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Abstract—In this paper, we present a new shape-coding
approach, which decouples the shape information into two inde-
pendent signal data sets; the skeleton and the boundary distance
from the skeleton. The major benefit of this approach is that it
allows for a more flexible tradeoff between approximation error
and bit budget. Curves of arbitrary order can be utilized for
approximating both the skeleton and distance signals. For a given
bit budget for a video frame, we solve the problem of choosing
the number and location of the control points for all skeleton
and distance signals of all boundaries within a frame, so that the
overall distortion is minimized. An operational rate-distortion
(ORD) optimal approach using Lagrangian relaxation and a
four-dimensional Direct Acyclic Graph (DAG) shortest path
algorithm is developed for solving the problem. To reduce the
computational complexity from ( 5) to ( 3), where is
the number of admissible control points for a skeleton, a subop-
timal greedy-trellis search algorithm is proposed and compared
with the optimal algorithm. In addition, an even more efficient
algorithm with computational complexity ( 2) that finds an
ORD optimal solution using a relaxed distortion criterion is also
proposed and compared with the optimal solution. Experimental
results demonstrate that our proposed approaches outperform
existing ORD optimal approaches, which do not follow the same
decomposition of the source data.

Index Terms—Boundary coding, object-based video com-
pression, rate-distortion optimization, shape coding, skeleton
decomposition, skeletonization.

I. INTRODUCTION

I N RECENT YEARS, object oriented video coding has
received a lot of attention because it facilitates retrieval,

interactive editing, and manipulation of videos. Within the
object-oriented framework, a video sequence is represented
through the evolution of video object planes (VOP), with each
frame composed of one or more VOPs. Evolution of these
VOPs in time is described in terms of shape, texture and motion
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Fig. 1. Decoupling of shape and texture information. (a) Original video frame.
(b) Binary shape information. (c) Boundary information.

information. In MPEG-4 [1] and most of the work in the
literature, shape or boundary encoding is completely decoupled
from texture encoding. That is, as shown in Fig. 1, for given
a frame, the shape is extracted using a certain technique. The
problem then becomes the encoding of the shape, which is
represented either in binary form [as shown in Fig. 1(b)] or as a
two-dimensional boundary or contour [as shown in Fig. 1(c)].
Freeman [2] originally proposed the use of chain coding
for boundary quantization and lossless boundary encoding,
which has attracted considerable attention over the last forty
years. The most common chain code is the 8-connect chain
code, which is based on a rectangular grid superimposed on a
planar curve. The curve is quantized using the grid intersection
scheme and the quantized curve is represented using a string of
increments. Since the planar curve is assumed to be continuous,
the increments between grid points are limited to the eight grid
neighbors, and hence an increment can be represented by 3 bits.

Within the MPEG-4 standardization effort [3], several
contour-based shape coding methods have been developed and
proved to be very efficient. In [4]–[6], the shape is represented
using a vertex-based polygonal approximation for lossy shape
coding. The placement of vertices allows for a direct control
of the local variations of the shape approximation error. For
lossless shape coding, the polygonal approximation “degener-
ates” to a chain code. In [7], a baseline shape coder places the
shape into a 2-D coordinate system such that the projection of
the shape onto the x-axis is the longest. The x-axis is called
the baseline, from which the distance (y-coordinate) between
the baseline and a point on the shape outline is measured.
The shape contour is sampled clockwise. The contour points
at which the direction changes are called turning points. The
shape boundary is represented by traced one-dimensional
distance data with turning points, followed by entropy coding.

None of the encoders mentioned above is operationally rate-
distortion (ORD) optimal because they do not provide a rig-
orous tradeoff between the encoding cost and the resulting dis-
tortion. In [8]–[10], a framework for the rate-distortion opera-
tionally optimal encoding of shape information in the intra and
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inter modes is proposed. First order (polygons) and higher order
(i.e., splines) approximation techniques are adopted to represent
the boundary, and the control points of these curves are encoded
to achieve the ORD optimal result.

In addition to the approximation mentioned above which
operate directly on the boundary vertices, a number of in-
vestigations have also considered alternative approaches that
first transform or decompose the shape information before
processing (the baseline coder already mentioned performs
such transform). In [11] the shape description algorithms are
classified into external and internal. The former ones are based
on the description of the shape boundary, like Fourier descriptor
[12], [13], time series [14], and shape matrices [15]. The latter
ones are mainly area descriptor algorithms, like moment based
approaches [16], skeletons or medial axis transform [17]–[19],
and shape decomposition [20].

