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Abstract —Enormous uncertainties in unconstrained environments lead to a fundamental dilemma that many tracking algorithms have
to face in practice: tracking has to be computationally efficient but verifying whether or not the tracker is following the true target tends
to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to
this problem, many existing methods tend to be either effective but computationally intensive by using sophisticated image observation
models, or efficient but vulnerable to false alarms. This greatly challenges long-duration robust tracking. This paper presents a novel
solution to this dilemma by considering the context of the tracking scene. Specifically, we integrate into the tracking process a set of
auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties, at
least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion correlation to the target; and (3) easy
to track. Regarding these auxiliary objects as the context of the target, the collaborative tracking of these auxiliary objects leads to
efficient computation as well as strong verification. Our extensive experiments have exhibited exciting performance in very challenging
real-world testing cases.

Index Terms —Computer vision, visual object tracking, context-aware, collaborative tracking, data mining, robust fusion, belief
inconsistency.

✦

1 INTRODUCTION

RObust long-duration visual tracking is demanded by many
contemporary applications such as video-based surveil-

lance and vision-based interfaces. One fundamental obstacle
in the way is the lack of efficient means for verification,i.e.,
to determine whether the object being followed by the tracker
is really the target. At the extreme, this is in fact a recognition
task. Without effective verification, the tracker is likelyto drift
away gradually, or fail when the target is occluded even for
a short period of time. Therefore, although extensive research
efforts have been taken, it is still quite difficult in practice to
achieve robust and efficient long-duration tracking in uncon-
strained real-world environments. Most existing methods are
in a dilemma: either be fast-but-fallible, or be robust-but-slow.

This dilemma originates from the opposite requirements
for the image likelihood models: on one hand, the likelihood
model should be simple for efficient motion estimation and
tracking; on the other hand, it has to be sophisticated for
comprehensive verification of the target. We call themde-
scriptivelikelihood anddiscriminativelikelihood, respectively.
In general, descriptive likelihood is based on the descriptive
image features that can be easily accessible and specified,e.g.,
contours [1], [2], colors [3], or even image regions [4], [5],
etc.. The matching of these image features leads to efficient
computation of the descriptive likelihood and thus fast motion
estimation (e.g., differential methods such as kernel-based
tracking [3], [5], [6]).

However, in practice, many real-world complications such
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as clutters, illumination and view changes, low image quality,
motion blur, and partial occlusions, all may invalidate simple
descriptive likelihood models. As a result, good matches of
these descriptive features do not necessarily have to cor-
respond to the true target, and background false positive
objects may also be good matches. Over the years, there have
been two approaches to address this issue: on-line adaptation
of the descriptive likelihood models [5], [7]–[9], or using
discriminative likelihood models that distinguish the true target
from false positives. Without strong verification that provides
confident supervision, on-line adaptation is risky and lacks a
mechanism to prevent drifting. On the other hand, discrimi-
native likelihood is generally associated with classifiers, e.g.,
the SVM tracker [10]. These classifiers can be trained off-
line or on-line [11], [12]. As learning a classifier has to be
based on a large number of training features, it tends to be
computationally demanding.

Is there a way to get out of the dilemma so as to have more
efficient but still effective verification? In all these existing
methods, the dynamic environment is taken for granted as the
adverse party for the tracker, as it generates false positives, and
most computation has to be spent in separating the true target
from the environment. However, the environment can also
be advantageous to the tracker if it contains objects that are
correlated to the target. For example, if we need to track a face
in a crowd, it is almost impossible to learn a discriminative
model to distinguish the face of interest from the rest of the
crowd. Why do we have to focus our attention only on the
target? If the person (with that face) is wearing a quite unique
shirt (or a hat), then including the shirt (or the hat) in matching
will surely make the tracking much easier and more robust.
By the same token, if another face is always accompanying
the target face, treating them as a geometric structure and
tracking them as a group will be much easier than tracking
either of them. It is clear that this makes the verification much
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easier as the discriminative model is much simpler. We call this
new approachcontext-aware tracking(CAT) as it takes into
consideration the context of the target, as shown in Fig. 1.

A target is seldom isolated and independent to the entire
scene, therefore there may exist some objects that have short-
term or long-term motion correlations to the targets (but
are unknown to the tracker beforehand). Thus, taking the
advantage of these context information in an efficient way can
improve the robustness of the tracker as the spatial context
provides additional verification. We represent the contextof
a target by a set ofauxiliary objectsthat are automatically
discovered on the fly in an unsupervised fashion by using data
mining techniques. A context-aware tracker can discover a set
of auxiliary objects and track them simultaneously. Specif-
ically in this paper, auxiliary objects are those that exhibit
strong motion correlation to the target. The correlation can be
employed to improve tracking and to provide computationally
efficient but powerful verification. Intuitively, an auxiliary
object should satisfy three properties at least in a short time
interval: 1) persist co-occurrence with the target, 2) consistent
motion correlation to the target, and 3) easy to track.

In the proposed context-aware tracking, auxiliary objects
can be in various forms,e.g. solid semantic objects which
bear intrinsic relations to the target, or certain image regions
that happen to have motion correlation with the target for a
short period of time. They may reliably associate to the target
for a long duration, or only for a short time interval, or may
not exist at all. Thus, it is impossible to determine auxiliary
objects off-line in advance, but they have to be discovered on
the fly. We resort to data mining techniques for discovering
auxiliary objects by learning their co-occurrence associations
and estimating affine motion models to the target. Data mining
methods originated from text information processing and rela-
tional databases [13], and found their uses in extracting video
objects [14]–[16]. To the best of our knowledge, this paper
presents an original attempt of combining visual tracking and
data mining in a collaborative tracking framework.

This new approach has the following advantages. Firstly,
it is computationally efficient, because auxiliary objectsare
easy to track (e.g. color regions) and do not incur much
computational cost. Secondly, it outputs more accurate track-
ing results. A context-aware tracker tracks the target and the
set of auxiliary objects as a random field in a collaborative
manner. It is provably correct that the uncertainty of the motion
estimation of the target is reduced. Thirdly, it also provides
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Fig. 1. Illustration of context-aware tracking. T indicates the
target and Ik means the spatial context of the target. Traditional
tracking methods focus their attention on the target only, while
context-aware tracking considers the target and its spatial
context within a network.

effective verification, because the learned motion and/or geo-
metric correlations among the target and the auxiliary objects
serve as strong cues for verification. Last but not the least,
it is intelligent and robust. The context of a target,i.e. the
auxiliary objects and the motion correlation (i.e., the random
field), is automatically discovered on the fly. The robust fusion
embedded can handle partial occlusions and even camouflages.
Our extensive tests on real-world data give quite exciting
performance in dealing with challenging cases including large
scale changes, partial occlusions and complicated cluttered
backgrounds.

