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Context-aware Visual Tracking
Ming Yang, Member, IEEE, Ying Wu, Senior Member, IEEE, and Gang Hua, Member, IEEE

Abstract —Enormous uncertainties in unconstrained environments lead to a fundamental dilemma that many tracking algorithms have
to face in practice: tracking has to be computationally efficient but verifying whether or not the tracker is following the true target tends
to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to
this problem, many existing methods tend to be either effective but computationally intensive by using sophisticated image observation
models, or efficient but vulnerable to false alarms. This greatly challenges long-duration robust tracking. This paper presents a novel
solution to this dilemma by considering the context of the tracking scene. Specifically, we integrate into the tracking process a set of
auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties, at
least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion correlation to the target; and (3) easy
to track. Regarding these auxiliary objects as the context of the target, the collaborative tracking of these auxiliary objects leads to
efficient computation as well as strong verification. Our extensive experiments have exhibited exciting performance in very challenging
real-world testing cases.

Index Terms —Computer vision, visual object tracking, context-aware, collaborative tracking, data mining, robust fusion, belief
inconsistency.
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1 INTRODUCTION as clutters, illumination and view changes, low image dyali

. . N motion blur, and partial occlusions, all may invalidate gien
Robust long-duration visual tracking is demanded by ma P y P

contemporary apolications such as video-based sur ‘Fscriptive likelihood models. As a result, good matches of
porary appicatl u v UNVeiese descriptive features do not necessarily have to cor-

lance and vision-based interfaces. One fundamental dbsta} spond to the true target, and background false positive

Itr(; tdheievrvr?ilnle?vtvhheetlﬁglr( t?]fee;g%i?tbg}ﬁar}z”fg\;/ggrglC?:}'grﬁéckobjects may also be good matches. Over the years, there have
is really the target. At the extjreme th?s is in fact ayrecb' ni een two approaches to address this issue: on-line adaptati
task V\)//ithout e?fec.tive verification 'the tracker is Iiketyd?ift of the descriptive likelihood models [5], [7}-{9], or using

' ' discriminative likelihood models that distinguish theetarget

awr;y ?radga(ljly, fotr fail %hen fthe talrtgf]]et 'Sh occ;ludgd even f?lrom false positives. Without strong verification that poms
a short period of ime. theretore, athougn extensive 4 confident supervision, on-line adaptation is risky and $aak

effgirti hr:wg b(fenn;ak?ﬁn,i 'tnItSIS::" gu':etidlr:ﬁfru“ ll?nprﬁ:ﬁ'to mechanism to prevent drifting. On the other hand, discrimi-
achieve robust and etticient long-duration tracking In Umco ;e jikelihood is generally associated with classifiersg,

;train_ed real-wqud environments. .MOSt existing methous %he SVM tracker [10]. These classifiers can be trained off-
in a dilemma: either be fast-but-fallible, or be robust-blaw. line or on-line [11], [12]. As learning a classifier has to be

This dilemma originates from the opposite requirements,seq on a large number of training features, it tends to be

for the image likelihood models: on one hand, the "ke”hoogomputationally demanding

model should be simple for efficient motion estimation and Is there a way to get out of the dilemma so as to have more

trackmgr; on_the ot.kf\.er hand,f |thhas to beWsoph||Tt|;a;ed ffficient but still effective verification? In all these ebigy
comprenensive veri |ca_t|on_ 0 t_e t_arg_et. € ca t_ Bt methods, the dynamic environment is taken for granted as the
scriptivelikelihood anddiscriminativelikelihood, respectively. adverse party for the tracker, as it generates false pesitand
_In general, descriptive I|keI|hoqd IS base_d on the des_m?apt most computation has to be spent in separating the truettarge
Image features that can be easily accessible and speeifged, from the environment. However, the environment can also

contours [1], [2], colors [3], or even image regions [4],.[S],)e agyvantageous to the tracker if it contains objects that ar

etc. The .matchmg of th?se_ image features leads to ,eff'c'e&Srrelated to the target. For example, if we need to tracka fa
computation of the descriptive likelihood and thus fastiomot

S ; . in a crowd, it is almost impossible to learn a discriminative
esﬂm_atmn €.g. differential methods such as kernel-baseﬁl]odel to distinguish the face of interest from the rest of the
tracking [3], _[5]’ [6])'_ L crowd. Why do we have to focus our attention only on the
However, in practice, many real-world complications sucfyget? If the person (with that face) is wearing a quite ueiq
shirt (or a hat), then including the shirt (or the hat) in nhétg
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easier as the discriminative model is much simpler. We hall t effective verification, because the learned motion andéar- g
new approactcontext-aware trackindCAT) as it takes into metric correlations among the target and the auxiliary abje
consideration the context of the target, as shown in Fig. 1.serve as strong cues for verification. Last but not the least,

A target is seldom isolated and independent to the entiteis intelligent and robust. The context of a targee. the
scene, therefore there may exist some objects that have shauxiliary objects and the motion correlatioie(, the random
term or long-term motion correlations to the targets (bdield), is automatically discovered on the fly. The robustdos
are unknown to the tracker beforehand). Thus, taking tleebedded can handle partial occlusions and even camouflages
advantage of these context information in an efficient way c®ur extensive tests on real-world data give quite exciting
improve the robustness of the tracker as the spatial contpetrformance in dealing with challenging cases includimgda
provides additional verification. We represent the contaxt scale changes, partial occlusions and complicated chatter
a target by a set ofuxiliary objectsthat are automatically backgrounds.
discovered on the fly in an unsupervised fashion by using datarhe remainder of this paper is organized as follows. Related
mining technigques. A context-aware tracker can discoveata svork on visual object tracking is reviewed in Sec. 2. The
of auxiliary objects and track them simultaneously. Specibverview of the proposed approach is presented in Sec. 3. The
ically in this paper, auxiliary objects are those that eithibthree components of the proposed approaeh,discovering
strong motion correlation to the target. The correlation ba the auxiliary objects by data mining, collaboratively fugi
employed to improve tracking and to provide computatignalthe tracking results of auxiliary objects and the targed an
efficient but powerful verification. Intuitively, an awadliy identifying the outliers, are elaborated in Sec. 4, Sec.ng, a
object should satisfy three properties at least in a show ti Sec. 6, respectively. Experiments on real-world sequeases
interval: 1) persist co-occurrence with the target, 2) ieat reported in Sec. 7. Concluding remarks are in Sec. 8.
motion correlation to the target, and 3) easy to track.

