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Abstract—This paper presents an operational rate-distortion 
(ORD) optimal approach for skeleton-based boundary 
encoding. The boundary information is first decomposed into 
skeleton and distance signals, by which a more efficient 
representation of the original boundary results. Curves of 
arbitrary order are utilized for approximating the skeleton 
and distance signals. For a given bit budget for a video frame, 
we solve the problem of choosing the number and location of 
the control points for all skeleton and distance signals and for 
all boundaries within a frame, so that the overall distortion is 
minimized. The problem is solved with the use of Lagrangian 
relaxation and a shortest path algorithm in a 4D directed 
acyclic graph (DAG) we propose. By defining a path selection 
pattern, we reduce the computational complexity of the 4D 
DAG shortest path algorithm from O(N5) to O(N4), where N 
is the number of admissible control points for a skeleton. A 
suboptimal solution is also presented for further reducing the 
computational complexity of the algorithm to O(N2). The 
proposed algorithm outperforms experimentally other 
competing algorithms. 
Keywords— shape coding, skeleton decomposition, optimal. 
 

1. INTRODUCTION 
 

MPEG-4 [1] is the first international standard capable of 
encoding video objects with arbitrary shape. Within the 
MPEG-4 standardization effort [2], several contour-based 
shape coding methods have been developed and 
compared. In [3,4], lossy vertex-based polygonal 
approximations are considered. The placement of vertices 
allows for a direct control of the local variations of the 
shape approximation error. Those encoders are not 
optimal because they do not provide a rigorous tradeoff 
between the encoding cost and the resulting distortion. In 
[5,6], a framework for the operationally rate-distortion 
(ORD) optimal encoding of shape information in the intra 
and inter modes is proposed. Polygonal/spline 
approximation techniques are adopted to represent the 
boundary; the control points of these curves are encoded 
to achieve the ORD optimal result. 
Morphological skeleton decomposition [7] is another 
approach for shape representation. Techniques utilized for 
the encoding of morphological skeletons are inefficient 
(especially with skeletons with many extra branches), 
since such skeletons are sparsely distributed. In [8], we 
proposed a new skeleton decomposition, which allows for 
a more flexible tradeoff between approximation error and 
bit budget. The object shape is decomposed into the 
skeleton (defined as the midpoints between the two 

boundary points) and the distance of the boundary points 
from the skeleton in the horizontal direction. The skeleton 
points are connected in the vertical (y-axis) direction. This 
represents a distinct advantage over morphological 
skeleton decomposition, especially when progressive 
transmission of the shape is considered. 
In this paper, we propose an overall optimal skeleton-
based encoding scheme in the rate-distortion sense. We 
apply polygonal approximation on both the skeleton and 
the distance signals. By converting the coding problem 
into a graph theory problem, a four-dimensional (4D) 
directed acyclic graph (DAG) shortest path algorithm is 
applied for obtaining the optimal solution.  
This paper is organized as follows. Section 2 provides a 
description of the skeleton-based shape representation. 
Section 3 formulates the problem. Section 4 describes the 
Lagrangian multiplier method and the 4D DAG shortest 
algorithm applied to solve the proposed constrained 
problem. Section 5 discusses solutions for more general 
cases. Section 6 reports experimental results, and section 7 
concludes the paper. 
 

II. SKELETON-BASED SHAPE REPRESENTATION 
 

We use the boundary form to represent object shape, by 
   B={b1(x,y), b2(x,y), ……, bK(x,y)},             (1) 
where bi(x,y) is the ith boundary pixel with x as the 
horizontal and y as the vertical axes, and K the total 
number of pixels on the boundary. For any integer i 
(1≤i≤K-1), bi+1(x,y) is an 8-connected neighboring pixel of 
bi(x,y). We represent the extracted skeletons S as the set of 
points (x,y) at the “center” of the object and the associated 
horizontal distance from the boundary (see Fig. 1), i.e., 

S={(x,y,d)| (x+d,y)∈B and (x-d,y)∈B},      (2) 
where d has half-pixel accuracy. 
The decomposition achieved by skeletonization results in 
two signals (skeleton and distance), which are not 
correlated with each other. It is therefore expected that the 
encoding of these two signals will be more efficient than 
the encoding of the original boundary information. In 
addition, one of the two signals can be quite inexpensive 
to encode. This is demonstrated by the two special cases 
shown in Fig. 2. In Fig. 2(a), the skeleton signal conveys 
all the information of the boundary (the distance signal is 
constant), while in Fig. 2(b), the opposite occurs. In both 
cases, the 2D-shape information is represented by a 1D 
signal, which results in compression efficiency.   
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Figure 1 Example of skeletonization 

 
 
 
 
 
 

 
Figure 2 Examples of shapes for which one of the two signals 

resulting from skeletonization is constant 

The situation represented by the synthetic signals in Fig. 2 
is also encountered if one considers intervals of an 
arbitrary shape. For example, the skeleton and distance 
data of the kid on the left of Fig. 1 is shown in Fig. 3. It 
can be observed that there are subintervals for which the 
value of the skeleton or distance data is either constant or 
can be approximated to be constant without introducing a 
major error. 
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Figure 3 Decomposition into skeleton and distance data 

 
III. PROBLEM FORMULATION 

 

To simplify the problem description, we first assume that 
there is only one object that contains only one skeleton, 
and defer the solution for general case of encoding 
multiple objects with multiple skeletons to section V. We 
seek to define the skeleton signal set S={S1, S2, … SN} and 
the corresponding distance signal set T={T1, T2, …TN}.  