The remainder of this paper is organized as follows. Related
work on visual object tracking is reviewed in Sec. 2. The
overview of the proposed approach is presented in Sec. 3. The
three components of the proposed approach,i.e. discovering
the auxiliary objects by data mining, collaboratively fusing
the tracking results of auxiliary objects and the target, and
identifying the outliers, are elaborated in Sec. 4, Sec. 5, and
Sec. 6, respectively. Experiments on real-world sequencesare
reported in Sec. 7. Concluding remarks are in Sec. 8.

2 RELATED WORK

Visual tracking has been an active research topic since the
early 1980s and keeps advancing both in theory and practice
as the expectations are soaring significantly in real-world
applications,e.g. video-based security surveillance, medical
applications [17], autonomous vehicle [18]. The targets in
visual tracking evolve from points in dense optical flow [19]–
[22], contours [1], blob regions [3], [23], to more com-
plicated articulated objects [24] and multiple objects [25],
[26]. Meanwhile, visual tracking is closely coupled with and
greatly benefits from many related tasks, such as background
subtraction [27], image/motion segmentation [28], statistical
learning [10], [29]. For more comprehensive survey about
image features and techniques used in tracking, we refer the
readers to [30].

Regardless of the diverse features and targets studied in
tracking, essentially as a recursive motion estimation prob-
lem, visual tracking mainly involves two fundamental issues:
matching and searching. They correspond to target likeli-
hood/observation models that measure the matching betweena
hypothesis and the target, and the motion estimation schemes
that search for the optimal hypothesis. Motion estimation
schemes can be differential and based on gradient descent
search [3], [5], and be sampling-based such as particle fil-
ters [1], [31] or sequential Monte Carlo. The search may
incorporate the prior knowledge about target dynamics,e.g.,
Kalman filters, multiple hypothesis tracking (MHT) [32], [33],
or probability data association filter (PDAF) [34], [35].

Target likelihood/observation model is the core in visual
tracking which primarily determines tracking accuracy andef-
ficiency. A target can be described by its visual features, based
on which a descriptive likelihood model can be constructed.
If the features are unique and invariant to the environment
changes, tracking is going to be an easy task. However, in
the real-world, the environment is unconstrained and presents
tremendous variabilities, it is skeptical if the invariantfeatures
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determined in advance (thus the descriptive likelihood model)
shall still be valid during the run time. Thus, a short term
invalidation of the likelihood model,e.g., the target moves out
of the field of view or occlusion is present, is very likely to
fail the tracker. A more adverse failure situation is that the
tracker is following a false positive that also evaluates a large
descriptive likelihood.

To deal with this challenge, various approaches have been
proposed in the literature. Despite the versatile formulations, in
general, they can be categorized into the following three cases:
integrating multiple cues, on-line adaptation of descriptive
models, and using discriminative models. Taking into consid-
eration of multiple visual cues lead to a rich descriptive model,
e.g., geometry and illumination can be combined [5]. The inte-
gration can based on simple heuristics [2] or co-inference [36].
On-line adaption of descriptive models changes the parameters
of the likelihood model according to the changes of the envi-
ronment. For example, an appearance model can be adapted
based on EM [23] or based on an incremental updating of the
basis of the appearance subspace [7], [8].

Since descriptive likelihoods only check the matching of
predefined features, a good match is not necessarily be the true
target but a false positive. Therefore, another approach isbased
on using discriminative likelihood models that distinguish the
target from the environment. Such discriminative models can
be trained off-line in advance,e.g., the SVM tracker [10]
that uses the SVM score as the matching criterion. Since
the off-line training is to optimize the global and generic
discrimination performance, it may not be accurate enough
locally. Therefore, on-line adaptation can also be used for
discriminative models. For example, this can be done by on-
line selection of discriminative color spaces from a fixed set
of predefined color spaces to distinguish the target from the
background [37], or by selecting Haar features from a large
pool [12], or by learning a set of weak classifiers [11], [38].

In contrast to these existing methods, we propose a novel
approach to enhancing the observation model by on-line
discovery of some auxiliary objects [39] which can help verify
the target tracking results. These auxiliary objects with short-
term motion correlation to the target can serve as the context of
the target. Tracking the target as well as the auxiliary objects
in a collaborative way can effectively reduce the uncertainty
of the tracking results and deal with large uncertainties ofthe
environments.

3 OVERVIEW OF OUR APPROACH

The proposed approach, calledcontext-aware visual tracking,
or CAT, has the following three important components:

• Mining auxiliary objects (in Sec. 4): the methods of
extracting the candidates of auxiliary objects and mining
the associations will be discussed. For auxiliary object
candidates, multibody grouping is employed to discover
the potential multibody structure from motion and to esti-
mate the affine motion models through subspace analysis.
This step not only identifies a set of auxiliary objects, but
also learns a random field among them;

• Collaborative tracking (in Sec. 5): both the target and
the set of auxiliary objects need to be tracked in CAT.
Because they are not independent, the tracking is formu-
lated based on a random field and is achieved efficiently
by the collaborations among all the individual trackers in
the network where an individual tracker influences other
trackers as well as receiving influence from others;

• Robust fusion (in Sec: 6): for an individual tracker,
there may exist inconsistency among the influences it
receives and its own image measurements. Handling
inconsistency is fundamental and critical to fuse auxiliary
object trackers and the target tracker.

The entire procedure of CAT algorithm is summarized in
Fig. 2. The details of each component will be explained in the
following sections.

4 MINING AUXILIARY OBJECTS

4.1 Auxiliary objects

Auxiliary objects (AOs) are the spatial context that can help
the target tracker. We abuse a little bit the term “object”. In
fact, it is not necessary for an AO to be a semantic object. In
the tracking scenario, it refers to an informative image region
or an image feature that satisfies the following three properties:

1) frequent co-occurrence with the target;
2) consistent motion correlation to the target;
3) suitable for tracking.

