Floorplanning

- Inputs to the floorplanning problem:
- A set of blocks, fixed or flexible.
- Pin locations of fixed blocks.
- A netlist.
- Objectives: Minimize area, reduce wirelength for (critical) nets, maximize routability, determine shapes of flexible blocks

7	5	

An optimal floorplan, in terms of area

A non-optimal floorplan

Floorplan Design

- Modules: $\quad \begin{aligned} & x \\ & \square\end{aligned}$
- Area: $A=x y$
- Aspect ratio: $r<=y / x<=s$
- Rotation:

- Module connectivity

Floorplanning: Terminology

- Rectangular dissection: Subdivision of a given rectangle by a finite \# of horizontal and vertical line segments into a finite \# of non-overlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Non-slicing floorplan

Slicing floorplan

Another slicing tree (non-skewed)

Floorplan Design by Simulated Annealing

- Related work
- Wong \& Liu, "A new algorithm for floorplan design," DAC'86.
* Consider slicing floorplans.
- Wong \& Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
* Also consider L-shaped modules.
- Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31-71, Kluwer academic Publishers, 1988.
- Ingredients: solution space, neighborhood structure, cost function, annealing schedule?

Solution Representation

- An expression $E=e_{1} e_{2} \ldots e_{2 n-1}$, where $e_{i} \in\{1,2, \ldots, n, H, V\}, 1 \leq i \leq$ $2 n-1$, is a Polish expression of length $2 n-1$ iff

1. every operand $j, 1 \leq j \leq n$, appears exactly once in E;
2. (the balloting property) for every subexpression $E_{i}=e_{1} \ldots e_{i}, 1 \leq$ $i \leq 2 n-1$, \#operands $>$ \#operators.

- Polish expression \longleftrightarrow Postorder traversal.
- $i j H$: rectangle i on bottom of $j ; i j V$: rectangle i on the left of j.

7	5	
4		
		2
	2	

Postorder traversal of a tree!

Solution Representation (cont'd)

....... HH \qquad

....... VV

- Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E=e_{1} e_{2} \ldots e_{2 n-1}$ is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

$$
E=16 \mathrm{H} 2 \mathrm{~V} 75 \mathrm{VH} 34 \mathrm{HV}
$$

A normalized Polish expression

Neighborhood Structure

- Chain: HVHVH... or VHVHV...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
- M1 (Operand Swap): Swap two adjacent operands.
- M2 (Chain Invert): Complement some chain ($\bar{V}=H, \bar{H}=V$).
- M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
- M1 and M2 moves are OK.
- Check the $M 3$ moves! Reject "illegal" M3 moves.
- Check $M 3$ moves: Assume that the M_{3} move swaps the operand e_{i} with the operator $e_{i+1}, 1 \leq i \leq k-1$. Then, the swap will not violate the balloting property iff $2 N_{i+1}<i$.
- $N_{k}: \#$ of operators in the Polish expression $E=e_{1} e_{2} \ldots e_{k}, 1 \leq k \leq 2 n-1$.

Cost Function

- $\Phi=A+\lambda W$.
- A : area of the smallest rectangle
- W : overall wiring length
- λ : user-specified parameter

- $W=\sum_{i j} c_{i j} d_{i j}$.
- $c_{i j}$: \# of connections between blocks i and j.
- $d_{i j}$: center-to-center distance between basic rectangles i and j.

Cost Evaluation: Shape Curves

- Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

Area Computation

- Wiring cost?

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most two paths of the slicing tree need to be updated for each move.

$\mathrm{E}=12 \mathrm{H} 34 \mathrm{~V} 56 \mathrm{VHV}$

$\mathrm{E}=12 \mathrm{H} 35 \mathrm{~V} 46 \mathrm{VHV}$

Incremental Computation of Cost Function (cont'd)

$$
\mathrm{E}=123 \mathrm{H} 4 \mathrm{~V} 56 \mathrm{VHV}
$$

Annealing Schedule

- Initial solution: $12 V 3 V \ldots n V$.

