
Northwestern University May 2, 2002
Electrical and Computer Engineering Handout #4
ECE303: Advanced Logic Design, Spring 02 Due: May 9
Prof. Hai Zhou

Lab 3 Assignment

1 Introduction

In this laboratory, you will gain experience in using the ESPRESSO and SIS synthesis systems to
minimize two-level logic expressions and map a collection of combinational functions into optimized
multi-level Boolean expressions. In particular, you will:

1. Learn how to create inputs and interpret outputs for ESPRESSO;

2. Learn how to use ESPRESSO to minimize single and multiple output functions;

3. Become familiar with the operations provided by SIS for manipulating a Boolean network,
such as decomposition, extraction, and factoring;

4. Use SIS to map an optimized multi-level expression into a specific gate library, such as the
Mississippi State University library of standard cells.

It is assumed that you are familiar with UNIX, and that you know how to log in, navigate your way
around directories, and edit files. Place the following lines in your startup file (seek the help of the
teaching assistant or a colleague in the course if none of this makes sense to you):

setenv SIS = /vol/cad/sis-1.2
set path = ($SIS/bin $path)

The programs you will be using can be found in the directory /vol/cad/sis-1.2/bin in the SUN
workstations in the Wilkinson Lab. You can login to the machines using the command

rlogin fastlab

This will log you into the next available and least loaded SUN machine in the lab.

2 ESPRESSO

2.1 Tutorial

Espresso takes as input a two-level representation of a Boolean function, and produces a minimal
equivalent representation. The command line typed at the UNIX prompt looks like the following:

espresso [options] [file]

Espresso reads the file provided (or standard input if no file is specified), performs the minimization,
and writes the minimized result to standard output. If you want to keep the output, for example,

to print it out for later reference, you should redirect it to a file. Espresso comes with a rather large
choice of options. Most of these are for the expert user, and will not be of concern for us.

Input to espresso can be created by creating a truth table form directly. For example, the expressions
for the full adder would be written as:

sum = ain bin’ cin + ain’ bin cin’ + ain bin’ cin’ + ain bin cin;
cout = ain bin cin’ + ain’ bin cin + ain bin cin + ain bin’ cin;

Parentheses are optional if you write your expressions in Sum of Products form, since complement
has higher precedence than and, which has higher precedence than or. However, you may use them
to change the default precedence.

The ESPRESSO input file in the PLA format is:

.i 3 -- number of input variables, e.g., ain, bin, cin

.o 2 -- number of output functions, e.g., sum, cout

.ilb ain bin cin -- input variable names, separated by spaces

.ob sum cout -- output function names, separated by spaces

.p 8 -- number of non-zero truth table entries
111 1 0 -- truth table row ain=1, bin=1, cin=1: sum=1, cout=0
001 1 0
010 1 0
100 1 0
111 0 1
011 0 1
101 0 1
110 0 1
.e -- end of table

Note that there are some redundant truth table rows in this file (e.g., 111 is a term for sum as well
as cout). Do not be concerned. These will be eliminated by ESPRESSO. [There is a utility called
eqntott which can convert the equation file shown above into the PLA truth table file automatically
but we do not want you to use that now. We want you to learn to use the PLA format.] For many
examples, especially if you are given them in a truth table or minterm index form, it is easier to
type the truth table file directly rather than use eqntott. Further, the truth table file is the only
way to express don’t care conditions. These are represented by placing a ’-’ in the truth table entry
for the given input conditions and function.

Running espresso on the output of the above file will yield the following:

.i 3

.o 2

.na [filename]

.ilb ain bin cin

.ob sum cout

.p 7 -- number of unique reduced product terms
001 1 0
010 1 0
-11 0 1 -- cout = bc +
100 1 0
1-1 0 1 -- ac +
11- 0 1 -- ab
111 1 0
.e

2

A ’-’ in the truth table index part means that the particular input variable does not participate
in that reduced product term. A function’s reduced sum of products description is the OR of all
product terms which have a 1 in the output column for that function. Espresso could not find a
reduced expression for sum, but did eliminate a term and some literals from the expression for cout.

