body
outlines[26]. Synthetic displays without occlusion yielded poorer subject performance. These
experimental observations suggest that extremely simple models of human figures, such as thin
stick figures, may present similar difficulties for the viewer.

Surprisingly, the perception of rigid body segments between moving light dots at joints does
not generalize to movements of isolated pairs of light dots. Ishiguchi showed test subjects one
fixed light dot and a second one that moved on an arc of ±15 degrees as if it were on the end of a
pendulum with the first light dot as the pivot joint[27]. Viewers perceived the dots as attached
to a flexible bar held fixed at the first light dot rather than as a rigid bar moving as a pendulum.
Thus the perception of rigid body segments in the largely pendulum-like movements of human
walking is exceptional; perhaps the ensemble of dots is important, or perhaps the movements
are so intimately familiar that the perception of an assembly of flexible bars is overridden.

III. Experimental Methods

While it is impossible to exhaustively test all of the variables that may affect a perceived
motion, we can use A/B comparison tests to form a preliminary assessment of whether the
geometric model affects a viewer’s perception of motion. We evaluated three different types of
motion variation in separate experiments described below: torso rotation, dynamic arm motion,
and additive noise. For each experiment, the modifications to the motion were controlled by a
normalized parameter, λ, that varied between λ = 0 and λ = 1. Figs. 3 and 4 show sequences
of images excerpted from the base motion sequence, λ = 0, and the modified sequences, λ = 1,
used in all three experiments. Joint angle trajectories are shown in Fig. 6 to illustrate the key
components of the base motion and the modified motions created by setting λ = 1.

In each of the three tests, subjects viewed pairs of animated sequences rendered using the
same geometric model and were asked whether the motions in the two sequences were the same
or different. We then computed a sensitivity measure for each type of geometric model. The
difference between the sensitivity values is a measure of whether a particular subject was better
able to discriminate between the motions when they were rendered with a polygonal model or
with a stick figure model.

A. Experiment One: Torso Rotation

This experiment measured whether a subject’s ability to differentiate between larger and
smaller yaw rotations of a runner’s torso was affected by the geometric model used for rendering.
The motion sequences were generated by making kinematic modifications to data obtained from
a physically based dynamic simulation of a human runner[9]. The torso’s rotation about the
longitudinal axis, or yaw relative to the pelvis, was exaggerated (Fig. 5–A). The neck was
counter-rotated to compensate for the torso rotation so that the facing direction of the head
remained unchanged.

The magnitude of the exaggeration in torso rotation was controlled by a normalized parameter,
λ. A value of λ = 0 gave a magnification factor of 1× so that the modified motion was identical
to that of the original data. Larger values of λ correspond linearly to higher magnification
factors, with λ = 1 yielding a 10× magnification of the torso rotation. The motion of body
segments below the waist was left unchanged (Figs. 3, 4, and 6–A).
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Fig. 3. Examples from the motion sequences rendered with the polygonal model. First Row: Original
motion sequence, λ = 0, used in all tests. Second Row: Torso rotation motion sequence with
10× magnification of the torso rotation, λ = 1. Third Row: Dynamic arm motion sequence with
maximum exaggeration, λ = 1. Fourth Row: Additive noise motion sequence with sinusoidal noise of
±0.15 radians, λ = 1. Images are spaced at intervals of 0.067 seconds.

The test consisted of a series of 40 pairs of motion sequences divided into two sets of 20 pairs
each. One set was rendered with the stick figure model and the other with the polygonal model
(Fig. 1). All other parameters used to render the animations, such as lighting, ground models,
and camera motion, were identical for the two sets. Within each set, half of the pairs were
randomly selected to show two different motion sequences (different λ values). Of those that
were different, the pairs with the largest disparity in λ were placed toward the beginning of each
set so that the questions became progressively more difficult. To minimize bias due to fatigue or
learning effects, we varied the order in which the two sets were presented. Asymmetric learning
effects would not necessarily be minimized by this ordering.