Although this definition may cover a large variety of
image regions or features, not all of them are appropriate
for balancing the complexity and generality. Since the prior
knowledge about the target and the environments are in general
not accessible, it is preferable to choose simple, generic and
low-level auxiliary objects, such as image regions or feature
points. Feature points are geometrically significant and provide
the most localized information. There are some outstanding
work on invariant feature points,e.g. [40]–[43]. Although
feature points may be salient and therefore suitable for object
recognition, they are in general prone to occlusion, lighting
and local geometry changes. Thus they are not always stable
and reliable in video. In addition, extracting invariant features
needs a good amount of computation, which makes it hard
to achieve real-time performance. Therefore, although the
tracking of feature points can be quite efficient, we generally
do not use feature points as auxiliary objects.

Instead, we choose to use significant image regions. Differ-
ent from localized image feature points, image regions reflect
the visual property of a neighborhood, and they tolerate more
occlusions and local geometry changes. More importantly,
image regions, if selected properly, can be reliably and effi-
ciently tracked, for example, by the mean-shift algorithm [3].
Although texture regions may have invariants and can be very
significant, our current implementation does not use them
because it takes more computation to spot them than color
regions. Therefore, our current treatment for data mining is
to discover a set of color regions that are temporally stable
and spatially correlated to the target in a video sequence inan
unsupervised way.
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Fig. 2. Block diagram of the CAT algorithm. The sub-modules of auxiliary object mining, collaborative tracking, and robust fusion
are enclosed in dash rectangles.

4.2 Item candidate generation

To follow data mining’s conventions and make our discussion
clear, we define the following terms for our video data mining
task.

Definition 1: We denote anitem candidateby s which
is a particular image feature obtained by low-level image
processing; anitemby I which is a quantized item candidate in
a vocabularyV = {I1, . . . , IN} which is learned by clustering
all item candidates; anitemsetby I ⊂ V, set of items; and a
transaction byτ , the itemset within a neighborhoodR.

In our implementation, an item candidate is a rough color
segment with its motion parameters, and an item is defined by
I = {H(I),xI}, whereH(I) is the average color histogram
of the item andxI is the motion parameters and respective
covariances. The set of candidate AOs, denoted byF , is a
subset ofV, which are frequently co-occurrent with the target.
The candidate AOs that have strong motion correlations to the
target are identified as auxiliary objects.

The item candidatess, i.e., the color segments in our case,
are the inputs for mining. In the tracking scenario, efficient
segmentation is more preferred than a delicate but expensive
one since exact boundaries of the segments are not necessary
for mining and tracking. In our current implementation, we
employ the classical split-merge quad-tree color segmenta-
tion [44]. The image is recursively split into the smallest
possible homogenous color regions, and then the adjacent
regions with similar appearances are merged gradually. The
most prominent advantage of this method is computational
efficiency. Some segments are not appropriate for tracking,so
we employ some heuristics to prune them,e.g.segments that
are too large (the area over1/2 of the entire image) or too
small (the area less than64 pixels), and concave segments (the
area less than1/2 of the bounding box) are excluded. These
kinds of item candidates are suitable for tracking. Fig. 3 shows
some typical segmentation results.

4.3 Frequent item mining

Candidate auxiliary objects are the items that are frequently
co-occurrent with the target. To build the vocabularyV so as to
construct the transactions for mining, we need to quantize the

Fig. 3. Illustration of the quad-tree color segmentation. (left)
input frame, (middle) over-segmentation, (right) pruned seg-
mentation.

item candidates. In conventional mining applications, usually
item candidates can be collected and quantized off-line by
k-means or kNN clustering methods. But in this tracking
scenario, we have to do this in an incremental way. The pro-
cedure is the following. The color segments in each incoming
frame are matched to the items in current vocabulary by the
Bhattacharyya coefficient [3] of the histograms of the segments
as the similarity measurement. Then, each color segment (i.e.
item candidate) can be quantized and given a label,e.g. IA to
IG are items as shown in Fig. 4. Afterwards, for each item, we
form a transaction that consists of the item itself and the items
within its neighborhood. There are different choices of the
neighborhood. For example, we can use the item itself (i.e. use
a 0 neighbor). The items inside the region of interest in each
frame construct a transactionτ , and a transaction database is
built based onM consecutive frames.

Given the transaction database, the items which have a high
co-occurrent frequency will be chosen as candidate auxiliary
objects. Since the mining is performed online, we need to
take into account the importance of the historical images.
We maintain anM -frame sliding window and count the item
frequencyf(In) =

∑t
i=t−M+1 β

t−iBi(In) with the forgetting
factor β = 0.9 where Bi(In) is a binary function and 1
indicatesIn appears in framei. If image segmentation does not
end up with too many small segments, the frequent items are
good enough for identifying candidate auxiliary object. Ifthe
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segmentation tends to over-segment and produces too many
small segments, we cannot use 0 neighbor for constructing
transactions, but use the nearby items to form transactionsto
identify co-occurrent patterns that merge the adjacent small
segments. This is another reason that it is fine for image
segmentation step to be imperfect. As illustrated in Fig. 4,
though there are quite many color segments in each frame, by
counting their co-occurrent frequencies, onlyF = {IA, IB}
are identified as frequent items,i.e. candidates of auxiliary
objects. The rest of the problem is to determine whether a
candidate really bears a motion correlation to the target. The
issue will be discussed next.

4.4 Mining by subspace analysis

Finding the frequent items only spots the candidate auxiliary
objects that are frequently co-occurrent with the target, but
they do not necessarily exhibit strong motion correlations
to the target. For example, in Fig. 4,IB is less correlated
to the targetT than IA does. We need to check if these
candidates satisfy the motion correlation requirement of an
auxiliary object. For each candidate, we can initialize a mean-
shift tracker to find its correspondences in the successive
image frames. If this tracker loses track for 4 frames in a
row, we assert that this candidate is not suitable for tracking
and remove it. Otherwise, we can form the motion trajectories
over the frames for a set of candidate auxiliary objects. Then,
we employ a noise subspace analysis method to discover the
potential multibody structure from motion and estimate the
affine motion models between the object pairs.

The motion correlation between two moving objects can be
very complicated and non-linear, but generally linear motion
models can be used as a good approximation. We extend the
simple translational model in [39] to a more general affine
motion model. When the points on two objects have affine
motion relation, they must reside in a linear subspace. Thus,
identifying this subspace will lead to the estimation of the
affine motion model.