In [17], the skeleton decomposition was proposed as an alter-
native shape description method for biology research. The main
idea behind it is to find a set of points that are equidistant from
the object boundary by means of maximally inscribed disks. The
description consists of the locus of the center of each inscribed
disk and its associated radius [18]. This is the morphological
definition of a skeleton, and has been employed for coding of
binary images [19] and motion estimation [21]. In the case of
many extra branches (bones) in the skeleton, when the boundary
has many outward ripples (see example in [18, p. 377]), the
skeleton decomposition results in coding inefficiencies, since
the skeleton points are sparsely distributed. Furthermore, if pro-
gressive contour transmission of images is considered, coding
becomes even more inefficient, because the skeleton points at
coarser levels are farther apart from each other.

In this paper, a new definition of the skeleton is proposed
which is suitable for the problem under consideration and an
ORD optimal shape coding approach is presented, which al-
lows for more flexible tradeoff between accuracy and bit-allo-
cation cost. The object shape is decomposed into the skeleton
(defined as the midpoints between the two boundary points) and
the distance of the boundary points from the skeleton in the hor-
izontal direction. The skeleton points are connected in the ver-
tical (y-axis) direction (most of them are 8-connected), which
facilitates processing. The decoupling of skeleton and distance
signal sets allows in principle for more flexibility in encoding,
that is, it allows for the application of different transform and
compression methods for each data set, according to their char-
acteristics. Furthermore, the skeleton of an object can be used
for the estimation of the object motion in the inter-mode. As
an example of a way to encode the two signal data sets, we
apply polygonal approximation on both the skeleton and dis-
tance signals. The resulting symbols are then encoded using
arithmetic coding. The scope of this paper is limited to intra
frame boundary coding.

This paper is organized as follows. Section II provides a
description of the skeleton-based shape representation. Sec-
tion III mathematically defines the problem of the ORD optimal
boundary encoding of a single object. Section IV shows how
the Lagrangian multiplier method can be applied to solve the
proposed constrained problem as a series of unconstrained
problems. We describe the lossy polygonal approximations

Fig. 2. Example of skeletonization.

of the skeleton and distance signals, and illustrate the ORD
optimal process for allocating bits between the skeleton and
distance signal data sets. In addition, a four-dimensional DAG
shortest path algorithm is proposed, which is compared with
more efficient but only near optimal methods. In Section V, we
discuss more general cases and extend the results for the jointly
optimal encoding of multiple boundaries. Section VI presents
experimental results, and Section VII draws conclusions.

II. SKELETON-BASED SHAPE REPRESENTATION

The basic idea of skeletonization is to represent an object
by two or more 1-D signals (skeletons with associated distance
data). Each pixel of the skeleton is associated with the distance
to the closest boundary pixel in a given direction. We use the
horizontal distance for both simplicity and efficiency. The ob-
ject boundary can be exactly recovered from its skeleton and
distance data. Fig. 2 shows examples of skeletonization for a
frame from the “kids” sequence.

In general, there are two basic and interchangeable ways to
define an object shape, by the boundary of the shape or the bi-
nary mask of the shape. By labeling the pixels on the boundary
of the object with “1” while filling the inside pixels of the ob-
ject with “0”, the binary mask of the object is generated. On
the other hand, the boundary shape can be obtained by tracing
the contour of the binary mask. In both cases, there is an ambi-
guity which needs to be resolved, whether the boundary pixels
belong to the object or the background. In this paper, we use the
boundary form of the object shape, and we therefore assume that
the boundary pixels belong to the object.

The definition of the boundary is as follows:

(1)

where is the number of pixels on the boundary and
is the th pixel of the boundary with and its horizontal and
vertical coordinates, respectively. For any integer

is an 8-connect neighbor pixel of .
We can represent the extracted skeletonsas the set of points

at the “center” of the object in the horizontal direction and
the associated distancefrom the boundary, i.e.,

and

are outside of the object (2)

where has half-pixel accuracy. A generic shape may contain
more than one skeletons.
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(a) (b)

Fig. 3. Highly correlated boundary data, resulting in (a) constant distance
signal and (b) constant skeleton signal.