In the_ propqsed context-awa_re tracklng, au>_<|l|ary ob_Jec§ RELATED WORK
can be in various formse.g. solid semantic objects which
bear intrinsic relations to the target, or certain imagdamreg Visual tracking has been an active research topic since the
that happen to have motion correlation with the target for&arly 1980s and keeps advancing both in theory and practice
short period of time. They may reliably associate to thegtirg?s the expectations are soaring significantly in real-world
for a long duration, or only for a short time interval, or maypplications,e.g. video-based security surveillance, medical
not exist at all. Thus, it is impossible to determine augjlia applications [17], autonomous vehicle [18]. The targets in
objects off-line in advance, but they have to be discovered gisual tracking evolve from points in dense optical flow 9]
the fly. We resort to data mining techniques for discovering2], contours [1], blob regions [3], [23], to more com-
auxiliary objects by learning their co-occurrence asdamia plicated articulated objects [24] and multiple objects]{25
and estimating affine motion models to the target. Data rginif26]. Meanwhile, visual tracking is closely coupled withdan
methods originated from text information processing ara-re greatly benefits from many related tasks, such as background
tional databases [13], and found their uses in extractidgosi Subtraction [27], image/motion segmentation [28], stiatis
objects [14]-[16]. To the best of our knowledge, this papégarning [10], [29]. For more comprehensive survey about
presents an original attempt of combining visual tracking a image features and techniques used in tracking, we refer the
data mining in a collaborative tracking framework. readers to [30].

This new approach has the following advantages. Firstly, Regardless of the diverse features and targets studied in
it is computationally efficient, because auxiliary objeete tracking, essentially as a recursive motion estimatiorbpro
easy to track €.g. color regions) and do not incur muchlem, visual tracking mainly involves two fundamental issue
computational cost. Secondly, it outputs more accuratkira matching and searching. They correspond to target likeli-
ing results. A context-aware tracker tracks the target &ed thood/observation models that measure the matching between
set of auxiliary objects as a random field in a collaborati@ypothesis and the target, and the motion estimation scheme
manner. Itis provably correct that the uncertainty of theioro that search for the optimal hypothesis. Motion estimation
estimation of the target is reduced. Thirdly, it also presd schemes can be differential and based on gradient descent
search [3], [5], and be sampling-based such as particle fil-
ters [1], [31] or sequential Monte Carlo. The search may

incorporate the prior knowledge about target dynamécg,
| L, | Kalman filters, multiple hypothesis tracking (MHT) [32],3B
= | or probability data association filter (PDAF) [34], [35].
1] Target likelihood/observation model is the core in visual

tracking which primarily determines tracking accuracy afid

_ ficiency. A target can be described by its visual featuresetia
Fig. 1. lllustration of context-aware tracking. 7" indicates the  on which a descriptive likelihood model can be constructed.
target and /;; means the spatial context of the target. Traditional  t the features are unique and invariant to the environment
tracking methods focus their attention on the target only, while h tracki . ina to b task. H .
context-aware tracking considers the target and its spatial changes, tracking IS gomg 0 _e an easy Ias - Fowever, n
context within a network. the real-world, the environment is unconstrained and pitsse

tremendous variabilities, it is skeptical if the invarideatures
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determined in advance (thus the descriptive likelihood efjod « Collaborative tracking (in Sec. 5): both the target and
shall still be valid during the run time. Thus, a short term  the set of auxiliary objects need to be tracked in CAT.
invalidation of the likelihood modek.g, the target moves out Because they are not independent, the tracking is formu-
of the field of view or occlusion is present, is very likely to lated based on a random field and is achieved efficiently
fail the tracker. A more adverse failure situation is thag th by the collaborations among all the individual trackers in

tracker is following a false positive that also evaluateargée the network where an individual tracker influences other
descriptive likelihood. trackers as well as receiving influence from others;

To deal with this challenge, various approaches have been Robust fusion (in Sec: 6): for an individual tracker,
proposed in the literature. Despite the versatile fornmores;, in there may exist inconsistency among the influences it
general, they can be categorized into the following threesa receives and its own image measurements. Handling
integrating multiple cues, on-line adaptation of desaorgt inconsistency is fundamental and critical to fuse auxjliar
models, and using discriminative models. Taking into cdnsi object trackers and the target tracker.

eration of multiple visual cues lead to a rich descriptivedelo  The entire procedure of CAT algorithm is summarized in

e.g, geometry and illumination can be combined [5]. The inte=ig. 2. The details of each component will be explained in the
gration can based on simple heuristics [2] or co-infereB€&.[ following sections.