Twenty-six student volunteers who were not familiar with the animations served as subjects.
All had normal or corrected-to-normal vision. Subjects were tested in groups of two or three in
a quiet room. They were instructed to remain silent and not to collaborate during the test. The
test stimulus was presented on a 20-inch monitor approximately three feet from the subjects. All
animations were pre-rendered and shown at 30 frames per second in NTSC resolution. These
experimental conditions were selected because they match the viewing conditions commonly
encountered when watching animated motion.
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Fig. 4. Examples from the motion sequences rendered with the stick figure model. First Row:
Original motion sequence, λ = 0, used in all tests. Second Row: Torso rotation motion sequence
with 10× magnification of the torso rotation, λ = 1. Third Row: Dynamic arm motion sequence with
maximum exaggeration, λ = 1. Fourth Row: Additive noise motion sequence with sinusoidal noise of
±0.15 radians, λ = 1. Images are spaced at intervals of 0.067 seconds.

Subjects were told that they would be shown a series of 4-second computer-generated
animations of a human runner and that the animations would be grouped in A/B pairs with
5 seconds of delay between the presentation of each pair. Subjects were asked to view each pair
and then indicate on a response sheet whether the two motions were the same or different. They
were also informed that the variations would be confined to the motion of the runner’s upper
body and that the questions would become progressively more difficult. A monetary reward
for the highest percentage of correct responses was offered as an incentive to all test subjects.
Subjects were not told the purpose of the experiment.

B. Experiment Two: Dynamic Arm Motion

This experiment measured whether a subject’s ability to differentiate between larger and
smaller arm motions was affected by the geometric model used for rendering. The motion
sequences were generated by modifying the desired fore-aft rotation about the transverse axis
at the shoulder joint in the dynamic simulation of the human runner (Fig. 5–B). The control
routines then computed torques based on the desired value of the shoulder joint. These torques
were applied to the dynamic model. The resulting motion is shown in Figs. 3, 4, and 6–B.
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A. C.B.

Fig. 5. Degrees of freedom for data plotted in Fig. 6. A. Rotation of torso at waist about longitudinal
axis relative to pelvis. B. Rotation of arm at shoulder about transverse axis relative to torso. C. Rotation
of torso at waist about transverse axis relative to pelvis.
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Fig. 6. Selected joint angle trajectories demonstrating motion differences plotted for base motion, λ = 0,
and for extremes of modified motion, λ = 1. A. Rotation of torso at waist about the longitudinal axis
(z–axis) for torso rotation test. B. Shoulder angle about the transverse axis (y–axis) for dynamic arm
motion test. C. One representative modification for the additive noise test: the rotation of torso at waist
about the transverse axis (y–axis).

Because the motion was dynamically simulated, the exaggerated arm motion also had subtle
effects on other aspects of the running motion.

The magnitude of the exaggeration in arm motion was controlled by a normalized parameter,
λ. A value of λ = 0 gave a magnification factor of 1× so that the modified motion was identical
to that of the original data. Larger values of λ correspond linearly to higher magnification
factors, with λ = 1 yielding a 1.5× magnification of the shoulder rotation.

Twenty-four student volunteers who had not participated in the first experiment were subjects
for this second experiment. Testing procedures and format were identical to those used in the
first experiment.

C. Experiment Three: Additive Noise

The format of this experiment was identical to that of the first two, except for the manner in
which the running motion was modified. For this experiment, time-varying noise was added
to the joint angles for the waist, shoulders, and neck. The noise was generated using a
sinusoidal wave generator[28] with frequency varying randomly about that of the runner’s gait
at approximately 3 Hz. The amplitude of the additive noise was controlled by a normalized
parameter λ, as in the torso rotation test. A value of λ = 0 resulted in motion data that was
identical to the original data (zero noise amplitude). The maximum noise amplitude used, given
by λ = 1, produced a variation of ±0.15 radians about the original joint angles (Figs. 3 and 4).
One representative joint angle, the rotation of the torso at waist about the transverse axis, is
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Fig. 7. Plot of sensitivity score, log(α), versus fraction correct at zero bias.

shown in Figs. 5–C and 6–C.
Twenty-six student volunteers who had not participated in the previous experiments were

selected as subjects. Testing procedures were identical to those used in the first and second
experiments.

IV. Results

To analyze the data from the experiments, we used the responses to compute the Choice
Theory sensitivity measure for each subject on each test set. The sensitivity measure, log(α), is
defined as

log(α) =
log(H/(1 −H))− log(F/(1 − F ))

2
, (1)

where H is the fraction of pairs in a set that were different and which the subject labeled
correctly, and F is the fraction of pairs in a section that were the same and which the subject
labeled incorrectly[29]. This measure is zero when the subject’s responses are uncorrelated
with the correct responses to cause a 50% correct score, and increases as response correlation
improves, as illustrated in Fig. 7. Additionally, the measure is symmetric, naturally invariant
with respect to response bias, and suitable for use as a distance metric[29].