2.2 Experiments

Let us begin with a simple 3-variable function: f(A,B,C) =
∑
m(3, 4, 5, 6, 7). First, fill in the

K-map on the summary sheet, and determine the reduced two-level implementation by hand. Now,
using the input format as described above, prepare an input file describing the function. Run
Espresso and examine the output truth table it produces. How does the result compare with your
hand determined result?

Since ESPRESSO uses the sum of products form internally, it cannot compute the product of sums
form directly. However, it is possible to request that the function’s complement be produced as
output, using the parameter described above. You will need to apply DeMorgan’s Law to obtain
the result in the desired form. Try it for the function f . What answer do you obtain?

Repeat the process of finding the minimum sum of products form with the following 3, 4 variable
functions:

f(A,B,C) =
∑

m(0, 4, 6, 7) (1)

f(A,B,C,D) =
∑

m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15) (2)

The examples we have worked with so far have involved a single output function. Now enter the
truth table for the two 2-bit binary adder described in page 77 of the Katz book. You can check
out the K-maps for the three functions and the reduced equations from page 77-78 of Katz. Repeat
the process using ESPRESSO. How does espresso’s solution compare with the book? If they are
not exactly the same, it may not be because you made a mistake, but rather that espresso found
an alternate cover. If they are different, is the complexity of the covers the same, that is, do both
solutions use the same number of product terms and literals?

Let us look at an example that contains don’t care conditions. Take the truth table for the BCD
increment by 1 function, given on Page 78 of the Katz book, generate the minimal two level functions
process using espresso. Did you obtain the same results as the book? If not, can you explain the
differences?

3 SIS

This laboratory will be partially tutorial in nature. First we will introduce the basic commands
supported by SIS and we will use them to obtain a multi-level solution for the full adder circuit
with which you should be familiar. Then it will be up to you to use SIS to obtain good multi-level
implementations using the commands provided by SIS.

3.1 Tutorial

The command line typed at the UNIX prompt looks like the following:

sis

3

Since sis is normally executed in an interactive mode, we will use that only. It can be used in batch
mode also but we will not use those options. In response to that SIS will give a prompt:

sis>

While SIS can read in inputs of circuits in various forms, truth tables, equations, and BLIF format,
the truth table form is the only way to make SIS aware of don’t care conditions. These are represented
by placing a ’-’ in the truth table entry for the given input conditions and function.

SIS provides a very large number of operations for reading in, manipulating, and printing out a
collection of Boolean functions. Once again, many of these are for the expert user, but several can
be used to good effect even by the novice. You can get a list of commands by typing

sis> help

For detailed instructions on a specific command type

sis> help read pla

Here is a list of some of the command full names, and brief descriptions. Look at the SIS tutorial
handled out separately for more details.

full command name brief description
read eqn read equations from a file
read pla read PLA in ESPRESSO format
read library read a gate library
read blif read a logic netlist in BLIF format

write eqn write equations to a file
write pla write PLA to a file in expresso format
write blif write netlist in BLIF format

print stats print network status
print print sum-of-products
print factor print factored form of a node
print gate print gate information for a node

collapse collapse a level of the network
eliminate eliminate nodes that don’t save enough literals
decomp -g perform a good decomposition
gcx general cube extraction
gkx general kernal extraction
resub perform resubstitution
factor -g perform a good factoring
map map the current network onto the gates of a library
simplify -m espresso perform an ESPRESSO minimization of a node
tech decomp decompose a network onto a constrained AND/OR network

The commands may seem complicated, by actually they are easy to use. Let’s run through the
multi-level optimization of the full adder. It is a good idea to create your own input file and follow
this example step by step by typing the same commands at the keyboard.