On-line adaption of descriptive models changes the paemet

of the likelihood model according to the changes of the envi-

ronment. For example, an appearance model can be ada;ﬂed MINING AUXILIARY OBJECTS
based on EM [23] or based on an incremental updating of thel  Auxiliary objects

basis of the appearance subspace [7], [8]. Auxiliary objects (AOs) are the spatial context that canphel

Sinc.e descriptive likelihoods on_Iy check the ”?"’“Ching %e target tracker. We abuse a little bit the term “object’’. |
predefined features, a good maich is not necessarily baue act, it is not necessary for an AO to be a semantic object. In

target but a false positive. Therefore, anather approabased the tracking scenario, it refers to an informative imageaeg

on using d|scr|m|na_t|ve likelihood mo_del; that Q|st|ngui$|e or an image feature that satisfies the following three prtogzer
target from the environment. Such discriminative models ca )
1) frequent co-occurrence with the target;

be trained off-line in advanceg.g, the SVM tracker [10] , , )
that uses the SVM score as the matching criterion. Since2) Consistent motion correlation to the target;
the off-line training is to optimize the global and generic 3) suitable for tracking.
discrimination performance, it may not be accurate enoughAlthough this definition may cover a large variety of
locally. Therefore, on-line adaptation can also be used fiage regions or features, not all of them are appropriate
discriminative models. For example, this can be done by of¢r balancing the complexity and generality. Since the rprio
line selection of discriminative color spaces from a fixetl s&énowledge about the target and the environments are in gener
of predefined color spaces to distinguish the target from thet accessible, it is preferable to choose simple, genexic a
background [37], or by selecting Haar features from a lardew-level auxiliary objects, such as image regions or featu
pool [12], or by learning a set of weak classifiers [11], [38]Points. Feature points are geometrically significant andige

In contrast to these existing methodS, we propose a nom most localized information. There are some OUtStanding
approach to enhancing the observation model by on-liM@rk on invariant feature pointse.g. [40]-[43]. Although
discovery of some auxiliary objects [39] which can help fyeri feature points may be salient and therefore suitable fozatbj
the target tracking results. These auxiliary objects witbrs  recognition, they are in general prone to occlusion, liati
term motion correlation to the target can serve as the confex@nd local geometry changes. Thus they are not always stable
the target. Tracking the target as well as the auxiliary etsje @nd reliable in video. In addition, extracting invarianatieres
in a collaborative way can effectively reduce the uncetyainn€eds a good amount of computation, which makes it hard

of the tracking results and deal with large uncertaintiethef t0 achieve real-time performance. Therefore, although the
environments. tracking of feature points can be quite efficient, we geteral

do not use feature points as auxiliary objects.
Instead, we choose to use significant image regions. Differ-
3 OVERVIEW OF OUR APPROACH ent from localized image feature points, image regions ¢efle
) ~ the visual property of a neighborhood, and they tolerateemor
The proposed approach, calledntext-aware visual tracking occlusions and local geometry changes. More importantly,
or CAT, has the following three important components:  image regions, if selected properly, can be reliably and eff
« Mining auxiliary objects (in Sec. 4): the methods of ciently tracked, for example, by the mean-shift algoritt8h [
extracting the candidates of auxiliary objects and mininglthough texture regions may have invariants and can be very
the associations will be discussed. For auxiliary objestgnificant, our current implementation does not use them
candidates, multibody grouping is employed to discovdrecause it takes more computation to spot them than color
the potential multibody structure from motion and to estkegions. Therefore, our current treatment for data mingg i
mate the affine motion models through subspace analydis.discover a set of color regions that are temporally stable
This step not only identifies a set of auxiliary objects, bwand spatially correlated to the target in a video sequenam in
also learns a random field among them; unsupervised way.



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO. 0, JUNE 2008 4

_______________ - ———— - - —— - - —— - - - -
{ Collaborative tracking |:- Robust fusion |
| |
: Target | : |
/ tracker 1 | |
Input ) Belief | 1o Outlier_> Belief || Target :
frames | propagation : | [removall propagation tracker] I
\ Auxiliary 1 | |
: trackers 1 : :
e e SRS | J ——
—y—-—=—-=-=-=-----=--=-=------=-"-""-""-""-"=-=-= -~ r—
| ad-tree
Qu Incremental Frequent item Multibody 1 tracking
I color = . - o ] i < i
| ) clustering mining grouping results
I segmentation )
(N Mining auxiliary objects __ _______ :

Fig. 2. Block diagram of the CAT algorithm. The sub-modules of auxiliary object mining, collaborative tracking, and robust fusion
are enclosed in dash rectangles.

4.2 Item candidate generation

To follow data mining’s conventions and make our discussion
clear, we define the following terms for our video data mining
task.

Definition 1: We denote anitem candidateby s which
is a particular image feature obtained by low-level image
processing; aitemby I which is a quantized item candidate in
avocabularyV = {I,...,Ix} which is learned by clustering
all item candidates; aitemsetby I C V, set of items; and a
transaction byr, the itemset within a neighborhoagl.

In our implementation, an item candidate is a rough coldrd. 3. lllustration of the quad-tree color segmentation. (left)
segment with its motion parameters, and an item is defined 'Bg“t frame, (middle) over-segmentation, (right) pruned seg-
I ={H(I),x;}, where H(I) is the average color histogramrn ntation.
of the item andx; is the motion parameters and respective
covariances. The set of candidate AOs, denotedFbys a jtem candidates. In conventional mining applications,aligu
subset of), which are frequently co-occurrent with the targeftem candidates can be collected and quantized off-line by
The candidate AOs that have strong motion correlationseo . means or kNN clustering methods. But in this tracking
target are identified as auxiliary objects. _ scenario, we have to do this in an incremental way. The pro-