At time t, one candidate auxiliary objectIO ∈ F is
represented asxt = {ux

t , v
x
t }

⊤ and {su
t , s

v
t } where (ux

t , v
x
t )

are the coordinates of the center ofIO andsu
t andsv

t are the
scales, respectively. Similarly the targetT can be represented
as yt = {uy

t , v
y
t }

⊤ and {su
t , s

v
t }. If IO and T co-occur and

have stable motion correlation, thenIO can be claimed as an
auxiliary object. So the goal is to evaluate whetherIO andT
have strong motion correlation in time window[t−M + 1, t]
given the trajectories ofyt andxt within this time window.

Assume an affine motion model between candidate auxiliary
objectIO and the targetT for the period of framet−M + 1
to frame t, which is specified by a2 × 2 matrix At and a
translation vectorbt = {ub

t , v
b
t}

⊤, as

yt = Atxt + bt. (1)

Subtract the mean̄yt of yt and x̄t of xt in the time window
[t−M+1, t] and take the noise into consideration, the relation
betweenIO andT can be expressed with̃yt = yt − ȳt and
x̃t = xt − x̄t, as

ỹt = Atx̃t + n, (2)

wheren is a zero mean white noise withE[nn⊤] = σ2I.
If we stack ỹt and x̃t, the covariance matrixC can be

expressed as

C = E[

(

ỹt

x̃t

)

(ỹ⊤
t , x̃

⊤
t )]. (3)

It is clear thatrank(C) ≤ 2 if there is no noise (i.e.n = 0).
This rank deficiency property is important in detecting the
subspace due to motion correlation. In reality, becausen 6= 0,
C is likely to have a full rank. Since the noise is additive,
it is easy to prove that the 4D space spanned by

(

ỹ⊤
t , x̃

⊤
t

)

is a direct sum of a signal subspace and a noise subspace.
The signal subspace is up to rank 2 and corresponds to the
large eigenvalues ofC, and the noise subspace corresponds to
the smallest eigenvalues (i.e. σ). Therefore, we can check and
threshold the eigenvalues to identify those subspaces.

Denote the estimated covariance matrix bŷC and the
covariance matrix of̃x by Ĉx, and we have

Ĉ =

M−1
∑

i=0

(

ỹt−i

x̃t−i

)

(ỹ⊤
t−i, x̃

⊤
t−i) =

(

AtĈ
xA⊤

t + σ2 AtĈ
x

ĈxA⊤
t Ĉx

)

.

(4)
Performing eigenvalue decomposition onĈ,

Ĉ = QΛQ, (5)

we obtain the sorted eigenvalues{λ1, · · · , λ4} and orthonor-
mal basisQ. If there are more than 2 eigenvaluesλ2

j ≫ σ2,
this candidate is not an auxiliary object since its motion and
the target’s are not in one subspace.

# of {λ2
j ≫ σ2}

{

> 2, the candidate is not an AO
<= 2, otherwise

.

(6)
If the candidate is an auxiliary object, we can estimate its
affine matrixAt with the property that the noise subspace is
orthogonal to the signal subspace. The last two eigenvectors
correspond to the noise subspace ofĈ are denoted as









q31 q41
q32 q42
q33 q43
q34 q44









,

which are orthogonal to arbitrary vector(x̃⊤
t A⊤

t , x̃
⊤
t ) in the

signal subspace. Substitute them back toĈ, the 2 × 2 matrix
At can be solved by

A⊤
t

(

q31 q41
q32 q42

)

+

(

q33 q43
q34 q44

)

= 0. (7)

Then, the translation vectorbt is obtained with̄yt, x̄t, andAt.
This method gives an effective detection of auxiliary objects
and efficient estimation of their affine motion models.

Such a mining process is meaningful, because it has learned
a random field. We denote the motion of the targetT by y and
those of the auxiliary objects byxk, k = 1, . . . ,K, whereK
is the number of auxiliary objects. They constitute a random
field. The pair-wise potentialsψk0(xk,y) are actually learned
as a by-product of this mining process, as

ψk0(xk,y) ∝ e−
(y−Akxk−bk)⊤(y−Akxk−bk)

2σ2 , (8)
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Fig. 4. Illustration of mining auxiliary objects. The target is denoted as T and IA to IG represent the items (i.e. the color segments).
IA and IB are selected as candidate auxiliary objects as they are frequently co-occurrent with the target. IA is identified as one
auxiliary object by multibody grouping since it has strong motion correlation to T .

whereσ2 is derived from the small eigenvalues ofC in Eq. 3.
In many cases, auxiliary objects share almost the same motion
as the target,e.g., the torso and the target head. Therefore, we
can use a Gaussian distribution to characterize those potentials.
The mean of the Gaussian is given byAk andbk, which is
the affine motion model estimated for thekth auxiliary object.
Note from now on, the subscript indicates the index of an
auxiliary object instead of the time step.

5 COLLABORATIVE TRACKING

It is clear that CAT is not tracking a single target, but a random
field. This random field among auxiliary objects and the target
is hidden and they need to be inferred from image evidence.
We formulate this problem under a Markov network with a
special topology, as shown in Fig. 5, where we only assume
pair-wise connections between the targety and the auxiliary
object xk and there are no connections among auxiliary
objects. Each of them is associated with its image evidencezk.
We denoteZ = {zk, k = 0, . . . ,K}, whereK is the number
of AOs andz0 is the observation ofy (i.e. the target). The
core of tracking is to estimate the posteriorsp(y|Z) of the
target andp(xk|Z), k = 1, . . . ,K, for the auxiliary objects.
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Fig. 5. The star topology of a random field. The hidden
motion parameter of the target is denoted as y with the image
observation z0. The motion parameters of the auxiliary objects
are denoted as xk with their respective observations zk.

For such a graph with a star topology, a belief propaga-
tion algorithm with 2-step message passing gives the exact
estimates of the posteriors. Denote byp(zi|xi) the local
likelihood and byφk(xk) the local prior such as the dynamics
prediction prior forxk. Each pair of the target and an auxiliary
object xk bears a pair-wise potentialψk0(xk,y) learned in
the subspace-based mining process, as described in Sec. 4.4.
mk0(y) represents the message passed from thekth auxiliary
object to the target andm0k(xk) is the message from the target
to thekth auxiliary object.