The decoupling of the boundary data into skeleton and dis-
tance signals allows for their independent encoding. Since the
skeleton and the distance signals typically have different char-
acteristics, such an approach allows us to capitalize on their dif-
ference. As an example, let us consider two special cases shown
in Fig. 3. In Fig. 3(a), the skeleton signal conveys all the infor-
mation of the boundary (the distance signal is constant), while
in Fig. 3(b), the opposite occurs. In both cases, 2-D shape in-
formation is represented by an 1-D signal, which can result in
higher compression efficiency.

Another decomposition example with actual data is shown in
Fig. 4. In Fig. 4(a) a frame with two objects and three major
skeletons is shown. Fig. 4(b) shows the skeleton and distance
signal of the leftmost major skeleton in Fig. 4(a), while Fig. 4(c)
shows the skeleton and distance signal of the rightmost major
skeleton in Fig. 4(a). Notice that in Fig. 4(b), the skeleton is
“smoother” than the distance signal because the boundary of
the left kid in the frame is highly correlated. In Fig. 4(c), neither
function is very smooth, because the boundary of the right kid
in the frame is less correlated. Our experiments have shown that
in most video frames, highly correlated boundaries are quite
common, so our approach can result in a substantial advantage.

The skeleton and distance data in Figs. 4(b) and 4(c) contain
constant or nearly constant subintervals, which can be encoded
very efficiently by straight lines. Such an example is shown in
Fig. 4(d), where a lossy approximation of the skeleton and dis-
tance signal of the left kid of the first frame [Fig. 4(b)] is shown.
Each constant subinterval can be treated as the special case of
the example shown in Fig. 3.

III. PROBLEM FORMULATION

In the following, we first introduce the notation to be used
in this paper and then formulate the optimization problem to
be solved. To simplify the problem description, we first assume
that there is only one object that contains only one skeleton,
and defer the solution of the general case of encoding multiple
objects with multiple skeletons to Section V. Let denote
the starting point of the skeleton. The points of the skeleton are
specified by , where

are the coordinates of theth pixel point on the skeleton,
with . Let denote the
corresponding distances. Thus, the coordinates of the boundary
points will be and

.

Before the problem is formulated, the means for measuring
the quality of a boundary approximation or a distortion metric
needs to be determined. The problem of finding the most ap-
propriate distortion metric is open and is application dependent.
We do not address it in this work, but instead we are using a
distortion metric adopted by MPEG-4, as explained in the next
section. This allows us to also compare the results obtained with
the proposed method with published results. Let us denote the
distortion of the skeleton by ,
where is the distortion incurred by theth skeleton pixel.
Correspondingly, the distortion of the distance signal is denoted
by . Clearly, all distortion ele-
ments are nonnegative.

A. Distortion Metric

The distortion metric adopted by MPEG-4, which is also uti-
lized in this work, is given by

Number of pixels in error
Number of interior pixels

(3)

where a pixel is said to be in error if it belongs to the interior of
the original object and the exterior of the approximating object,
or vice-versa. in (3) refers to one object; if there
are more than one objects in the scene, the sum of the object
distortions will form the distortion for the complete frame.

In lossy shape coding, distortion in both the skeleton and dis-
tance will contribute to the distortion of the shape. Fig. 5 shows
examples of shape distortion. The object in Fig. 5(a) is the orig-
inal object with its skeleton. The objects in Fig. 5(b) are the
original object and its approximation resulting from the shifting
of its skeleton to the left. The areas marked with dots are pixels
in error to be used in measuring the distortion. Similarly, the ob-
ject in Fig. 5(c) results from the expansion of the distance data.
The dark areas represent pixels in error. When both skeleton and
distance data are encoded in a lossy fashion, the overall distor-
tion has a nonlinear relationship to the individual distortions of
the skeleton and distance data, as explained next.

Since the number of interior pixels is fixed, we are clearly
concerned only with the “Number of pixels in error” in the nu-
merator of (3), which is denoted as . The following
lemmas address properties of .

Lemma 1: If lossy coding is only applied on the skeleton
signal and the distance signal is coded losslessly, then

Lemma 2: If lossy coding is only applied on the distance
signal, and the skeleton signal is coded losslessly, then

Lemma 3: If lossy coding is applied on both skeleton and
distance data, then

Proof: In proving this lemma, we assume that after
encoding, the resulting skeletons are inside the original shape
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Fig. 4. Decomposition into skeleton and distance data.