The item candidates, i.e, the color segments in our caseceqyre s the following. The color segments in each incoming
are the inputs for mining. In the tracking scenario, effitiefame are matched to the items in current vocabulary by the
segmentation is more preferred than a delicate but expensihattacharyya coefficient [3] of the histograms of the sagtsie
one since exact boundaries of the segments are not necesgaie similarity measurement. Then, each color segment (
for mining and tracking. In our current implementation, Wégm, candidate) can be quantized and given a labgl,l 4 to
employ the classical splitmerge quad-tree color segmenfa, 4re jtems as shown in Fig. 4. Afterwards, for each item, we
tion [44]. The image is recursively split into the smallesjorm 5 transaction that consists of the item itself and tanit
possible homogenous color regions, and then the adjaCgfhin its neighborhood. There are different choices of the
regions with similar appearances are merged gradually. Th&ghborhood. For example, we can use the item itselfuse
most prominent advantage of this method is computation@ly neighbor). The items inside the region of interest in each
efficiency. Some segments are not appropriate for traclsiag, frame construct a transactien and a transaction database is
we employ some heuristics to prune thegrg. segments that it based onM consecutive frames.
are too large (the area ovéy2 of the entire image) or t00  Gijyen the transaction database, the items which have a high
small (the area less than pixels), and concave segments (thgq_occurrent frequency will be chosen as candidate auxilia
area less than /2 of the bounding box) are excluded. Thesgpiacis. Since the mining is performed online, we need to
kinds of item candidates are suitable for tracking. Fig. &1 a1e into account the importance of the historical images.

some typical segmentation results. We maintain anM-frame sliding window and count the item
_ o frequencyf(I,,) = ZE:FMH B3="B;(I,,) with the forgetting
4.3 Frequent item mining factor 3 = 0.9 where B;(I,,) is a binary function and 1

Candidate auxiliary objects are the items that are fredyienindicatesl,, appears in framé If image segmentation does not
co-occurrent with the target. To build the vocabul@rgo as to end up with too many small segments, the frequent items are
construct the transactions for mining, we need to quantize tgood enough for identifying candidate auxiliary objecttHé
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segmentation tends to over-segment and produces too maeren is a zero mean white noise witA[nn '] = 1.
small segments, we cannot use O neighbor for constructingf we stacky; and x;, the covariance matribxC can be
transactions, but use the nearby items to form transactmnsexpressed as
identify co-occurrent patterns that merge the adjacentlsma _ Yt \ (oT o7

S L . C=E[|2 ) F %) 3)
segments. This is another reason that it is fine for image X4

segmentation step to be imperfect. As illustrated in Fig. 4, Itis clear thatrank(C) < 2 if there is no noiseife. n — 0).

though there are quite many color segments in each frame,.ﬁ¥ - o . .
. . > Is rank deficiency property is important in detecting the
counting their co-occurrent frequencies, odly= {I4,Ip} y property b g

. o . ] ' P subspace due to motion correlation. In reality, becaust0,
are identified as frequent itemse. candidates of auxiliary P Y 5e

biects. Th t of th bl is o determi heth C is likely to have a full rank. Since the noise is additive,
° Ledcidsnt re :Iesbo . € r[:]roti im Ifr Ioti enirmtlr?e tWr iee_ltitais easy to prove that the 4D space spanned(®y,x, )
ca ate really bears a motion correlation to the targ is a direct sum of a signal subspace and a noise subspace.
issue will be discussed next.

The signal subspace is up to rank 2 and corresponds to the
large eigenvalues dof, and the noise subspace corresponds to
4.4 Mining by subspace analysis the smallest eigenvaluesd. o). Therefore, we can check and

Finding the frequent items only spots the candidate auyiliathreshold the eigenvalues to identify those subspaces.

objects that are frequently co-occurrent with the target, b Denote the estimated covariance matrix By and the

they do not necessarily exhibit strong motion correlatiof@variance matrix ok by C*, and we have

to the target. For example, in Fig. 45 is less correlated M-1 , . S A T 9 Sr

to the targetT than I, does. We need to check if theseC = (¥t1> (yT ' )= < AC*Af +0° AC )
=0

. . . i ) % t—i> Xt —i Gz AT G
candidates satisfy the motion correlation requirement rof a t—i t
auxiliary object. For each candidate, we can initialize ame ) ) R (4)
shift tracker to find its correspondences in the successi&forming eigenvalue decomposition Gh
image frames. If this tracker loses track for 4 frames in a C = QA 5

: . : : : = QAQ, ®)

row, we assert that this candidate is not suitable for tragki
and remove it. Otherwise, we can form the motion trajecsorigve obtain the sorted eigenvalugs,,--- , A4} and orthonor-

over the frames for a set of candidate auxiliary objects.nThemal basisQ. If there are more than 2 eigenvaluk.e% > o2,
we employ a noise subspace analysis method to discover this candidate is not an auxiliary object since its motiod an
potential multibody structure from motion and estimate thidae target's are not in one subspace.

affine motion models _between the object pairs. , , > 9, the candidate is not an AO
The motion correlation between two moving objects can b# of {\; > o~} <9 otherwise s
very complicated and non-linear, but generally linear ooti ’ (6)

models can be used as a good approximation. We extend fhéhe candidate is an auxiliary object, we can estimate its
simple translational model in [39] to a more general affingffine matrix A, with the property that the noise subspace is
motion model. When the points on two objects have affinginogonal to the signal subspace. The last two eigemector

motion relation, they must reside in a linear subspace. ;Thygrespond to the noise subspaceCbhire denoted as
identifying this subspace will lead to the estimation of the

affine motion model. 431 qa1

At time ¢, one candidate auxiliary objectp, € F is 432 q42
represented ag; = {u¥,v¥} " and {s¥, s’} where (uf,v¥) 433 Qa3 |’
are the coordinates of the centerlgf and sy ands; are the g34  qaa

scales, respectively. Similarly the targétcan be representedwhich are orthogonal to arbitrary vect(gfttT AT,%7) in the