After sensitivity scores had been determined, a post hoc selection criteria was used to build
a subgroup of “skilled” subjects who had achieved a sensitivity score indicating performance
significantly better than chance with either the polygonal or the stick figure models. Significantly
better than chance was defined as at least 73% correct, which corresponds to a sensitivity score
of log(αpoly) ≥ 1.0. Analysis was computed both for the group of all subjects and for the group
of skilled subjects. Sensitivity scores for each experiment averaged within subject groups are
shown in Fig. 8.

In Section I, we proposed three possible answers to the question of whether the geometric model
used for rendering affects a viewer’s perception of motion. The third possible answer implied
that subjects would achieve similar sensitivity measures when asked identical questions about
the motion of stick figure models or polygonal models. To test this hypothesis, we computed
the difference in sensitivity for each subject:

∆log(α) = log(αpoly)− log(αstick). (2)

The results from the three tests are summarized in Table I. For the torso rotation test, the
mean of the difference in sensitivities across all subjects was 0.43 with a standard deviation of
0.77. Student’s t–test for paired samples[30] shows this difference to be significant, p < 0.012.
For the group of skilled subjects, the mean rose to 0.73 while the standard deviation fell to 0.68.
The t–test for paired samples shows this difference to be significant, p < 0.001.

For the dynamic arm motion test, the mean of the difference in sensitivities across all subjects
was 0.41 with a standard deviation of 0.59, a difference significant at p < 0.003. For the group of
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Fig. 8. Sensitivity scores by experiment averaged over subject groups. Skilled subjects are those who
achieved a sensitivity score of log(αpoly) ≥ 1.0 on either the polygonal or the stick figure portion of the
test. Note that sensitivity scores are consistently higher with the polygonal model.

All Subjects Skilled Subjects
Mean Std. Dev. Prob. Err. Mean Std. Dev. Prob. Err.

Torso Rotation 0.43 0.77 p < 0.012 0.73 0.68 p < 0.001
Dynamic Arm 0.41 0.59 p < 0.003 0.55 0.59 p < 0.001
Additive Noise 0.74 0.69 p < 0.001 0.72 0.73 p < 0.001

Table I. Summary of results from the three experiments. Mean and standard deviation are for ∆log(α) by
subject group. Probability of error is calculated with Student’s t–test for paired samples. Positive values
for mean ∆log(α) in all six test/group combinations indicate that subjects were able to discriminate
better with the polygonal model.

skilled subjects, the mean was 0.55 and the standard deviation was 0.59, a difference significant
at p < 0.001.

For the additive noise test, the mean of the difference in sensitivities across all subjects was
0.74 with a standard deviation of 0.69, a difference significant at p < 0.001. For the group of
skilled subjects, the mean was 0.72 and the standard deviation was 0.73, a difference significant
at p < 0.001.

Fig. 9 shows histograms of the sensitivity differences, ∆log(α), for the three test conditions.
Positive values correspond to higher sensitivity for the set rendered with the polygonal model.

Our results indicate that for the three types of motion variation tested, subjects were better
able to discriminate motion variations using the polygonal model than they were with the stick
figure model. This result holds to a high level of significance both for the analyses computed on
the group of all subjects and for the group of skilled subjects, although the magnitude of the
differences are, in general, greater within the group of skilled subjects.

V. Discussion

Although the differences in sensitivity measures show that our subjects were more sensitive
to motion changes when a polygonal model was used for rendering, our results can not be
generalized to say that polygonal models are always better than stick figure models for perceiving
motions. Rather, the two types of geometric models are distinctly different and, in the cases
we tested, polygonal models allowed better discrimination. There may be variations for which
the difference in sensitivity has the opposite sign, implying that stick figures might be a better
model for making fine discriminations about that particular motion variation.