(a) (b) (c)

Fig. 5. Distortion caused by lossy coding of skeleton or distance (a) original
shape; (b) shape after shifting of skeleton; and (c) shape after shifting of the
distance data.

boundary. This is an assumption which holds true in almost
all cases and rates of interest. Let the-coordinates of the
boundary points at the skeleton at location be given by

and . With the given skeleton distortion and distance
distortion , there are the following four possibilities for the
location of the -coordinates pair of the reconstructed boundary
points:

. Based on the MPEG-4
distortion metric, all four possibilities have the same resulting
distortion given by

Finally, by summing up the distortion in each offset of the
direction for all skeletons, we get

Lemma 4:

Proof: Given , it is clear that max
. Therefore

From Lemma 3, we have that when the skeletons are inside
the shape boundary, .
We now prove that the last expression with inequality for those
skeleton points outside the shape boundary. Without loss of
generality, we assume that the skeleton is on the right side of
the shape boundary; then, there are only two possible cases
as shown in Fig. 6. One is the overlapping object case shown
in Fig. 6(a), and the other is the nonoverlapping object case
shown in Fig. 6(b). For the first case, if we denote that the

-coordinates of the boundary points on the left object by
and , the x-coordinates of the boundary points on the

right object are then either
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Fig. 6. Two cases of the spatial relationship between original and
reconstructed objects (assumingD = 0).

. The distortion
is given by

For the case of Fig. 6(b), it is obvious that

Therefore, by summing up all the distortions, we obtain

B. Bit Rate

Let us denote by the total available bit rate for the en-
coding of an object shape. Then

, where represents the bits required for the encoding of
the starting point of the skeleton, the bits allocated to the
encoding of the skeleton signal, and the bits allocated to
the encoding of the distance signal.

We denote by the set of ver-
tices used for the approximation of the skeleton; withthe
number of vertices. Let us denote by ,
the rate required for the encoding of the vertex , based
on a pre-assigned encoding scheme, when a curve of a cer-
tain order is used for the approximation. For example, if
straight lines are used for the approximation, two control
points are needed to define a line segment and the order
equals 1; if on the other hand, second order curves are used,
such as 2nd order B-Splines, three control points are needed
to define a curve segment and the orderequals 2. Then,

. Similarly, the set of
vertices defining the approximation of the distance signals is
represented by , and ,
where represents the rate for encoding the
th control point of the approximating curve.

Therefore

(4)

C. Problem Formulation

With the notation and the quantities introduced in the
previous section, we now proceed with the formulation of the

problem we are set to solve. Given a skeleton signal and the cor-
responding distance signal, we want to determine, the vertices

of the curve providing an approximation
to the skeleton signal, and the vertices of
the curve providing an approximation to the distance signal, as
well as, the number of skeleton signal verticesand distance
signal vertices , which minimize the overall distortion of
the reconstructed shape, , utilizing bits
which satisfy a bit budget of bits. That is, the problem
to be solved is given by

subject to (5)

Let , that is the bit budget available after
the encoding of the starting point. By utilizing Lemma 3 and
(4), problem (5) can be rewritten as

subject to

(6)

IV. SOLUTION METHOD

In this section, we introduce both optimal and near optimal
solutions to the problem for various requirements from different
applications. The optimal solution to be derived in Section IV-A
is based on the Lagrange multiplier method and dynamic pro-
gramming adopted to solve a DAG shortest path problem. To
speed up the algorithm, two suboptimal algorithms are proposed
in Section IV-C.

A. Optimal Solution

We derive a solution to problem (6) using the Lagrange multi-
plier method to relax the constraint, so that the relaxed problem
can be solved using a shortest path algorithm. We first define
the Lagrangian cost function

(7)

where is called the Lagrange multiplier. It has been
shown in [22] and [23] that if there is a such that

, and which leads to

, then is also an optimal solution to (6).
It is well known that when sweeps from zero to infinity,
the solution to problem (6) traces out the convex hull of the
operational rate distortion function, which is a nonincreasing
function. Hence, bisection or the fast convex search we present
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in [24] can be used to find . Therefore, if we can find the
optimal solution to the unconstrained problem

(8)

we can find the optimal and the convex hull approximation
to the constrained problem of (6).

Clearly, if the skeleton is encoded without loss, while
the distance signal with loss, then based on Lemmas
1 and 2, problem (8) becomes the minimization of

. Similarly,
for the lossy encoding of the skeleton signals with lossless
distance signals, optimization (8) becomes the minimization
of . The last two
optimizations can be solved using a Directed Acyclic Graph
(DAG) shortest path algorithm proposed in [8]–[10], [25]. We
proceed next with the development of an algorithm for solving
optimization (8).