4

First, we create an equation file for the full adder in the format expected by the EQNTOTT program
which creates an ESPRESSO file from equations. We will create a UNIX file named full.adder.
using a text editor like vi or emacs. Inside the file we type two lines as follows:

co = a * b * ci + a * b * ci’ + a * b’ * ci + a’ * b * ci ;
sum = a * b * ci + a * b’ * ci’ + a’ * b * ci’ + a’ * b’ * ci ;

We can also type this as:

co = a b ci + a b ci’ + a b’ ci + a’ b ci ;
sum = a b ci + a b’ ci’ + a’ b ci’ + a’ b’ ci ;

Save this file as “full adder”. The format of the EQNTOTT input file is that the equations are of
the form

<signal> = <expr>;

The formats are:

() grouping
!= (or ^) exclusive or

== exclusive nor

! (or ’) complement
& (or * or simple juxtaposition) boolean and

| (or +) boolean or

Then we invoke sis and read in the network:

% sis

sis> read eqn full.adder

To see the equations in sum-of-products form, type the ’p’ command:

sis> print
{co} = a b ci + a b ci’ + a b’ ci + a’ b ci
{sum} = a b ci + a b’ ci’ + a’ b ci’ + a’ b’ ci

Note that co and sum are in curly brackets: these have been identified by SIS as output nodes, and
are treated in a special way. To see the equations in an initial factored form, type ’pf’:

sis> print factor
{co} = a b’ ci + b (ci (a’ + a) + a ci’)
{sum} = ci (a’ b’ + a b) + ci’ (a b’ + a’ b)

This is a direct reflection of how SIS is representing the current Boolean network internally. One of
the powers of SIS is that it completely subsumes ESPRESSO. To invoke espresso on all the nodes
of current network, simply type:

5

sis> simpify *
sis> print
{co} = a b + a ci + b ci
{sum} = a b ci + a b’ ci’ + a’ b ci’ + a’ b’ ci

The two level network should look familiar to you. The factored form is not surprising either:

sis > print factor
{co} = ci (b + a) + a b
{sum} = ci (a’ b’ + a b) + ci’ (a b’ + a’ b)

We are now ready to instruct sis to decompose {co} and {sum} into a collection of simpler functions:

sis> decomp *
sis> print factor
{co} = a [2] + b ci
{sum} = a’ [3]’ + a [3]
[2] = ci + b
[3] = b’ ci’ + b ci

Two new functions have been introduced and are represented by nodes [2] and [3]. NOTE THAT
YOU MAY GET SOME SLIGHTLY DIFFERENT OUTPUTS DEPENDING ON YOUR EXACT
ORDERING OF INPUTS. BUT THEY WILL HAVE THE SAME MINIMAL FORM.

Now let’s attempt some technology mapping, that is, the mapping of current network onto a pre-
specified library of gates. We will use the Mississippi State gate library called “msu.genlib”. It
includes various simple gates. Each gate is identified by a number (used by sis), a name, and a brief
functional description. Besides the usual NAND/NOR gates, the library also contains some AOI
and OAI gates, as well as XOR and XNOR. To use the library, we must first issue a read library
command followed by the map command.

sis> read library msu.genlib
sis> map
<<ignore the warning messages>>

To see the revised multi-level network, type:

sis> print factor
[361] = b’ ci’ + a’
[328] = b’
[329] = ci’
co = [328]’ [329]’ + [361]’
[3] = b ci’ + b’ ci
sum = [3] a’ + [3]’ a

(You may see something slightly different from the above, don’t be concerned). A number of new
nodes have been introduced during the mapping onto the MSU gates. To understand what is going
on, the print gates command will print out the gates used in deriving each of the non-leaf nodes
of the networks (the leaf nodes describe input literals):

sis> print gate
[361] 1890:physical 32.00

6

[328] 1310:physical 16.00
[329] 1310:physical 16.00
{co} 1890:physical 32.00
[3] 2310:physical 40.00
{sum} 2310:physical 40.00

We can now draw a circuit schematic for the solution that sis has obtained. The gates chosen for
implementation include two inverters (1310), two XOR gates (2310), and two OR-AND-Inverters
(1890). The numbers following the word ’physical’ describe the relative size of these gate, so you
can see that XORs require considerably more area than inverters: 40 units versus 16! The total area
of the implementation is 176 units. The figure at the top of the page depicts the implementation
of the full adder in terms of these gate primitives. Gate numbers and internal node numbers are
shown. Note that sis has used some AND-OR-INVERT gates.