_ Yy Y\ T U LU - . . .
asy, = {u/,vf}  and{s{,s;}. If Io and T co-occur and gjonal subspace. Substitute them baciCiothe 2 x 2 matrix
have stable motion correlation, thép can be claimed as an A, can be solved by

auxiliary object. So the goal is to evaluate whetligrand T’
have strong motion correlation in time winddw— M + 1, ¢] AT ( 431 qa1 ) n ( 433 Qa3 > _o. @
given the trajectories of; andx; within this time window. k 432 qa2 q34 Qa4

Assume an affine motion model between candidate auxiliamen, the translation vectar,
objectIp and the targef” for the period of frameé — M + 1
to framet, which is specified by @ x 2 matrix A; and a
translation vectob; = {u?, v}, as

is obtained withy,, x;, andA,.
This method gives an effective detection of auxiliary obgec
and efficient estimation of their affine motion models.
Such a mining process is meaningful, because it has learned
yi = Ayx; + by 1 @ random field. We denote the motion of the tarfjdty y and
those of the auxiliary objects by, k =1,..., K, where K
Subtract the meag; of y; andx; of x, in the time window is the number of auxiliary objects. They constitute a random
[t—M+1, 1] and take the noise into consideration, the relatidfteld. The pair-wise potentialg;(x;, y) are actually learned
betweenlo andT' can be expressed with, = y; —y; and as a by-product of this mining process, as
Xy = Xt — Xy, A@S

(y—Apxp—bp) T (y—Apx,—by)

yt = Atit +n, (2) ¢k0 (ka y) xe 202 ) (8)
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Quant%d items:

A
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Transaction7 TABC TABCD eee TABE TABGF

Frequent Items: AB

Candidate AO

!
Multibody

grouping: AO |,

Fig. 4. lllustration of mining auxiliary objects. The target is denoted as T and 14 to I represent the items (i.e. the color segments).
I4 and Ip are selected as candidate auxiliary objects as they are frequently co-occurrent with the target. 74 is identified as one
auxiliary object by multibody grouping since it has strong motion correlation to 7.

whereo? is derived from the small eigenvalues Gfin Eq. 3. For such a graph with a star topology, a belief propaga-
In many cases, auxiliary objects share almost the same motimn algorithm with 2-step message passing gives the exact
as the targete.g, the torso and the target head. Therefore, westimates of the posteriors. Denote byz;|x;) the local

can use a Gaussian distribution to characterize thosefmiten likelihood and byg, (x;) the local prior such as the dynamics
The mean of the Gaussian is given By, and by, which is prediction prior forx;. Each pair of the target and an auxiliary
the affine motion model estimated for thth auxiliary object. object x; bears a pair-wise potentiab,o(xy,y) learned in
Note from now on, the subscript indicates the index of ahe subspace-based mining process, as described in Sec. 4.4

auxiliary object instead of the time step. myo(y) represents the message passed fromktheuxiliary
object to the target anabox (x) is the message from the target
5 COLLABORATIVE TRACKING to the kth auxiliary object.

Itis clear that CAT i t tracki inale t t but q At the first iteration step, the targset receives all the
IS clear tha IS nottracking a singie target, but a kam messagesg from every auxiliary objeck;, then propagates

field_. This random field among a_uxiliary ObjeCt_S and the_ argg,e message back to them at the second iteration. This neessag
is hidden and they need to be inferred from image eviden ssing mechanism implies a collaborative way of tracking.

We formulate this problem under a Markov network with otice that if the target and the auxiliary objects are inde-

spgua'l topology, as shown in Fig. 5, where we only_",’lssungndent, their independent motion estimatesjaie;|Z)
pair-wise connections between the targeand the auxiliary L (% )p(za|xp), k = 1 K. The relation between the true
r§ , oo K.

Obj.eCt x; and there are no _conne(_:t|o_ns_ among _auxma stimates and independent estimates is simply captured by a
objects. Each of them is associated with its image evidepce fixed-point equation of the messages:

We denoteZ = {z;,k =0,..., K}, whereK is the number
of AOs andz, is the observation of (i.e. the target). The p(y1Z) o< po(y|Z) [ mro(), 9)
core of tracking is to estimate the posterigng/|Z) of the k

target andp(xx|Z),k =1, ..., K, for the auxiliary objects. mioly) = / B (50| Z)tbp0 (X, ¥ ), (10)
Tk

p(Xk‘Z) X ﬁk(xk|Z)m0k(xk) kzl,...,K, (11)
mar(x) = [ o(312) [ mav)iy. (12)

X \ Xk
This suggests that we can use individual trackers for thgetar
and auxiliary objects. But these set of individual trackans
Fig. 5. The star topology of a random field. The hidden not independent, as they need to co_mbine their local e_sa'fmat
motion parameter of the target is denoted as y with the image and the messages from others, and iterate. Such a collaeorat
observation zo. The motion parameters of the auxiliary objects mechanism leads to a very efficient solution to tracking the
are denoted as x;, with their respective observations zy. random field. Thus, even if our new approach involves the
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tracking of a set of auxiliary object®.g. by mean-shift), the = Theorem 1:Considering two Gaussian sourc&%u;,X)
computation is manageable because of the efficiency of thed N(uq,32), where 1,12 € R”, the two sources are
collaborative way. inconsistent if:

Compared with a single tracker for the target, the involve-q . . 1
ment of auxiliary objects can reduce the uncertainty of tloe m g(ﬂl —p2) (B4 32)" (p — p2) 22+ \/07) + \7@’
tion estimation of the target and thus make the tracking more (f5)
confident. We can prove this in a special case when Set“ﬂlglerecp is the 2-norm condition number o, + %, and
both the potential)yo(xy,y) to be a GaussialN (11x0, Xko)  they are consistent if:
and the local likelihoog(z; |x}) to be a GaussialV (fix, 31)