B. Four-Dimensional DAG Shortest Path Algorithm

The optimization problem of (8) is more complicated since
the skeleton and distance signals are coupled through the dis-
tortion. We are expanding the DAG shortest path algorithm de-
veloped in [8]–[10], [25] to a 4-D space to solve this problem.
In other words, the states in the DAG state space will be repre-
sented by 4-tuple elements instead of 1-tuple elements. In the
following, we are showing how to map the original problem (8)
into a graph theory problem. We will start from the simplest case
when the control points are restricted to belong to the original
signal set (skeleton or distance data). In general we utilize a set
of points outside the original signal set as the admissible control
point set, as was done in [8], [9]. This set typically forms a band
of a certain width around the original signal set. The simplest
case we study next results when the width of this control point
band is set equal to zero.

1) Node Space:Given a polygonal approximation of both
skeleton and distance signals, we define a node space with el-
ements the 4-tuple , representing all combinations of
the last two control points in the skeleton approximationand

, and the last two control points in the distance signal
approximation and . Clearly, there is one node
space for each possible approximation. For the skeleton approx-
imation with vertices and the distance approximation with

vertices, the size (number of nodes) of the space is equal to
(see Fig. 7 for an example).

Let denote the next vertex afterin the skeleton approxima-
tion and the next vertex after in the distance approximation.
There are only three links starting at node to describe
the transitions ,
and , indicated by bold arrows in Fig. 8.
The above defined node space is providing an alternative (and
more useful) way in representing an approximation of the dis-
tance and skeleton data. Consider for example, the approxima-
tion shown in Fig. 8(a). A 9-point skeleton and distance sig-
nals are shown (open circles), along with the vertices of the

Fig. 7. Example of node space.

polygonal approximations (filled circles). The approximation
of the skeleton signal consists of the use of the samples num-
bered 0, 1, 3, and 8, as vertices of the polygon, and for the
distance data of the samples numbered 0, 3, 5, and 8. The ap-
proximation, in other words, consists of these two lists of vertex
points. An alternative way to represent their approximation is
with the use of the node space, that is, by the linked node list

. We therefore define a
mapping between the vertex lists and the linked node list. As
can be easily understood, this mapping is not 1-to-1 but 1-to-.
For example, for the given vertex lists, another linked node list
is . Actu-
ally, can become a very large number asand increases,
since it is an exponential function of and .

2) State Space:In order to be able to use dynamic program-
ming for obtaining the optimal solution of problem (8), we de-
fine a state space, which is a subset of the union of all node
spaces, with elements (so called states) satisfying

and , and edges among elements. This definition ex-
cludes from consideration those nodes with segment

not overlapping with segment . The motivation for this
is twofold: 1) By removing the nonoverlapping segments, we
can express the distortion as the sum of link distortions between
states, as will be shown later. This will make a dynamic pro-
gramming solution possible. 2) The fewer the states the faster
the algorithm, given we do not remove from consideration any
feasible polygonal approximations with this pruning.

There are only two kinds of edges allowed starting at state
, which correspond to the first two kinds of links in

node space, as shown in Fig. 8(a) and (b). In other words, the
two edges describe the transitions ,
and , respectively. Therefore, the total
number of edges is , where the total number of points
in the skeleton and distance data. It is important to note that
excluding the third possibility in Fig. 8(c) does not exclude any
optimal path, since, as shown later, any possible approximation
can be achieved using only the first two possibilities [Fig. 8(c)
can be obtained by the concatenation of Fig. 8(a) and (b)].
This restriction is of considerable help when later we define
edge distortion, so that the total distortion is the sum of edge
distortions.

We now prove that the exclusion process [of those nodes
and links represented in Fig. 8(c)] will not remove any optimal
solutions for problem (8), by demonstrating that there is an
1-to- mapping between the vertex lists and the linked state
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Fig. 8. Examples of connected nodes.

list ( is a variable nonzero integer considerably smaller than
). First, we show that for any linked state list starting at state

and terminating at state , there are cor-
responding vertex lists. Based on the definition of edges, and
the edge terminating at state , we can find the last
past state of state , and therefore the past vertex
of the last point in the skeleton approximation, or the past
vertex of the last point in the distance approximation. Then
by backtracking, vertex points in the skeleton approximation or
the distance approximation are recorded, until state
is reached and the vertex lists of the approximations for both
skeleton and distance signals are completed.