- $T_{i}=r^{i} T_{0}, i=1,2,3, \ldots ; r=0.85$.
- At each temperature, try $k n$ moves $(k=5-10)$.
- Terminate the annealing process if
- \# of accepted moves < 5\%,
- temperature is low enough, or
- run out of time.

```
Algorithm: Simulated_Annealing_Floorplanning \((P, \epsilon, r, k)\)
1 begin
    \(E \leftarrow 12 V 3 V 4 V \ldots n V\); /* initial solution */
    Best \(\leftarrow E ; T_{0} \leftarrow \frac{\Delta_{\text {avg }}}{\ln (P)} ; M \leftarrow M T \leftarrow\) uphill \(\leftarrow 0 ; N=k n ;\)
    repeat
    \(M T \leftarrow\) uphill \(\leftarrow\) reject \(\leftarrow 0\);
    repeat
    SelectMove( \(M\) );
    Case \(M\) of
    \(M_{1}:\) Select two adjacent operands \(e_{i}\) and \(e_{j} ; N E \leftarrow \operatorname{Swap}\left(E, e_{i}, e_{j}\right)\);
    \(M_{2}\) : Select a nonzero length chain \(C ; N E \leftarrow \operatorname{Complement}(E, C)\);
    \(M_{3}\) : done \(\leftarrow F A L S E\);
            while not (done) do
                Select two adjacent operand \(e_{i}\) and operator \(e_{i+1}\);
                if \(\left(e_{i-1} \neq e_{i+1}\right)\) and \(\left(2 N_{i+1}<i\right)\) then done \(\leftarrow T R U E\);
            \(N E \leftarrow \operatorname{Swap}\left(E, e_{i}, e_{i+1}\right) ;\)
        \(M T \leftarrow M T+1 ; \quad \Delta \operatorname{cost} \leftarrow \operatorname{cost}(N E)-\operatorname{cost}(E) ;\)
        if \((\Delta \operatorname{cost} \leq 0)\) or \(\quad\left(\right.\) Random \(\left.<e^{\frac{-\Delta \text { cost }}{T}}\right)\)
        then
            if \((\Delta\) cost \(>0)\) then uphill \(\leftarrow\) uphill +1 ;
            \(E \leftarrow N E\);
            if \(\operatorname{cost}(E)<\operatorname{cost}(\) best \()\) then best \(\leftarrow E\);
        else reject \(\leftarrow\) reject +1 ;
    until (uphill \(>N\) ) or ( \(M T>2 N\) );
    \(T=r T\); /* reduce temperature */
    until \(\left(\frac{r e j e c t}{M T}>0.95\right)\) or \((T<\epsilon)\) or OutOfTime;
    end
```


Floorplanning by Mathematical Programming

- Sutanthavibul, Shragowitz, and Rosen, "An analytical approach to floorplan design and optimization," 27th DAC, 1990.
- Notation:
- w_{i}, h_{i} : width and height of module M_{i}.
- $\left(x_{i}, y_{i}\right):$ coordinate of the lower left corner of module M_{i}.
- $a_{i} \leq w_{i} / h_{i} \leq b_{i}$: aspect ratio w_{i} / h_{i} of module M_{i}. (Note: We defined aspect ratio as h_{i} / w_{i} before.)
- Goal: Find a mixed integer linear programming (ILP) formulation for the floorplan design.
- Linear constraints? Objective function?

Nonoverlap Constraints

- Two modules M_{i} and M_{j} are nonoverlap, if at least one of the following linear constraints is satisfied (cases encoded by $p_{i j}$ and $q_{i j}$):

- Let W, H be upper bounds on the floorplan width and height, respectively.
- Introduce two 0,1 variables $p_{i j}$ and $q_{i j}$ to denote that one of the above inequalities is enforced; e.g., $p_{i j}=0, q_{i j}=1 \Rightarrow y_{i}+h_{i} \leq y_{j}$ is satisfied.

Cost Function \& Constraints

- Minimize Area $=x y$, nonlinear! (x, y : width and height of the resulting floorplan)
- How to fix?
- Fix the width W and minimize the height y !
- Four types of constraints:

1. no two modules overlap ($\forall i, j: 1 \leq i<j \leq n)$;
2. each module is enclosed within a rectangle of width W and height H $\left(x_{i}+w_{i} \leq W, y_{i}+h_{i} \leq H, 1 \leq i \leq n\right)$;
3. $x_{i} \geq 0, y_{i} \geq 0,1 \leq i \leq n$;
4. $p_{i j}, q_{i j} \in\{0,1\}$.

- w_{i}, h_{i} are known.

Mixed ILP for Floorplanning

Mixed ILP for the floorplanning problem with rigid, fixed modules.

$$
\begin{align*}
\text { min } y & \\
\text { subject to } & x_{i}+w_{i} \leq W, \\
y_{i}+h_{i} \leq y, & 1 \leq i \leq n \tag{1}\\
x_{i}+w_{i} \leq x_{j}+W\left(p_{i j}+q_{i j}\right), & 1 \leq i \leq n \tag{2}\\
y_{i}+h_{i} \leq y_{j}+H\left(1+p_{i j}-q_{i j}\right), & 1 \leq i<j \leq n \tag{3}\\
x_{i}-w_{j} \geq x_{j}-W\left(1-p_{i j}+q_{i j}\right), & 1 \leq i<j \leq n \tag{4}\\
y_{i}-h_{j} \geq y_{j}-H\left(2-p_{i j}-q_{i j}\right), & 1 \leq i<j \leq n \tag{5}\\
x_{i}, y_{i} \geq 0, & 1 \leq i \leq n \tag{6}\\
p_{i j}, q_{i j} \in\{0,1\}, & 1 \leq i<j \leq n \tag{7}
\end{align*}
$$

- Size of the mixed ILP: for n modules,
- \# continuous variables: $O(n)$; \# integer variables: $O\left(n^{2}\right)$; \# linear constraints: $O\left(n^{2}\right)$.
- Unacceptably huge program for a large n ! (How to cope with it?)
- Popular LP software: LINDO, Ip_solve, etc.