Our results, however, do show that stick figures and polygonal models are not equivalent for
tasks that require making fine discriminations about motion. This observation implies that any
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Fig. 9. Histogram of sensitivity differences for A. the torso rotation test, B. the dynamic arm motion
test, and C. the additive noise test. The upper graphs show the occurrence frequency for sensitivity
differences, ∆log(α), across all subjects. The bottom graphs show the data for subjects who had a
sensitivity of log(αpoly) ≥ 1.0 on either the polygonal or the stick figure portion of the test. Positive
values of the sensitivity difference indicate a higher sensitivity to changes in the motion with the polygonal
model. (Bucket size = 0.5.)

useful comparison of motion sequences requires that the same models and rendering methods be
used for each and might indicate that the community would benefit from adopting a standard
set of human models. In particular, comparing motions of a stick figure model to those of a
more complex model may be meaningless because viewer sensitivities can differ substantially.
As a practical matter, animators may want to avoid conducting preliminary tests only with stick
figures or other simple models because it is likely that viewers would have different sensitivities
to the more complex models that would be used in the final rendering.

Considerable familiarity with the motion appears to make differences in the geometric models
less significant. For example, when the authors of this paper took the tests, they answered nearly
all questions correctly. Of course, the authors were not included among the subjects whose data
are reported above. If a larger subject pool showed that subjects who were very familiar with
particular animated motions showed equal sensitivity to the two models, then we would have
evidence that using stick figures for preliminary pencil tests of motion sequences will provide
good information about the motion. The subject, in this case the animator, is very familiar with
the motion and may be able to make subtle observations independent of the geometric models
used for rendering.

Our results do not conflict with the findings discussed in Section II. Previous studies have
found that subjects were able to use a variety of models to make judgments about human motion,
these studies did not address how the subject’s proficiency might be affected. As can be seen
from Fig. 8, the subjects we tested were able to make distinctions using both polygonal and stick
figure models, however they were better able to make these distinctions when viewing motion
rendered with the polygonal model.

For the two models used in these experiments, the more complex model was also more human-
like but that may not always be the case. Complex but abstract models may be useful for making
particular features of the motion visible in some applications. For example, crash test dummies
have markings for the center of mass of each body segment and other visualization techniques
such as force vectors have been used successfully in biomechanics research.

We used simulation combined with kinematic modifications to generate the motion for these
studies because it allowed us to control the variations explicitly. Motion capture data would
be an interesting source for this kind of study because it more closely matches human motion.
However, even two consecutive captures of an actor performing a simple task will have significant
differences because of the variability of human motion. Capturing a set of consecutive motions
with a controlled variation for sensitivity tests would be difficult because of this variability.

The three techniques used to modify the motion were chosen both for their relevance to
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current animation techniques and for their perceptual significance. We chose torso rotation
because previous studies have shown that the motion of the torso provides important cues for
gender determination and subject recognition[25]. The kinematic modification used for the
torso rotation test is also similar to the modifications an animator might make when keyframing
motion or adjusting motion capture data. Similarly, the adjustments of the desired shoulder joint
angles used in the dynamic arm motion test are typical of the adjustments that an animator
might make to a dynamic simulation in order to change the style of the resulting motion. Finally,
noise is found in naturally occurring motions, and additive noise generators have been used to
synthesize natural and appealing human motion[20].

A potential problem with the experimental design used in this study is that the test must be
of an appropriate difficulty. If the test is too difficult, then subject responses will be guesses
regardless of which model is presented. Conversely, if the test is too easy, then all subject
responses will be correct. In either case, the data gathered will not be useful. We can increase
or decrease the difficulty of a test by changing the spacing of the λ values for the trials or the
amount of information given to the subjects about the alterations to the motion. Unfortunately,
it can be difficult to devise a test sequence of appropriate difficulty. This problem could be
overcome by using tests that adaptively adjust difficulty level by selecting subsequent questions
based on past responses. Alternatively, selection criteria can be used to cull subjects whose
responses are not significantly correlated with the test stimuli.

While our assessment that the polygonal models allow greater sensitivity holds irrespective of
culling, it is interesting to note how selection based on performance criteria does affect the data.
As can be seen from the average scores shown in Fig. 8, subjects who took the torso rotation
test achieved lower scores than did those who took the additive noise test, probably because the
torso rotation test was more difficult. Comparing the results of the torso rotation test before and
after culling shows that the mean of ∆log(α) as well as the shape of the histograms in Fig. 9.A
were notably different between the group of all subjects and the group of skilled subjects. For
the easier, additive noise test, the selection criteria has essentially no effect. Moreover, the effect
of the selection criteria on the torso rotation data appears to make it more closely resemble the
data from the additive noise test, thereby supporting the notion that lowering the difficulty of
the test and selecting subjects based on performance criteria are approximately equivalent.