Then, we provide a generic procedure to obtain a corre-
sponding linked state list from any given vertex lists. The idea
is straightforward. We start by including state into
an empty list, (as we know, , where

is the vertical index of vertex in the original signal set).
Then state is appended into the list, followed
by state . Then, the value of is
compared with . If , then the next
state is , otherwise, the next state
is . After that, is compared
with , (or is compared with and the
state transition process proceed iteratively. Eventually, the state
transition will reach state
(as we know, ). Fig. 9 shows an
example of the procedure. In Fig. 9(a), the sequence of steps
is labeled and Fig. 9(b) shows the list of the state transitions.
From the iterative procedure for obtaining the linked state list
[mapping Fig. 9(a) to (b)] and the backtracking procedure
[mapping Fig. 9(b) to (a)], described above, it is clear that there
is an 1-to- mapping between the vertex lists and the linked
state list. This means that the specific definition of the state
space introduced in this section will not cause the exclusion of
any optimal paths, since every possible skeleton and distance
approximations are maintained.

Fig. 9. Example of the state transition list (b) corresponding to vertex lists (a).

3) Dynamic Programming:To implement the algorithm to
solve the optimization problem (8), we create a cost function

(assuming is representing state ), which rep-
resents the minimum total rate and distortion up to and including
state in the state space. That is

(9)
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Fig. 10. Examples of segment distortion and segment rate.

where the function iff , and
iff . In the following, we assume that the order of
the approximating curve is equal to 1, i.e., . For , we
need to construct a state space containing -tuple states,
instead of 4-tuple states.

The key observation for deriving an efficient algorithm is the
fact that given a certain state in a path and the cost func-
tion up to and including this state , the selection of
the next state is independent of the selection of the pre-
vious states . This is true since the cost func-
tion can be expressed recursively as a function of the segment
rates and the segment distortion . More
specifically,

(10)

where (see (11)–(13) at the bottom of the page). Fig. 10 shows
an example of the segment distortion and segment rate. The
figure on the right [ represents state ] shows the
next step relative to the figure on the left ( represents state

). It is easy to see how the edge distortions add up to
the total distortion. In other words, we are showing that sum-
ming the above segment distortions up will result in the total
distortion and, that these segment distortions are only depen-
dent on state and state .

Recursion (10) needs to be initialized by setting
equal to zero. For all possible approxima-

tions, is equal to the minimum
value of,

, the Lagrangian cost function for the
entire skeleton and distance data.

Using (10), the problem stated in (8) can be formulated as a
shortest path problem in a weighted directed graph ,
where is the set of graph vertices andthe set of edges, for

the state space, where any directed edge infrom a vertex
to another vertex represents a state transition. A directed edge is
denoted by the ordered pair , which implies that the
edge starts at vertexand ends at vertex. The weight of edge

is defined as in (11). Clearly, the problem state
in (8) can be solved by finding the shortest path from the vertex
corresponding to the state to the vertex corresponding
to the state , and the ordered list of vertices on
the shortest path correspond to an ordered state sequence. By
backtracking we get the vertex lists for skeleton and distance
signals.

In summary, the state definition and the recursive represen-
tation of the cost function in (10) makes the future step of the
optimization process independent from its past step, which is the
foundation of the dynamic programming technique. The com-
putational complexity of a DAG shortest path DP algorithm is

. For the graph corresponding to the state space,
is and is , therefore, the computational

complexity of the proposed 4-D DAG shortest path algorithm is
. In most cases, it only takes several iterations to find the

optimal lambda. So, comparing with , the number of itera-
tions is not a significant factor in consideration of computational
complexity.

4) Admissible Control Point Band:To handle the case of a
nonzero admissible control point band (i.e., the control points
can be nonboundary points) and make the optimal solution still
feasible, we need to take the following steps. First, we have to

(11)

and
Transition occurs in skeleton data
Transition occurs in distance data (12)

and
Transition occurs in skeleton data
Transition occurs in skeleton data

(13)
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Fig. 11. Example of labeling of the admissible control points.

label the admissible control points in a line one by one from left
to right and repeat this process line by line from top to bottom
in the vertical direction (shown in Fig. 11), so that pointis on
the left of point if they are on the same horizontal line,
otherwise, point is on the line above the line containing point
. The state space is constructed with those states that

combine the th and th admissible points for skeleton signal,
and the th and th admissible points for distance signal, with
the restrictions that , and , and
the th point is not on the same line with theth point, and
also the th point is not on the same line with theth point.
The weighted directed edges from one state to another state are
defined the same way as above. Clearly, the mapping between
state space and graph exists, and dynamic programming is
applicable. Therefore, the optimal solution can be found by the
DAG shortest path algorithm.