A. Distortion Metric 
The distortion metric adopted by MPEG-4, which is also 
utilized in this work, is given by 

pixelsInteriorofNumber
errorinpixelsofNumberDMPEG =−4

     (3)    

where a pixel is said to be in error if it belongs to the 
interior of the original object and the exterior of the 
approximating object, or vice-versa.  
Let us denote the distortion of the skeleton by D(S)={DS1, 
DS2 , …,DSN }, where DSi is the distortion incurred by the 
ith skeleton pixel. Correspondingly, the distortion of the 

distance signal is denoted by D(T)={DT1, DT2 ,  …,DTN }. 
Clearly, all distortion elements are non-negative. 

B. Bit Rate 
Let us denote the total available bit rate for the encoding 
of the object shape in a frame by Rtot. Then 
Rtot=R0+R(S)+R(T), where R0 represents the bits required 
for the encoding of the starting points of the skeleton, R(S) 
the bits allocated for the encoding of the skeleton signal, 
and R(T) the bits allocated for the encoding of the distance 
signal. The skeleton and distance data will be 
approximated by a curve of a certain order. For example, 
if straight lines are used for the approximation, two control 
points are needed to define a line segment; if on the other 
hand, second order curves are used, such as splines, three 
control points are needed to define a curve segment. The 
location of the control points or vertices is encoded and 
utilized for the reconstruction of the signal. Assuming that 
the skeleton has M vertices {VS1, VS2,…VSM}, 
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C. Problem Description 
The problem at hand is the operational rate distortion 
optimal encoding of the shape in a video frame (intra-
shape encoding). That is, given a bit budget for the frame, 
we want to find the encoding of the shapes, which result in 
the smallest distortion. More specifically, we are solving 
the following constrained optimization problem with 
unknown the number and location of the control points, 

min Dtot, subject to Rtot ≤ Rmax,       (5) 

where Dtot is the total distortion (the sum of the distortion 
per object boundary) and Rmax the total given bit budget.  
It is not hard to prove ∑

=

⋅≤
N

i
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utilizing Eq. (4), problem (5) can be rewritten as:  
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IV. OPTIMAL SOLUTION  
 

We define a Lagrangian cost function 
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                  (7) 
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OBJECT = SKELETON + DISTANCE 
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whereλ  is called the Lagrange multiplier. Using the 
Lagrange multiplier method, the constrained problem (6) 
is relaxed to an unconstrained problem, that is:  

min Jλ(VS, VT).        (8) 

We solve the problem using a 4D DAG shortest path 
algorithm. Given a polygonal approximation of both the 
skeleton and distance signals, we define a node space with 
elements the 4-tuples (i,j,p,q), representing all 
combinations of the last two control points in the skeleton 
approximation (i) and (p) (i≤p), and the last two control 
points in the distance signal approximation (j) and (q) (j≤
q), and links among these elements. Clearly, there is one 
node space for each possible approximation. There are 
only three kinds of links starting at node (i,j,p,q). Let s 
denote the next vertex after p in the skeleton 
approximation and t the next vertex after q in the distance 
approximation. Then the three links describe the transition 
(i,j,p,q)->(p,j,s,q), (i,j,p,q)->(i,q,p,t), and (i,j,p,q)-
>(p,q.s,t).  
To simplify the computation, and also to make a dynamic 
programming technique applicable for seeking the optimal 
solution of problem (8), we define a state space, which is a 
subset of the union of all node spaces, with elements (so 
called states) (i,j,p,q) satisfying i≤q and j≤p, and edges 
among elements. This will exclude from consideration 
those nodes (i,j,p,q) with segment [i,p]  not overlapping 
with segment [j,q].  The motivation for this is twofold: 1) 
By removing the non-overlapping segments, we can later 
express the distortion as a sum of link distortions between 
states. This will make a dynamic programming solution 
possible. 2) The fewer the states the faster the algorithm, 
given we do not remove from consideration any feasible 
polygonal approximations with this pruning.  There are 
only two kinds of edges starting at state (i,j,p,q), which are 
corresponding to the first two kinds of links in node space. 
In other words, the two edges describe the transition 
(i,j,p,q)->(i,q,p,t) and (i,j,p,q)->(p,j,s,q). It is important to 
note that excluding the third possibility does not exclude 
any optimal path. 
To implement the algorithm to solve the optimization 
problem (8), we create a cost function C(pk) (assuming pk 
is representing state (i,j,p,q)), which represents the 
minimum total rate and “distortion” up to and including 
state (i,j,p,q) in the state space. That is,  
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where the function ys
-1(x)=t iff y(VSt)=x, and yd