(we ignore the local prior without losing generality). Unde l(m — ) (B + 20) M — o) < 4. (16)
this setting, the closed-form belief propagation gives: n

K

_ o - _ Although these are sufficient conditions in general cases,
B =800+ (Bk+Zho) (13) y J
k=1

they are actually also necessary conditions when= 1.
These criteria enable simple and quick detection of pasewi
R K inconsistency. Then, the estimation that is inconsisteitit w
po = 30(Zg fio + Y _(Zk + Zko) ' (fik + ko)), (14)  all the others will be regarded as an outlier. The outlier can
k=1 be the target or the AOs. If the target is an outlier, we assert

where (110, X0) is the target's posterior when tracking thdhat the target is experiencing occlusion or drift, and sasp
random field. If we assume the local priors to be Gaussias, tii€ mining process temporarily. In this case, we can give
result still holds but nowfix, 3;,) refers to the local posterior. @ estimation of the target purely based on the predictions
Eq. 13 makes it clear tha, is always less thai, since from the a_uxn_|ary objec.t.s, and s_earch for Fhe image ewdenp
these covariance matrices are positive definite and differdf the outlier is an auxiliary object, we simply exclude this
motion parameters are uncorrelated. Therefore, the comfide@uxiliary object from fusion. After excluding the outliense

of the collaborative estimate of the target is higher thaat thP€rform belief propagation again on the rest of the network
produced by a single target tracker. and employ the target tracker to locate the target precisely

When the majority are not consistent which means the target
estimate can not be verified, a tracking failure is asserted.
6 INCONSISTENCY AND ROBUST FUSION
The clos_ed fo_rm analysis for_the Coll_aborati\_/e tracking cap ExpERIMENTS
be explained in the view of information fusion. When the ) )
connection potentials between the target and the auxiliafyt EXperiment settings
objects are set to be extremely tight., the covariance of We substantialized and implemented the proposed CAT algo-
Yo iS a zero matrix0, this belief propagation is equivalentrithm in a head tracking system, where the head tracker is a
to the best linear unbiased estimator (BLUE) jorif they are contour-based elliptical tracker similar to [2], and theiaary
extremely loosej.e. X, approaches infinity, it becomes artrackers are mean-shift trackers. Since a fixed number of edg
independent estimation; otherwise, it is similar to cosmace points along the ellipse are matched, the single head tragke
intersection [45]. quite computationally efficient and runs at over 50 frame per
However, there is a hidden assumption for this conclusiosgcond (fps). Although the single head tracker is relativel
i.e, the estimates from all the sources must be consistent.robust to illumination and view changes, it is vulnerable to
simple terms, they must more or less agree with each othér. Bluttered backgrounds, motion blur and occlusions. In our
in reality, this may not be valid, when the estimates from thexperiments, we compare the proposed CAT algorithm to the
individual trackers may be completely different or incatsnt single head tracker in a large number of real-world sequence
for many reasons. If using the above mentioned method to fussptured in unconstrained environments including botleand
these inconsistent estimates, we may end up with an estimae outdoor scenes. These extensive experiments anchgxciti
that is completely wrong but of a very high confidence. Suaksults have demonstrated the advantages of the CAT algo-
an adverse estimation makes no sense and should be avoidéun. Furthermore, we apply the same CAT algorithm to
It is desirable to have a mechanism to detect the inconsigtepeople tracking based on an appearance-based torso tracker
and identify outliers for a robust fusion. to exhibit the applicability of the proposed idea to diffetre
In this paper, we define two Gaussian sources @mB- types of targets.
sistentif the variance in the compatible function of these The motion parametey = {u,v,s%, s'} to be recovered
two Gaussian sources approaches zero using EM estimatiocludes the location(u,v) and the scales* and s¥. The
(more rigorous and detailed definition is given in Appendigolor segmentation and the mean-shift tracker work in the
A). In this sense, we proposed a new theorem to measm@malized R-G color space wits2 x 32 bins. Without code
the consistency for pair-wise Gaussian sources in Markoptimization, our C++ implementation of CAT comfortably
network [46]. We employ the following two criteria that areruns at around 10 fps on average on a Pentium 3GHz desktop
very useful for detecting the pair-wise inconsistency. Ther 320 x 240 images depending on the number of auxiliary
proofs are presented in Appendix B. objects discovered.
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7.2 Quantitative experiments in terms of their appearances. This is extremely difficuft fo
For a quantitative evaluation, we manually labelled theugch @ Single head tracker to work, but CAT comfortably handles
truth of the sequencesi d i n yel | ow, dancing girl such a challenge. During the dancing, CAT gradually distove
andbi rt hday ki d for 1200, 1600 and 1460 frames respedhe spatial relations between the target (the girl of irdgre
tively. The evaluation criteria of tracking error are basedhe and the adjacent contegtg. other girls’ shirts, although such
relative position errors between the center of the trackisglt €lations are only valid in a short time interval. At frame
and that of the ground truth, and the relative scale normaliz/97, the single head tracker is trapped by the shoulder of the

by the ground truth scale. Ideally, the position differencelifl and unable to recover. At frame 758, the CAT tracker
should be around, and the relative scalels identifies this false alarm and pulls back the head trackér wi

As shown in Fig. 6, Fig. 7 and Fig. 8, the position differfhe help of the predictions of the AOs that are close to the

ences of the results in the CAT are much smaller than tHg¢e target. At frame 1234, the girl of interest suddenly ow
of the single head tracker and the relative scales have mtwn, CAT detects the tracking failure and resumes tracking
less fluctuations aroundl. It demonstrates the advantages dfuickly. CAT can comfortably track over 1600 frames for this
the CAT, i.e. reducing the false alarm rate and the estimatidighly dynamic sequence until the target moves outside the
covariance. Note that at the end of the sequekice i n left boundary for several seconds.