C. Suboptimal Algorithms

1) Greedy-Trellis Search:A greedy suboptimal approach
with computational complexity of can be applied to the
problem at hand, with no major loss in the quality of the results.
Such an approach is obtained by using a 2-tuple state
instead of a 4-tuple state, which consists of the last point in the
skeleton approximation , and the last point in the distance
approximation . As shown in Fig. 12, the state space consists
of states and weighted directed edges from one state to another.
However, the terminating states of those edges starting
at state are a restricted subset of the whole states set that
satisfying and , resulting in an acyclic graph. The
greedy approach keeps the lowest cost branch at all stages in
the trellis up to that point, i.e., the selection of the optimal state
at the current stage is forced based on the optimal state at the
previous stage. So, every state keeps the shortest path from the
source state to itself. The edge weight from state to
state is defined as

(14)

Obviously, could depend on the states in the past
of the state in the so far selected optimal path, which
destroys the optimality of the algorithm, and makes this ap-
proach a greedy search algorithm. To speed up the performance,
pruning can be implemented by only allowing those edges from

Fig. 12. Example of a 2-D state space.

state to state or state . The
total number of edges in the state space then becomes equal to

.
2) Relaxed Distortion Optimal Solution:Various ways can

be envisioned for obtaining suboptimal results. For example, as
mentioned in Section IV-A, lossy encoding can be performed
only on one of the two data sets, while the other is encoded loss-
lessly. An alternative way [26] is to apply polygonal approxima-
tion on both the skeleton and distance data, while assuming that
the distortion from the skeleton approximation and the distor-
tion from the distance approximation are additive, although, as
shown earlier, they are not.

In this approach, we assume that
. Based on Lemma 4, it is clear that the resulting actual

distortion in this case can be smaller that the one calculated by
the algorithm. Problem (8) in this case can be written as

(15)

Since skeleton and distance data are independent, (15) can be
split into two optimizations as mentioned in Section IV-A, with
computational complexity of .

Another way to improve the efficiency of the algorithm with
near optimality is to use a sliding window [27], which restricts
the maximum vertical distance of consecutive starting/ending
vertices. By denoting by the window size, the compu-
tational complexity of the 4-D DAG shortest path algorithm
will be reduced to , and the near optimal algorithm
mentioned above will have computational complexity equal to

. Experimental results indicate that when is in-
creased, the RD curve improves slightly, at the expense of con-
siderably increased execution time.

The width of the admissible control point band is another
factor influencing the efficiency of the algorithm. The wider the
band, the larger the number of admissible control points.
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V. GENERAL CASES

We now consider the more general cases where an object con-
tains more than one skeletons, and there are multiple objects in
a frame.

1) Object With Multiple Skeletons:Assume that the skele-
tons are encoded with the associated distance
signals . Then the optimization problem can
be stated as

subject to

(16)

where the total distortion of the object depends on allskele-
tons and distances. This problem can be solved by solving the
unconstrained problem first

(17)

It can be easily shown that

(18)

In most cases, equality holds, and then the optimization
problem decouples into problems of

, which are identical to (8)
solved in the previous section. In some rare cases, when the
distance distortion pixel sets corresponding to two skeletons
overlap, the total distortion is less than the sum of distortions
in (18). In such cases, solving the decoupling problem yields
a suboptimal overall solution. Since these cases are rare
and the solution of the overall problem becomes extremely
complicated, we will not consider it here.

2) Multiple Object Boundary Encoding:Since the distor-
tion calculation is defined on an object-by-object basis, the
problem remains decoupled even if the distortion pixel sets of
two objects overlap. That is, the results of Section IV apply. It
is underlined here that in the cases of decoupled optimizations,
the same Lagrange multiplier is used for the optimization of all
the relaxed problems.