-1(x)=t iff 
y(VTt)=x, where y(V) is the index of the vertex V in the 
original signal set. The key observation for deriving an 
efficient algorithm is the fact that given a certain state of a 
path (pk-1) and the cost function up to and including this 
state (C(pk-1)), the selection of the next state pk is 
independent of the selection of the previous states 
p0,p1,…pk-2. This is true since the cost function can be 
expressed recursively as a function of the segment rates 
ζ(pk-1,pk) and the segment distortion d(pk-1,pk). That is: 

C(pk)= min (C(pk-1)+w(pk-1,pk))                  (9) 
where 

w(pk-1,pk)=d(pk-1,pk)+λζ(pk-1,pk)                (10) 
and 
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Figure 4 Examples of segment distortion  and segment rate 
 

Figure 4 shows an example of the segment distortion and 
segment rate. The figure on the right shows the next step 
relative to the figure on the left.  It is easy to see how the 
edge distortions add up to the total distortion. In other 
words, we are showing that summing the above segment 
distortions up will result in the total distortion and, that 
these segment distortions are only dependent on state pk-1 
and state pk. Using (9), the problem stated in (8) can be 
formulated as a shortest path problem as in [5,6,8].  
In summary, the state definition and the recursive 
representation of the cost function in (9) makes the future 
of the optimization process independent from its past, 
which is the foundation of the dynamic programming 
technique. The computational complexity of our 4D DAG 
shortest path algorithm is O( N5). 
To speed up the performance, a relaxed distortion sub- 
optimal solution is obtained by assuming 
that ∑

=

+⋅≈
N

i
TiSitot DDD

1
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will be written as: 
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Since skeleton and distance data are independent, the 
original problem can be split into two functions:  
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which are quite straightforward to solve. The 
computational complexity is now O(N2). 
 

d(pk-1,pk) 

m

i 

p 

j

q 

Pk-1 

Pk 
ζ(pk-1,pk) 

0 

1

2 

3 

4 

5 

6 

skeleton distance 
0 

1 

2 
3 

4 

5 

6 

skeleton distance 

n 

i 

p 
j 

q d(pk-1,pk)

Pk-1 

Pk ζ(pk-1,pk)

Control points 

Boundary points 
Current State 
Next State 

0-7803-7714-1/02/$17.00 (C) 2002 IEEE



V. GENERAL CASES 
 

For those objects with multiple skeletons, assume the L 
skeletons {S1,S2,…,SL} are encoded with the associated 
distance signals {T1,T2,…, TL}, then the optimization 
problem can be stated as  

),...,,,,...,,(min 2121 LL
tot TTTSSSD ,  

subject to 
1
{ ( ) ( )}

L
m m

budget
m

R S R T R
=

+ ≤∑                 (11)    

where the total distortion of the object depends on all L 
skeletons and distances. This problem can be solved by  
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It can be easily shown that  
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1
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In most cases, equality holds, and then the optimization 
problem depends into L problems: min {Dtot(Sm,Tm)+λ
[R(Sm)+R(Tm)]} (1 ≤ m ≤ L), which are identical to 
problem (8) solved in the previous section. In some rare 
cases, when the distortion pixel sets corresponding to two 
skeletons overlap, the total distortion is less than the sum 
of distortion in Eq. (12). In such cases, solving the 
decoupling problem yields a suboptimal overall solution. 
Since these cases are rare and the solution of the overall 
problem becomes extremely complicated, we will not 
consider it here.  
For multiple objects boundary encoding, since the 
distortion calculation is defined on an object-by-object 
basis, the problem remains decoupled even if the 
distortion pixel sets of the two objects overlap. Then, the 
results of section IV apply. 
 

VI. EXPERIMENTAL RESULTS 
 

Some of the experimental results are shown in Fig. 5. In 
this experiment, both the skeleton and distance signals 
were encoded using the polygonal approximation. The 
results obtained by the application of the 4D DAG shortest 
path algorithm are indicated by “*”. In addition, in Fig. 5, 
the results obtained by using the algorithm in [6] are 
shown by “o”. Finally, the results obtained by applying the 
CAE (Context-based Arithmetic Encoding) method are 
shown. The results are obtained with the SIF sequence 
“kids”.  The distortion axis represents the average of the 
DMPEG-4’s distortion defined in Eq. (3) for one frame, over 
100 frames. As it can be inferred from Fig. 5, the 
decomposition of the boundary data into two signal data 
sets (skeleton and distance), with different characteristics, 
allows for their efficient exploitation resulting in better 
compression results. 
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Fig. 5 rate-distortion curve 

 
VII. CONCLUSIONS 

 

In this paper, we presented an optimal scheme for 
skeleton-based shape coding. By decoupling the shape 
object data into the skeleton and distance signals, we 
create a new scheme that reduces their correlation. This 
approach together with polygonal approximation of the 
skeleton and the distance signals results in a significant 
improvement in rate-distortion efficiency with respect to 
other ORD optimal shape encoders. 
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