Although we did not formally measure the subjects’ perceptions of how well they did on the
test, it appeared that their perceptions did not always match their performance. Several subjects
were certain that they had scored higher on the section with the stick figure model when in fact
they had a higher sensitivity to motion changes with the polygonal model.

To create the animation sequences for these tests, we altered only the motion and the geometric
models used; all other aspects of the rendering were held constant. It would be interesting to
explore whether, and how, other aspects of the rendering affect the perception of motion as
well as whether these results hold for behaviors other than running. For example, we have
informally observed that the motion of the simulated runner appears more natural when the
tracking camera has a constant velocity rather than one that matches the periodic accelerations
of the runner’s center of mass. When the camera motion matches the acceleration of the center
of mass exactly, the running motion appears jerky. More sophisticated models that incorporate
clothing and skin may help to smooth out rapid accelerations of the limbs and make the motion
appear more natural. Motion blur probably plays a similar role. Textured ground planes and
shadows help to determine motion of the feet with respect to the ground and may provide
important clues about the details of the motion.

If we had enough psychophysical results to build a model of how people perceive motion,
we could optimize the rendering of animated sequences by emphasizing those factors that
would make the greatest differences in how a viewer perceives the sequence either consciously
or unconsciously. This approach of using results from the psychophysical literature to refine
rendering techniques has already been used successfully for still images[31, 32, 33].
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[8] A. Witkin and Z. Popović, “Motion warping,” in SIGGRAPH ’95 Conference Proceedings. ACM SIGGRAPH,
Aug. 1995, Annual Conference Series, pp. 105–108, Held in Los Angeles, California, 6–11 August 1995.

[9] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien, “Animating human athletics,” in SIGGRAPH
’95 Conference Proceedings. ACM SIGGRAPH, Aug. 1995, Annual Conference Series, pp. 71–78, Held in
Los Angeles, California, 6–11 August 1995.

[10] J. Laszlo, M. van de Panne, and E. Fiume, “Limit cycle control and its application to the animation of
balancing and walking,” in SIGGRAPH ’96 Conference Proceedings. ACM SIGGRAPH, Aug. 1996, Annual
Conference Series, pp. 155–162, Held in New Orleans, Louisiana, 4–9 August 1996.

[11] J. Thomas Ngo and Joe Marks, “Spacetime constraints revisited,” in SIGGRAPH ’93 Conference Proceedings.
ACM SIGGRAPH, Aug. 1993, vol. 27 of Annual Conference Series, pp. 343–350.

[12] M. van de Panne and A. Lamouret, “Guided optimization for balanced locomotion,” in Eurographics
Workshop on Computer Animation and Simulation ’95, 1995, pp. 165–177.

[13] Michiel van de Panne and Eugene Fiume, “Sensor-actuator networks,” in SIGGRAPH ’93 Conference
Proceedings. ACM SIGGRAPH, Aug. 1993, vol. 27 of Annual Conference Series, pp. 335–342.

[14] N. I. Badler, C. B. Phillips, and B. L. Webber, Simulating Humans: Computer Graphics Animation and
Control, Oxford University Press, New York, 1993.

[15] A. Bruderlin and T. W. Calvert, “Goal-directed, dynamic animation of human walking,” in SIGGRAPH ’89
Conference Proceedings. ACM SIGGRAPH, July 1989, vol. 23 of Annual Conference Series, pp. 233–242.

[16] M. F. Cohen, “Interactive spacetime control for animation,” in SIGGRAPH ’92 Conference Proceedings.
ACM SIGGRAPH, July 1992, vol. 26 of Annual Conference Series, pp. 293–302.

[17] Michael Girard and Anthony A. Maciejewski, “Computational modeling for the computer animation of
legged figures,” in SIGGRAPH ’85 Conference Proceedings. ACM SIGGRAPH, July 1985, vol. 19 of Annual
Conference Series, pp. 263–270.

[18] H. Ko and N. I. Badler, “Straight line walking animation based on kinematic generalization that preserves
the original characteristics,” in Proceedings of Graphics Interface ’93, Toronto, Ontario, Canada, May 1993,
Canadian Information Processing Society, pp. 9–16.

[19] B. Laurent, B. Ronan, and N. Magnenat-Thalmann, “An interactive tool for the design of human free-walking
trajectories,” in Proceedings of Computer Animation ’92, 1992, pp. 87–104.

[20] K. Perlin, “Real time responsive animation with personality,” IEEE Transactions on Visualization and
Computer Graphics, vol. 1, no. 1, pp. 5–15, Mar. 1995.