At the first iteration step, the targety receives all the
messagesmk0 from every auxiliary objectxk, then propagates
the message back to them at the second iteration. This message
passing mechanism implies a collaborative way of tracking.
Notice that if the target and the auxiliary objects are inde-
pendent, their independent motion estimates arep̂k(xk|Z) ∝
φk(xk)p(zk|xk), k = 1, . . . ,K. The relation between the true
estimates and independent estimates is simply captured by a
fixed-point equation of the messages:

p(y|Z) ∝ p̂0(y|Z)
∏

k

mk0(y), (9)

mk0(y) =

∫

xk

p̂k(xk|Z)ψk0(xk,y)dxk, (10)

p(xk|Z) ∝ p̂k(xk|Z)m0k(xk) k = 1, . . . ,K, (11)

m0k(xk) =

∫

y

p̂0(y|Z)
∏

xi\xk

mi0(y)dy. (12)

This suggests that we can use individual trackers for the target
and auxiliary objects. But these set of individual trackersare
not independent, as they need to combine their local estimates
and the messages from others, and iterate. Such a collaborative
mechanism leads to a very efficient solution to tracking the
random field. Thus, even if our new approach involves the
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tracking of a set of auxiliary objects (e.g.by mean-shift), the
computation is manageable because of the efficiency of the
collaborative way.

Compared with a single tracker for the target, the involve-
ment of auxiliary objects can reduce the uncertainty of the mo-
tion estimation of the target and thus make the tracking more
confident. We can prove this in a special case when setting
both the potentialψk0(xk,y) to be a GaussianN(µk0,Σk0)
and the local likelihoodp(zk|xk) to be a GaussianN(µ̂k, Σ̂k)
(we ignore the local prior without losing generality). Under
this setting, the closed-form belief propagation gives:

Σ0
−1 = Σ̂−1

0
+

K
∑

k=1

(Σ̂k + Σk0)
−1, (13)

µ0 = Σ0(Σ̂
−1
0
µ̂0 +

K
∑

k=1

(Σ̂k + Σk0)
−1(µ̂k + µk0)), (14)

where (µ0,Σ0) is the target’s posterior when tracking the
random field. If we assume the local priors to be Gaussian, this
result still holds but now(µ̂k, Σ̂k) refers to the local posterior.

Eq. 13 makes it clear thatΣ0 is always less than̂Σ0 since
these covariance matrices are positive definite and different
motion parameters are uncorrelated. Therefore, the confidence
of the collaborative estimate of the target is higher than that
produced by a single target tracker.

6 INCONSISTENCY AND ROBUST FUSION

The closed form analysis for the collaborative tracking can
be explained in the view of information fusion. When the
connection potentials between the target and the auxiliary
objects are set to be extremely tight,i.e., the covariance of
Σk0 is a zero matrix0, this belief propagation is equivalent
to the best linear unbiased estimator (BLUE) fory; if they are
extremely loose,i.e. Σk0 approaches infinity, it becomes an
independent estimation; otherwise, it is similar to covariance
intersection [45].

However, there is a hidden assumption for this conclusion,
i.e., the estimates from all the sources must be consistent. In
simple terms, they must more or less agree with each other. But
in reality, this may not be valid, when the estimates from the
individual trackers may be completely different or inconsistent
for many reasons. If using the above mentioned method to fuse
these inconsistent estimates, we may end up with an estimate
that is completely wrong but of a very high confidence. Such
an adverse estimation makes no sense and should be avoided.
It is desirable to have a mechanism to detect the inconsistency
and identify outliers for a robust fusion.

In this paper, we define two Gaussian sources arecon-
sistent if the variance in the compatible function of these
two Gaussian sources approaches zero using EM estimation
(more rigorous and detailed definition is given in Appendix
A). In this sense, we proposed a new theorem to measure
the consistency for pair-wise Gaussian sources in Markov
network [46]. We employ the following two criteria that are
very useful for detecting the pair-wise inconsistency. The
proofs are presented in Appendix B.

Theorem 1:Considering two Gaussian sourcesN(µ1,Σ1)
and N(µ2,Σ2), where µ1, µ2 ∈ R

n, the two sources are
inconsistent if:

1

n
(µ1 − µ2)

⊤(Σ1 + Σ2)
−1(µ1 − µ2) ≥ 2 +

√

Cp +
1

√

Cp

,

(15)
whereCp is the 2-norm condition number ofΣ1 + Σ2, and
they are consistent if:

1

n
(µ1 − µ2)

⊤(Σ1 + Σ2)
−1(µ1 − µ2) < 4. (16)

Although these are sufficient conditions in general cases,
they are actually also necessary conditions whenn = 1.
These criteria enable simple and quick detection of pair-wise
inconsistency. Then, the estimation that is inconsistent with
all the others will be regarded as an outlier. The outlier can
be the target or the AOs. If the target is an outlier, we assert
that the target is experiencing occlusion or drift, and suspend
the mining process temporarily. In this case, we can give
an estimation of the target purely based on the predictions
from the auxiliary objects, and search for the image evidence.
If the outlier is an auxiliary object, we simply exclude this
auxiliary object from fusion. After excluding the outliers, we
perform belief propagation again on the rest of the network
and employ the target tracker to locate the target precisely.
When the majority are not consistent which means the target
estimate can not be verified, a tracking failure is asserted.

7 EXPERIMENTS

7.1 Experiment settings

We substantialized and implemented the proposed CAT algo-
rithm in a head tracking system, where the head tracker is a
contour-based elliptical tracker similar to [2], and the auxiliary
trackers are mean-shift trackers. Since a fixed number of edge
points along the ellipse are matched, the single head tracker is
quite computationally efficient and runs at over 50 frame per
second (fps). Although the single head tracker is relatively
robust to illumination and view changes, it is vulnerable to
cluttered backgrounds, motion blur and occlusions. In our
experiments, we compare the proposed CAT algorithm to the
single head tracker in a large number of real-world sequences
captured in unconstrained environments including both indoor
and outdoor scenes. These extensive experiments and exciting
results have demonstrated the advantages of the CAT algo-
rithm. Furthermore, we apply the same CAT algorithm to
people tracking based on an appearance-based torso tracker
to exhibit the applicability of the proposed idea to different
types of targets.

The motion parametery = {u, v, su, sv} to be recovered
includes the location(u, v) and the scalessu and sv. The
color segmentation and the mean-shift tracker work in the
normalized R-G color space with32×32 bins. Without code
optimization, our C++ implementation of CAT comfortably
runs at around 10 fps on average on a Pentium 3GHz desktop
for 320×240 images depending on the number of auxiliary
objects discovered.
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7.2 Quantitative experiments

For a quantitative evaluation, we manually labelled the ground
truth of the sequenceskid in yellow, dancing girl
andbirthday kid for 1200, 1600 and 1460 frames respec-
tively. The evaluation criteria of tracking error are basedon the
relative position errors between the center of the trackingresult
and that of the ground truth, and the relative scale normalized
by the ground truth scale. Ideally, the position differences
should be around0, and the relative scales1.