VI. EXPERIMENTAL RESULT

A number of experiments have been conducted, some of
which are reported here. Fig. 13 shows a comparison of the
results obtained using the greedy-trellis search suboptimal
approach and the 4-D DAG optimal approach. One-hundred
frames of the SIF sequence Kids were used in this experiment.
The distortion axis represents the average of MPEG-4 distortion
( in (3) for one frame over 100 frames). The results
are comparable, with a great reduction in the computational
complexity of the greedy algorithm. In this second experiment,
the relaxed distortion optimal solution is compared to the 4-D
DAG optimal solution. Fig. 14 shows the corresponding ORD
curves for the first frame of the Kids sequence. In addition,

Fig. 13. Comparison of optimal and suboptimal (greedy-trellis search)
solutions.

Fig. 14. Comparison of RD curve for additive distortion metric and actual
MPEG-4 distortion metric obtained by the near-optimal and optimal algorithms.

Fig. 15. Examples of approximating only distance data.

the result obtained by the relaxed distortion optimal solution
is evaluated using the MPEG-4 distortion metric, showing
some improved performance. As a general conclusion, the
suboptimal algorithms studied demonstrate a performance
quite comparable to that of the optimal algorithm.

Some of the experiments address the suitability of various
new compression techniques for compressing each of the
skeleton and distance signals. We compared the methods of
encoding skeleton signals without loss while encoding distance
signal with loss (Fig. 15), and the method of encoding both
skeleton and distance signals with loss (Fig. 16). As expected,
by introducing distortion on the skeleton, the rate is reduced
by about 40% for distortion around 4% (compare left figure
of Fig. 15 to right figure of Fig. 16). Another experiment is
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Fig. 16. Shape approximation results according to the proposed 4-D DAG
optimal algorithm.

Fig. 17. Comparison of RD curves by various algorithms for “Kids” sequence.

Fig. 18. RD curves for the proposed method and CAE for the “Cyclamen”
sequence.

reported in Fig. 17. In this experiment, both the skeleton and
distance signals are encoded using polygonal approximation,
VLC optimization is applied as in [25], and the 4D DAG
shortest path algorithm is applied to get the ORD optimal
curves. The results of the optimal approximation are indicated
by “*”. In addition, in Fig. 17, the results obtained in [9] for a

Fig. 19. Original and reconstructed shapes from Cyclamen sequence.

Fig. 20. Comparison of RD curves by various algorithms for “Weather”
sequence.

polygonal approximation are shown, indicated by “o”, and the
results obtained by the CAE method are shown, indicated by
“ ”. As it can be inferred from Fig. 17, the decomposition of
the boundary data into two signal data sets (skeleton and dis-
tance), with different characteristics, allows for their efficient
exploitation resulting in better compression results.

The effectiveness of the proposed approach was also tested
utilizing 100 frames of the CIF “Cyclamen” and the QCIF
“Weather” sequences. In Fig. 18, the RD curves for the
proposed algorithm and CAE are shown, while in Fig. 19
a representative original and compressed frames from the
“Cyclamen” sequence are shown. The proposed algorithm
outperforms CAE with this sequence as well, which is a chal-
lenging sequence for the proposed method. Finally, three RD
curves are shown for the “Weather” sequences (Fig. 20). The
proposed method greatly outperforms CAE and an RD optimal
vertex method in this case, since the “Weather” sequence with
typically one skeleton per frame is extremely well suited for
the skeleton decomposition.

VII. CONCLUSION

In this paper, we presented a skeleton-based shape-coding al-
gorithm. By decoupling the two-dimensional shape object data
into one-dimensional skeleton and distance signals, we create a
novel scheme for encoding the object boundary. Since the sep-
arated skeleton and distance signals are uncorrelated with each
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other, this encoding method is expected to be efficient. By al-
lowing arbitrary order of curves to represent the approxima-
tion form of the skeleton and distance signals, we are facing
the problem of how to choose the number and location of the
control points of the approximation curves for both skeleton
and distance signals, to minimize the overall distortion with a
given bit budget for a video frame. In this paper, several solu-
tions are proposed to solve the problem. An optimal solution
using the Lagrangian multiplier method and 4D DAG shortest
path algorithm is presented with computational complexity of

. To reduce complexity without a major sacrifice of the
quality, a suboptimal greedy-trellis search algorithm is demon-
strated with computational complexity of . Furthermore,
near optimal solutions are proposed reducing the computational
complexity to . Experimental results demonstrate that
the proposed algorithms result in a significant improvement in
rate-distortion efficiency with respect to other ORD optimal
shape encoders.
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