yel | ow, the single tracker happens to track the head by chance

after the drift. Although the CAT tracker loses track at amdu 7.5 Scale and view changes

frame 1100 for several frames, it is able to recover promptlye show the tracking performance when the target undergoes
because of the auxiliary objects. . large scale and view changes and demonstrate the transition
Some key frames are shown in Fig* 9he first row shows he auxiliary objects in the sequenked&dad (Fig. 11). For
the results of the single head tracker where the highlightgek single head tracker, when the scale of the head becomes
solid-yellow box indicates the location of the head. Theoselc very small, it drifts to the torso of the kid from frame 69
row is the segmentation and mining results, where each gregfy fails the tracker. During the first 300 frames, the dad
rectangle indicates an item in the current frame. The nusbgja|ks with the kid with quite stable motion correlation. i
in blue at the corner show the item labels of the candidaiscovered by CAT and the region of dad’s shirt is mined as the
auxiliary objects. The third row illustrates the fusion uks. auxiliary object to help track the kid’s head. When they move
Each blue box is the estimate of the target from differen¢gose to the camera, the scale and the view change dranatical
sources i(e. the target or the auxiliary objects trackers). Theg that the learned relation between dad’s shirt and the kid’
white box indicates that estimate is regarded as an oull®. head no longer holds. Fortunately, CAT spots that the hat is a
dark red box is the final result of the fusion. The correspogdi good auxiliary object at large scale and guides the tracking
labels of the auxiliary objects are shown at the bottomtrigghe end of the video, the head is completely occluded by the
corner. The final tracking results of CAT are shown in#hth ¢ for several seconds. Although this is impossible tovego
row as highlighted solid-yellow boxes, and the dash-redeboXcAT detects and reports the tracking failure, while the lging
are the auxiliary object trackers. head tracker tends to drift to a false positive without retic

7.3 Occlusion and drift 7.6 Cluttered background

Fig. 9 samples the results on the sequekice i n yel l ow |n sequenceirthday ki d, the target head experiences large
which is very Challenging due to a serious occlusion, targght_of_mane rotation and the appearances Change grmﬂy,
out-of-range and the clutters. When the head moves outsiggywn in Fig. 12. For the contour tracker, when the rear head
the upper boundary at frame 113, the single head trackes dri§ in the dark background, no good observation is available
to a false positive in the cluttered background and is uniblearound the head so the contour tracker drifts to the torso and
recover. In contrast, the CAT tracker asserts the occlusiwh other e|||pt|ca| regionsy and is unable to recover. For tig C
keeps tracking correctly. It freezes the head tracker teamjyp tracker, with the help of the auxiliary objects, the trackither

and re-initializes it based on the predictions provided iy t keeps tracking in the tough situations or recovers frontidgf
auxiliary objects. When the kid is walking in front of thejn several frames. Note the auxiliary objects discoverets
bush, the background is so cluttered that it causes big lesubsome objects with inherent relations with the target, steh a
to the edge-based tracker. On the other hand, CAT discovgig hat and short pant, or just something that happens to have
several auxiliary objectd,e. the shirt and short pant, whichtemporary relations, such as the refrigerator or the gift. bo

are quite stable and provide roughly correct estimates ®f tthis real-world sequence demonstrates the advantage® of th
head location and rescue the head tracker from the drift fixiliary objects for long-duration tracking.

frame 736. As shown in Fig. 13 {wi mmi ng boy), the background is
quite cluttered due to the texture of water and other people,
7.4 Quick movement and camouflage which makes the single head tracker hopeless. The singté hea

As shown in Fig. 10, the sequendancing girl presents tracker is easily distracted by the edges in the backgroudd a

quick movements and camouflage. All the girls are simillfifts away. On the other hand, CAT discovers the two bl lif
buoys and the swimming hat and uses them as the auxiliary

1. All the faces shown in this paper were mosaicked for privamgection.  0bjects. When the boy jumps towards his mother’'s arms, CAT
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Fig. 6. Quantitative comparison: (left) position errors, (right) scale errors, [ki d i n yel | ow, 1200 frames].
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Fig. 7. Quantitative comparison: (left) position errors, (right) scale errors, [danci ng girl, 1600 franes].

uses the life buoys as well as the orange box on the bank7® Discussions
help locate his head accurately, which is difficult for theghe
head tracker. Note that at the end of this sequence, the ki
head is occluded by his mom’s head and CAT switches to t
mom. This is reasonable because the auxiliary objects can
differentiate the two heads at the same location.

demonstrated in a large number of challenging sequences,
re are two primary scenarios when the auxiliary objects

?eatly help the tracking: 1) some auxiliary objects have

&rsistent relations to the target and present fairly ateur
estimates although these relations may not be foreseen; 2)
a number of auxiliary objects have transitional relations t
the target and the majority of them can give rough correct
estimates in a short time interval. In the cases of occlusion
To demonstrate the generalization ability of the proposetiift, it is not likely that all the auxiliary objects are daded
method, we apply the context-aware tracking algorithm fr all auxiliary trackers lose track at the same time, simee t
people tracking based on an appearance-based torso trAskerauxiliary objects may not be located in a close vicinity of
shown in Fig. 14 [47], when the person to track is occluded lilie target. The mechanism of robust fusion can identify the
his friends around frame 56, the single torso tracker loses finconsistency induced by occlusions or drifts. There ameso
target and drifts away. In contrast, since the other pedestr extremely difficult casesg.g. the target is occluded for long
serve as the temporary contexts, they can help the CAT trackene, and CAT fails reasonably because on-line data mining
keep following the target. In addition, after frame 135 thenay not be invoked at all. Or only a couple of auxiliary obgect
context information help to prevent the tracker drift to theliscovered and they do not agree with each other about the
person next to the target though both persons have veryasimilirget motion, which implies insufficient context infornaat
appearances. Another example sequence is shown in Fig.td ¥erify the tracking results. At these cases, the advantdg
where an athlete in a marathon match is tracked with natu@AT is the ability to detect and report the failure, and leave
lighting changes and view changes present. the system to other means of re-initialization, while thegke

7.7 More people tracking results
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Fig. 8. Quantitative comparison: (left) position errors, (right) scale errors, [bi rt hday ki d, 1460 franes].