As shown in Fig. 6, Fig. 7 and Fig. 8, the position differ-
ences of the results in the CAT are much smaller than that
of the single head tracker and the relative scales have much
less fluctuations around1. It demonstrates the advantages of
the CAT, i.e. reducing the false alarm rate and the estimation
covariance. Note that at the end of the sequencekid in

yellow, the single tracker happens to track the head by chance
after the drift. Although the CAT tracker loses track at around
frame 1100 for several frames, it is able to recover promptly
because of the auxiliary objects.

Some key frames are shown in Fig. 91 The first row shows
the results of the single head tracker where the highlighted
solid-yellow box indicates the location of the head. The second
row is the segmentation and mining results, where each green
rectangle indicates an item in the current frame. The numbers
in blue at the corner show the item labels of the candidate
auxiliary objects. The third row illustrates the fusion results.
Each blue box is the estimate of the target from difference
sources (i.e. the target or the auxiliary objects trackers). The
white box indicates that estimate is regarded as an outlier.The
dark red box is the final result of the fusion. The corresponding
labels of the auxiliary objects are shown at the bottom-right
corner. The final tracking results of CAT are shown in the4-th
row as highlighted solid-yellow boxes, and the dash-red boxes
are the auxiliary object trackers.

7.3 Occlusion and drift

Fig. 9 samples the results on the sequencekid in yellow

which is very challenging due to a serious occlusion, target
out-of-range and the clutters. When the head moves outside
the upper boundary at frame 113, the single head tracker drifts
to a false positive in the cluttered background and is unableto
recover. In contrast, the CAT tracker asserts the occlusionand
keeps tracking correctly. It freezes the head tracker temporarily
and re-initializes it based on the predictions provided by the
auxiliary objects. When the kid is walking in front of the
bush, the background is so cluttered that it causes big troubles
to the edge-based tracker. On the other hand, CAT discovers
several auxiliary objects,i.e. the shirt and short pant, which
are quite stable and provide roughly correct estimates of the
head location and rescue the head tracker from the drift at
frame 736.

7.4 Quick movement and camouflage

As shown in Fig. 10, the sequencedancing girl presents
quick movements and camouflage. All the girls are similar

1. All the faces shown in this paper were mosaicked for privacyprotection.

in terms of their appearances. This is extremely difficult for
a single head tracker to work, but CAT comfortably handles
such a challenge. During the dancing, CAT gradually discovers
the spatial relations between the target (the girl of interest)
and the adjacent contexte.g.other girls’ shirts, although such
relations are only valid in a short time interval. At frame
757, the single head tracker is trapped by the shoulder of the
girl and unable to recover. At frame 758, the CAT tracker
identifies this false alarm and pulls back the head tracker with
the help of the predictions of the AOs that are close to the
true target. At frame 1234, the girl of interest suddenly bows
down, CAT detects the tracking failure and resumes tracking
quickly. CAT can comfortably track over 1600 frames for this
highly dynamic sequence until the target moves outside the
left boundary for several seconds.

7.5 Scale and view changes

We show the tracking performance when the target undergoes
large scale and view changes and demonstrate the transitionof
the auxiliary objects in the sequencekid&dad (Fig. 11). For
the single head tracker, when the scale of the head becomes
very small, it drifts to the torso of the kid from frame 69
and fails the tracker. During the first 300 frames, the dad
walks with the kid with quite stable motion correlation. This is
discovered by CAT and the region of dad’s shirt is mined as the
auxiliary object to help track the kid’s head. When they move
close to the camera, the scale and the view change dramatically
so that the learned relation between dad’s shirt and the kid’s
head no longer holds. Fortunately, CAT spots that the hat is a
good auxiliary object at large scale and guides the tracking. At
the end of the video, the head is completely occluded by the
hat for several seconds. Although this is impossible to recover,
CAT detects and reports the tracking failure, while the single
head tracker tends to drift to a false positive without notice.

7.6 Cluttered background

In sequencebirthday kid, the target head experiences large
out-of-plane rotation and the appearances change greatly,as
shown in Fig. 12. For the contour tracker, when the rear head
is in the dark background, no good observation is available
around the head so the contour tracker drifts to the torso and
other elliptical regions, and is unable to recover. For the CAT
tracker, with the help of the auxiliary objects, the trackereither
keeps tracking in the tough situations or recovers from drifting
in several frames. Note the auxiliary objects discovered can be
some objects with inherent relations with the target, such as
the hat and short pant, or just something that happens to have
temporary relations, such as the refrigerator or the gift box.
This real-world sequence demonstrates the advantages of the
auxiliary objects for long-duration tracking.

As shown in Fig. 13 (swimming boy), the background is
quite cluttered due to the texture of water and other people,
which makes the single head tracker hopeless. The single head
tracker is easily distracted by the edges in the background and
drifts away. On the other hand, CAT discovers the two blue life
buoys and the swimming hat and uses them as the auxiliary
objects. When the boy jumps towards his mother’s arms, CAT
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Fig. 6. Quantitative comparison: (left) position errors, (right) scale errors, [kid in yellow,1200 frames].
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Fig. 7. Quantitative comparison: (left) position errors, (right) scale errors, [dancing girl,1600 frames].

uses the life buoys as well as the orange box on the bank to
help locate his head accurately, which is difficult for the single
head tracker. Note that at the end of this sequence, the kid’s
head is occluded by his mom’s head and CAT switches to the
mom. This is reasonable because the auxiliary objects can not
differentiate the two heads at the same location.

7.7 More people tracking results

To demonstrate the generalization ability of the proposed
method, we apply the context-aware tracking algorithm to
people tracking based on an appearance-based torso tracker. As
shown in Fig. 14 [47], when the person to track is occluded by
his friends around frame 56, the single torso tracker loses the
target and drifts away. In contrast, since the other pedestrians
serve as the temporary contexts, they can help the CAT tracker
keep following the target. In addition, after frame 135 the
context information help to prevent the tracker drift to the
person next to the target though both persons have very similar
appearances. Another example sequence is shown in Fig. 15
where an athlete in a marathon match is tracked with natural
lighting changes and view changes present.