[21] J. Freyd, “Dynamic mental representations,” Psychological Review, vol. 94, no. 4, pp. 427–438, 1987.
[22] C. D. Barclay, J. E. Cutting, and L. T. Kozlowski, “Temporal and spatial factors in gait perception that

influence gender recognition,” Perception & Psychophysics, vol. 23, no. 2, pp. 145–152, 1978.
[23] H. Poizner, U. Bellugi, and V. Lutes-Driscoll, “Perception of american sign language in dynamic point-light

displays,” Journal of Experimental Psychology: Human Perception and Performance, vol. 7, pp. 430–440,
1981.



HODGINS ET AL.: PERCEPTION OF HUMAN MOTION WITH DIFFERENT GEOMETRIC MODELS 113

[24] J. E. Cutting, C. Moore, and R. Morrison, “Masking the motions of human gait,” Perception & Psychophysics,
vol. 44, no. 4, pp. 339–347, 1988.

[25] J. E. Cutting, D. R. Proffitt, and L. T. Kozlowski, “A biomechanical invariant for gait perception,” Journal
of Experimental Psychology: Human Perception and Performance, vol. 4, no. 3, pp. 357–372, 1978.

[26] D. R. Proffitt, B. I. Bertenthal, and R. J. Roberts Jr., “The role of occlusion in reducing multistability in
moving point-light displays,” Perception & Psychophysics, vol. 36, no. 4, pp. 315–323, 1984.

[27] A. Ishiguchi, “The effect of orientation on interpolated elastic structure from dot motion: Its occurrence and
persistence,” Perception & Psychophysics, vol. 44, no. 4, 1988.

[28] C. Schlick, “Wave generators for computer graphics,” in Graphics Gems 5, Alan Paeth, Ed., pp. 367–374.
Academic Press, 1995.

[29] N. A. Macmillan and C. D. Creelman, Detection Theory: A User’s Guide, Cambridge University Press, New
York, 1991.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Cambridge
University Press, New York, 1992.

[31] J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg, “A model of visual adaptation for
realistic image synthesis,” in SIGGRAPH ’96 Conference Proceedings. ACM SIGGRAPH, Aug. 1996, Annual
Conference Series, pp. 249–258, Held in New Orleans, Louisiana, 4–9 August 1996.

[32] J. K. Kawai, J. S. Painter, and M. F. Cohen, “Radioptimization - goal based rendering,” in SIGGRAPH
’93 Conference Proceedings. ACM SIGGRAPH, Aug. 1993, Annual Conference Series, pp. 147–154, Held in
Anaheim, California, 1–6 August 1993.

[33] P. Teo and D. Heeger, “Perceptual image distortion,” in First IEEE International Conference on Image
Processing, Nov. 1994, pp. 982–986, Held in Los Alamitos, California, 11–16 November 1994.

Jessica K. Hodgins received her Ph.D. from the Computer Science Department at Carnegie
Mellon University in 1989. From 1989 to 1992, Hodgins was a postdoctoral researcher in the
MIT Artificial Intelligence Laboratory and the IBM Thomas J. Watson Research Center. She
is currently an associate professor in the College of Computing at the Georgia Institute of
Technology and a member of the Graphics, Visualization and Usability Center. Her research
explores techniques that may someday allow robots and animated creatures to plan and
control their actions in complex and unpredictable environments. In 1994 she received an
NSF Young Investigator Award and was awarded a Packard Fellowship. In 1995 she received
a Sloan Foundation Fellowship. She is on the Editorial Board of the Journal of Autonomous

Robots, the IEEE Magazine on Robotics and Automation and ACM Transactions on Graphics.

James F. O’Brien is a doctoral student in the College of Computing at the Georgia Institute
of Technology, and a member of the Graphics, Visualization, and Usability Center. He
received a M.S. in Computer Science from the Georgia Institute of Technology in 1996 and a
B.S. in Computer Science from Florida International University in 1992. His research interests
include physically based animation and geometric modeling. In 1997 he received a graduate
fellowship from the Intel Foundation.

Jack Tumblin is a PhD candidate in computer science. His research interests include
computer graphics, visual perception and image processing. After graduating from Georgia
Tech with a BSEE in 1979, he worked as a television broadcast engineer and later designed
flight simulator image-generating hardware, resulting in four patents. He returned to Georgia
Tech and in 1990 earned an MS (EE) degree.