VERIFY THAT THE ABOVE GATE IMPLEMENTATION INDEED IMPLEMENTS THE FULL
ADDER USING THE TRUTH TABLES.

To complete a sis session, just type:

sis> quit

3.2 Further Experiments with the Full Adder

To illustrate a few more commands, let’s see if we can improve on the implementation of the full
adder. To start over, re-read the equation file and perform the two level simplification once again:

sis> read eqn full.adder
sis> simplify *

To map the equations into an AND/OR network with constrained fan-ins, we can issue the td
command. Its parameters are the OR fan-in (-o) and the AND fan-in (-a). In this case we will limit
fan-ins to 4 for both kinds of gates:

sis> tech decomp -o 4 -a 4
sis> print
{co} = [848] + [849] + [850]
{sum} = [844] + [845] + [846] + [847]
[844] = a b’ ci’
[845] = a’ b ci’
[846] = a’ b’ ci
[847] = a b ci
[848] = b ci
[849] = a ci
[850] = a b

The mapping onto 4-input AND and OR gates is visible from the printout of the network. Now
let’s map the network using the MSU gate library. The output should be somewhat different, since
it does not support 4-input OR gates!

sis> read library msu.genlib
sis> map

7

<<ignore the warning messages that print out now>>
sis> print
{co} = a b + a ci + b ci
[1207] = a’
[1205] = b’
[1214] = [1205] [1207] ci + a b ci
[844] = [1207]’ b’ ci’
[845] = [1205]’ a’ ci’
{sum} = [1214] + [844] + [845]

Can you draw the schematic that corresponds to this technology mapping? Issue the print gates
command to see what gates are used to implement the various network nodes. We now introduce a
new command: print map stats. It summarizes the area and number of gates used in a particular
technology mapping:

sis> print map stats

Total Area = 352.00
Gate Count = 12
Buffer Count = 0
Most Negative Slack = -5.00
Sum of Negative Slack = - 10.00
Number of Critical PO = 2

You can compare this final solution to the previous final solution in terms of gates and areas. Which
one is superior?

SIS comes with a standard script that has been designed to give reasonably good technology inde-
pendent solutions. To run the script, just type the following:

sis> read eqn full.adder
sis> source script
sis> print
{co} = a b + a ci + b ci
{sum} = {co}’ a + {co}’ b + {co}’ ci + a b ci

This solution yields 12 literals, which compares favorably with 18 literals found before mapping in
the example above and the 11 literal solution before that. You can also execute SIS commands in
a batch. This is particularly useful when using the standard minimization script. Simply type the
command line:

sis -t eqn -T eqn -f script < [eqn filename]

’-t’ indicates that the input file is in equation form while -T tells SIS that the output should be
printed in equation form as well. -f gives the name of a command file or script file to be executed.
Be careful, however. Sis first looks in the current directory for the specified file. Don’t use the file
name “script” if you want to use the standard minimization script.

3.3 The Two-Bit Binary Adder

Repeat the process described above, but this time using the two-bit binary adder introduced in
Section 2 Proceed as follows:

8

1. create a pla or equation file for the two bit adder function;

2. invoke sis and read it in via the read pla or read eqn commands;

3. simplify the network using the simplify command;

4. decompose the network using the decompose command;

5. Map the function using the MSU library gates

6. Draw the resulting schematics in order to count gates;

7. Use the print map stats to get summary information on the gates, and areas.

Use the collapse, eliminate, and tech decomp commands to obtain a second solution (see more
about these commands in the SIS manual section of your tutorial). Obtain a third solution using
the SIS standard script. Compare the three solution in terms of the number of gates required for
implementation and the number of literals. How do these compare with the final result obtained using
ESPRESSO only? Assuming 4-input AND and OR gates are available, how would ESPRESSO’s
solution compare with SIS solutions in terms of gate count and number of literals?

Once you have the confidence that you can use SIS to obtain reduced gate count implementations,
you should be able to use this tool for all your future laboratories and design projects.

9