7.8 Discussions

As demonstrated in a large number of challenging sequences,
there are two primary scenarios when the auxiliary objects
greatly help the tracking: 1) some auxiliary objects have
persistent relations to the target and present fairly accurate
estimates although these relations may not be foreseen; 2)
a number of auxiliary objects have transitional relations to
the target and the majority of them can give rough correct
estimates in a short time interval. In the cases of occlusionor
drift, it is not likely that all the auxiliary objects are occluded
or all auxiliary trackers lose track at the same time, since the
auxiliary objects may not be located in a close vicinity of
the target. The mechanism of robust fusion can identify the
inconsistency induced by occlusions or drifts. There are some
extremely difficult cases,e.g. the target is occluded for long
time, and CAT fails reasonably because on-line data mining
may not be invoked at all. Or only a couple of auxiliary objects
discovered and they do not agree with each other about the
target motion, which implies insufficient context information
to verify the tracking results. At these cases, the advantage of
CAT is the ability to detect and report the failure, and leave
the system to other means of re-initialization, while the single
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Fig. 8. Quantitative comparison: (left) position errors, (right) scale errors, [birthday kid,1460 frames].

Fig. 9. Frame # 50, 113, 124, 736 and 866 of kid in yellow,1200 frames. (1st row) the head tracker, (2nd row) the mining
results, (3rd row) the fusion results,(4th row) the CAT tracker.

tracker has no reliable mechanism to report the failure but
keep tracking aimlessly and regardlessly. In view of this, the
benefit of CAT is pronounced.

8 CONCLUSIONS

We have proposed a novel solution to robust long-duration
tracking by considering the context of the target. By in-
tegrating an unsupervised data mining procedure, a set of
auxiliary objects are discovered on the fly which provide
extra measurements to the target and reduce the uncertainty
of the estimation. In addition, the learned motion correlations
among the auxiliary objects and the target serve as a strong

cue to verify the tracking results to handle short-term occlu-
sion or tracking lost. The auxiliary objects are automatically
discovered without supervision and do not incur much extra
computation, which makes the approach generally applicable
to a wide spectrum of tracking scenarios.

For future work, we will study the relation between the
number of auxiliary objects discovered and the confidence
level of the verification. Another important issue to investigate
is how to compromise the need for a quicker initial mining
procedure within a shorter time window which may find more
auxiliary objects and a longer time window which may find
less auxiliary objects but with a high reliability.
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Fig. 10. Frame # 67, 757, 758, 764, and 1234 of dancing girl,1600 frames. (top) the head tracker, (bottom) the CAT tracker.

Fig. 11. Frame # 69, 180, 313, 540 and 616 of kid&dad,617 frames. (top) the head tracker, (bottom) the CAT tracker.

Fig. 12. Frame # 0, 72, 93, 170, and 1455 of birthday kid,1460 frames. (top) the head tracker, (bottom) the CAT tracker.

APPENDIX
PROOF OF THEOREM 1
A. Definition of inconsistency in two-node Gaussian
Markov network
We consider to define the inconsistency in a two-node Gaus-
sian Markov network, as shown in Fig. 16, where the two ob-
servation nodes are Gaussian random vectorsz1 ∼ N(µ1,Σ1)
and z2 ∼ N(µ2,Σ2) with µ1, µ2 ∈ R

n. Therefore, the com-
patible functions between observation nodes and the hidden
nodes are Gaussian,i.e.,

φ(xi, zi) =
1

√

(2π)n|Σi|
e−

1
2 (zi−xi)

⊤
Σ

−1
i

(zi−xi). (17)

Assume x1 can be predicted by a functionf of x2, the
compatible or the potential function ofx1 and x2 can be

expressed as a Gaussian

ψ(x1,x2) =
exp

{

− (x1−f(x2))
⊤(x1−f(x2))

2σ2
12

}

√

(2π)nσn
12

(18)

.
=

exp
{

− (x1−A12x2−µ12)
⊤(x1−A12x2−µ12)

2σ2
12

}

√

(2π)nσn
12

, (19)

which indicates ifx1 and f(x2) can be regarded as being
generated from one common model andσ2

12 is the scalar
variance. Whenf is nonlinear, we linearize it by Taylor
expansion,i.e., µ12 = f(0) and A12 = ∂f12(x2)

∂x2
|x2=0 is the

n×n Jacobian. So we only consider the linearized relation of
x1 andx2 in Eq. 19.
σ2

12 indeed models the uncertainties between the estimate
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Fig. 13. Frame # 87, 334, 526, 578 and 848 of swimming boy,900 frames. (top) the head tracker, (bottom) the CAT tracker.

Fig. 14. Frame # 40, 56, 68, 135, and 425 of three past shop,425 frames. (top) the torso tracker, (bottom) the CAT tracker.

Fig. 15. Frame # 72, 468, 504, 582, and 625 of marathon, 625 frames. (top) the torso tracker, (bottom) the CAT tracker.

Fig. 16. A two-node Markov network.

x1 and the neighborhood estimateA12x2 +µ12. AssumeA12

and µ12 are known, given all the{z1, z2} , the estimate of
σ2

12 is a natural indicator of whetherx1 and A12x2 + µ12

should be consensus,i.e., if σ2
12 is very small toward zero,

then they should be consensus sinceψ(x1,x2) is approaching
to an impulse delta function, and vice versa.

The Bayesian MAP inference ofx1 and the ML estimate
of σ12 can be obtained by the following Bayesian EM algo-

rithm [48], i.e.,

x1 = (Σ−1
1 +

1

σ2
12

I)−1

× (Σ−1
1 z1 +

1

σ2
12

(A12x2 + µ12)), (20)

σ2
12 =

1

n
(x1 − A12x2 − µ12)

⊤(x1 − A12x2 − µ12). (21)

Fixing σ12, the E-Step in Eq. 20 obtains the MAP estimate
of x1 by fixed-point iteration. Fixingx1 andx2, the M-Step in
Eq. 21 maximizesp(x1,x2|σ12, z1, z2) w.r.t. σ12. Combining
the two steps together also constitutes a fixed-point iteration
for σ2

12.
We measure the consistency of two observation sources

z1 and z2 by examining if their estimatesx1 and x2 are
consensus,i.e. if x1 is predictable fromx2 through a linear
relationA12x2+µ12 with small varianceσ2

12. Therefore, when
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z1 andz2 are consistent, the estimate ofx1 andA12x2 +µ12

will be consensus,i.e., they will be almost the same. In this
case, from Eq. 21, the estimate ofσ2

12 will always approach
to zero, i.e., zero is the only fixed-point. On the contrary, if
they are inconsistent, the estimate ofx1 andA12x2+µ12 may
deviate from each other,i.e., the convergent results ofσ2

12 may
be non-zero. This indicates that there exist non-zero fixed-
points forσ2

12. These motivate us to define the inconsistency
of two Gaussian sources as follows.

Definition 2: If zero is the only fixed-point forσ2
12 in the

Bayesian EM,i.e. in Eq. 20 and Eq. 21,{z1,Σ1} and{z2,Σ2}
areconsistent; if there exist non-zero fixed-points forσ2

12, they
are inconsistent.