Mixed ILP for Floorplanning (cont'd)

Mixed ILP for the floorplanning problem: rigid, freely oriented modules.

$$
\begin{align*}
& \text { min } y \\
& \text { subject to } \\
& x_{i}+r_{i} h_{i}+\left(1-r_{i}\right) w_{i} \leq W, 1 \leq i \leq n \tag{9}\\
& y_{i}+r_{i} w_{i}+\left(1-r_{i}\right) h_{i} \leq y, 1 \leq i \leq n \tag{10}\\
& x_{i}+r_{i} h_{i}+\left(1-r_{i}\right) w_{i} \leq x_{j}+M\left(p_{i j}+q_{i j}\right), 1 \leq i<j \leq n \tag{11}\\
& y_{i}+r_{i} w_{i}-\left(1-r_{i}\right) h_{i} \leq y_{j}+M\left(1+p_{i j}-q_{i j}\right), 1 \leq i<j \leq n \tag{12}\\
& x_{i}-r_{j} h_{j}+\left(1-r_{j}\right) w_{j} \geq x_{j}-M\left(1-p_{i j}+q_{i j}\right), 1 \leq i<j \leq n \tag{13}\\
& y_{i}-r_{j} w_{j}-\left(1-r_{j}\right) h_{j} \geq y_{j}-M\left(2-p_{i j}-q_{i j}\right), 1 \leq i<j \leq n \tag{14}\\
& x_{i}, y_{i} \geq 0, 1 \leq i \leq n \tag{15}\\
& p_{i j}, q_{i j} \in\{0,1\}, 1 \leq i<j \leq n \tag{16}
\end{align*}
$$

- For each module i with free orientation, associate a 0-1 variable r_{i} :
$-r_{i}=0: 0^{\circ}$ rotation for module i.
$-r_{i}=1: 90^{\circ}$ rotation for module i.
- $M=\max \{W, H\}$.

Flexible Modules

- Assumptions: w_{i}, h_{i} are unknown; area lower bound: A_{i}.
- Module size constraints: $w_{i} h_{i} \geq A_{i} ; a_{i} \leq \frac{w_{i}}{h_{i}} \leq b_{i}$.
- Hence, $w_{\min }=\sqrt{A_{i} a_{i}}, w_{\max }=\sqrt{A_{i} b_{i}}, h_{\min }=\sqrt{\frac{A_{i}}{b_{i}}}, h_{\max }=\sqrt{\frac{A_{i}}{a_{i}}}$.
- $w_{i} h_{i} \geq A_{i}$ nonlinear! How to fix?
- Can apply a first-order approximation of the equation: a line passing through $\left(w_{\min }, h_{\max }\right)$ and $\left(w_{\max }, h_{\min }\right)$.

$$
\begin{aligned}
h_{i}=\Delta_{i} w_{i}+c_{i} & / * y=m x+c * / \\
\Delta_{i}=\frac{h_{\max }-h_{\min }}{w_{\min }-w_{\max }} & / * \text { slope } * / \\
c_{i}=h_{\max }-\Delta_{i} w_{\min } & / * c=y_{0}-m x_{0} * /
\end{aligned}
$$

- Substitute $\Delta_{i} w_{i}+c_{i}$ for h_{i} to form linear constraints (x_{i}, y_{i}, w_{i} are unknown; Δ_{i}, Δ_{j}, c_{i}, c_{j} can be computed as above).

$$
\xrightarrow[h_{\max }]{\text { cosin }}
$$

Reducing the Size of the Mixed ILP

- Time complexity of a mixed ILP: exponential!
- Recall the large size of the mixed ILP: \# variables, \# constraints: $O\left(n^{2}\right)$.
- How to fix it?
- Key: Solve a partial problem at each step (successive augmentation)
- Questions:
- How to select next subgroup of modules? \Rightarrow linear ordering based on connectivity.
- How to minimize the \# of required variables?

Reducing the Size of the Mixed ILP (cont'd)

- Size of each successive mixed ILP depends on (1) \# of modules in the next group; (2) "size" of the partially constructed floorplan.
- Keys to deal with (2)
- Minimize the problem size of the partial floorplan.
- Replace the already placed modules by a set of covering rectangles.
- \# rectangles is usually much smaller than \# placed modules.

(a)
(b)

(c)

(d)