B. Proof of the inconsistency criterion

Given the aforementioned definition of inconsistency for two
Gaussian sources in two-node Markov network, we propose a
sufficient condition to check the convergent value ofσ2

12 as
stated in Theorem 1. The basic idea of the proof is to check
if Eq. 21 has non-zero solutions. With some manipulations
we express Eq. 21 as a functionF (σ2

12) in Eq. 27. Then, we
show if the condition numberCp of Σ1 +Σ2 satisfies Eq. 15
in Theorem 1, there exist two positive numbers0 < k2 < k1

such thatF (k1) < 0 andF (k2) > 0, which indicates there is
a non-zero solution. IfCp satisfies Eq. 16,F (σ2

12) < 0 for all
σ2

12 > 0, thus there is no non-zero solution for Eq.21.
Proof: Fixing σ2

12, the fixed-point iteration in Eq. 20
is guaranteed to obtain the exact MAP estimate on the
joint posterior Gaussian. For simplification of notation, we
denotex̂2 = A12x2 + µ12 and ẑ2 = A12z2 + µ12. Define
P = Σ1 + Σ2 and S = P + σ2

12I. The convergent result in
the E-Step in Eq. 20 is the same as,

[

x1

x̂2

]

=

[

(σ2
12I + Σ̂2)S

−1z1 + Σ1S
−1ẑ2

Σ̂2S
−1z1 + (σ2

12I + Σ1)S
−1ẑ2

]

. (22)

Embedding it to the M-Step in Eq. 21, we have

σ2
12 =

1

n
σ2

12σ
2
12(z1 − ẑ2)

⊤S−1S−1(z1 − ẑ2). (23)

To prove Theorem 1, since zero is a solution ofσ2
12 for Eq. 23,

we only need to analyze the existence of non-zero solutions
of σ2

12 for

1

n
σ2

12(z1 − ẑ2)
⊤S−1S−1(z1 − ẑ2) − 1 = 0. (24)

P is the sum of two covariance matrices so it isreal positive
definite, thus there exists an orthonormal matrixQ such that
P = QDpQ

⊤, where

Dp = diag[σ2
1 , σ

2
2 , . . . , σ

2
n]

is the eigen-matrix withσ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n > 0 andCp =

σ2
1

σ2
n

. Then we haveS = QDsQ
⊤, where

Ds = diag[σ2
1 + σ2

12, σ
2
2 + σ2

12, . . . , σ
2
n + σ2

12].

Furthermore,S−1 = Q⊤D−1
s Q where

D−1
s = diag[

1

σ2
1 + σ2

12

,
1

σ2
2 + σ2

12

, . . . ,
1

σ2
n + σ2

12

].

We also denotẽz = Q(z1− ẑ2) = [z̃1, z̃2, . . . , z̃n]⊤. Then, we
can simplify the expressions in Eq. 24 and Eq. 15 in Theorem 1
(Sec. 6) as,

1

n
σ2

12(z1 − ẑ2)
⊤S−2(z1 − ẑ2) =

1

n

n
∑

i=1

σ2
12z̃

2
i

(σ2
i + σ2

12)
2
, (25)

1

n
(z1 − ẑ2)

⊤P−1(z1 − ẑ2) =
1

n

n
∑

i=1

z̃2
i

σ2
i

. (26)

From Eq. 25, we express Eq. 24 as a functionF (·) of σ2
12 and

only need to analyze the solution ofσ2
12 for

F (σ2
12) =

1

n

n
∑

i=1

z̃2
i

σ2
i

·
1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

− 1 = 0. (27)

Now we proceed to prove the conclusions in Theorem 1.
Denote the left-hand side of Eq. 15 in Theorem 1 asd and

plug Eq. 26 in, thus Eq. 15 means

d =
1

n

n
∑

i=1

z̃2
i

σ2
i

> 2 +

√

σ2
1

σ2
n

+

√

σ2
n

σ2
1

≥ 4.

Whenσ2
12 = k1 = (d− 2)σ2

1 , for any i, we have

1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

<
1

2 + 0 + d− 2
=

1

d
.

Thus,

F (k1) <
1

n

n
∑

i=1

z̃2
i

σ2
i

·
1

d
− 1 = 0.

Whenσ2
12 = k2 =

√

σ2
1σ

2
n, for any i,

1

2 +
σ2

i

σ2
12

+
σ2
12

σ2
i

≥
1

2 +
σ2

n

k2
+ k2

σ2
1

=
1

2 +
√

σ2
1

σ2
n

+
√

σ2
n

σ2
1

≥
1

d
,

thus

F (k2) ≥
1

n

n
∑

i=1

z̃2
i

σ2
i

·
1

d
− 1 = 0.

Since0 < k2 < k1 andF (·) is continuous, there must exist
a k3 such thatk2 ≤ k3 < k1 and F (k3) = 0. This proves
that the inequality Eq. 15 in Theorem 1 holds can indicate a
non-zero solution for Eq. 24, namely there exists at least one
non-zero fixed point forσ2

12 in the Bayesian EM, which means
the two Gaussian sources are not consensus according to our
definition of inconsistency. Thus, the first claim in Theorem1
is proved.

Eq. 16 meansd = 1
n

∑n
i=1

z̃2
i

σ2
i

< 4, then we have

F (σ2
12) ≤

1

n

n
∑

i=1

z̃2
i

σ2
i

·
1

4
− 1 =

d

4
− 1 < 0,

for all σ2
12 > 0. Therefore, there does not exist a non-zero

solution for Eq. 27. Eq. 16 in Theorem 1 is proven.
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