Fig. 9. Frame # 50, 113, 124, 736 and 866 of ki d i n yel | ow, 1200 franmes. (1st row) the head tracker, (2nd row) the mining
results, (3rd row) the fusion results,(4th row) the CAT tracker.

tracker has no reliable mechanism to report the failure betie to verify the tracking results to handle short-term wccl
keep tracking aimlessly and regardlessly. In view of tHi® t sion or tracking lost. The auxiliary objects are automdiica

benefit of CAT is pronounced. discovered without supervision and do not incur much extra
computation, which makes the approach generally appkcabl
8 CONCLUSIONS to a wide spectrum of tracking scenarios.

We have proposed a novel solution to robust long-durationFor future work, we will study the relation between the
tracking by considering the context of the target. By inaumber of auxiliary objects discovered and the confidence
tegrating an unsupervised data mining procedure, a setl®fel of the verification. Another important issue to invgate
auxiliary objects are discovered on the fly which provides how to compromise the need for a quicker initial mining
extra measurements to the target and reduce the uncertaprtycedure within a shorter time window which may find more
of the estimation. In addition, the learned motion coriet&g auxiliary objects and a longer time window which may find
among the auxiliary objects and the target serve as a strdags auxiliary objects but with a high reliability.
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Fig. 12. Frame #0, 72, 93, 170, and 1455 of bi rt hday ki d, 1460 franes. (top) the head tracker, (bottom) the CAT tracker.

APPENDIX expressed as a Gaussian

PROC.)F' .OF TIT|EORI.EM 1 . . exp{_(XI_f(m))T(XI_f(xz))}

A. Definition of inconsistency in two-node Gaussian W(x1,%2) = 201, (18)
Markov network ’ V(@2m)nat,

We consider to define the inconsistency in a two-node Gaus- exp {_(xl—A12X2—M12)T2(x1—A12x2—H12)}

sian Markov network, as shown in Fig. 16, where the two ob- = 201 ., (19)
servation nodes are Gaussian random veaors N (uq, X1) V(2m)noty

andzy ~ N(ug,3s) with w1, us € R™. Therefore, the com-
patible functions between observation nodes and the hid
nodes are Gaussiane.,

O\gp]ich indicates ifx; and f(x2) can be regarded as being
generated from one common model aag, is the scalar
variance. Whenyf is nonlinear, we linearize it by Taylor

H(xi,2;) = ;e—%(zz'—xfﬁil(zz-—xz'), (17) expansionj.e, pui2 = f(0) and A = afg_x(:g)|x2:0 is the
(2m)" %] n x n Jacobian. So we only consider the linearized relation of

Assumex; can be predicted by a functiofi of x5, the x; andx; in Eq. 19.
compatible or the potential function of; and x; can be 0%, indeed models the uncertainties between the estimate
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Fig. 15. Frame # 72, 468, 504, 582, and 625 of mar at hon, 625 franes. (top) the torso tracker, (bottom) the CAT tracker.

(ﬂ(xpxz) rithm [48], i.e,,
1
x; = (B + 5D

Z Z 0712

2
_ 1
X (21 1Z1 + 0—2(A12X2 + /1/12))7 (20)
12

1

Fig. 16. A two-node Markov network. )
Oty = ﬁ(xl — Aioxy — p12) | (X1 — AraXo — p12). (21)

) ) Fixing o2, the E-Step in Eqg. 20 obtains the MAP estimate
x; and the neighborhood estimatg o x; + p12. ASSUMEAL:  of x; by fixed-point iteration. Fixing; andx., the M-Step in

and p12 are known, given all thez,,z,} , the estimate of Eq. 21 maximize®(x;, X2|o12, 21, z2) W.LL. o12. Combining

o1y is @ natural indicator of whethex; and Ai2xs + 1112 the two steps together also constitutes a fixed-point iterat
should be consensuse., if of, is very small toward zero, ¢, o2,

then they should be consensus sinid&;,x) is approaching e measure the consistency of two observation sources
to an impulse delta function, and vice versa. z; and z, by examining if their estimates; and x, are

The Bayesian MAP inference of; and the ML estimate consensusi.e. if x; is predictable fromx, through a linear
of 012 can be obtained by the following Bayesian EM algorelation A 12x2+ 1112 With small variancer?,. Therefore, when
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z; andz, are consistent, the estimate-of and A 1oxs + 112 We also denoté = Q(z; —22) = [#1, 22, .- -, 2,] | . Then, we

will be consensusi.e., they will be almost the same. In thiscan simplify the expressions in Eq. 24 and Eq. 15 in Theorem 1
case, from Eq. 21, the estimate @f, will always approach (Sec. 6) as,

to zero,i.e., zero is the only fixed-point. On the contrary, if

. . . 1 <& 2 32
they are inconsistent, the estimatexgfand A 15x5 + 1112 may —o2y(z1 — zQ)Ts—Q(Z1 — ) = — Z %, (25)
deviate from each otheire,, the convergent results of, may " n = (o7 +01p)
be non-zero. This indicates that there exist non-zero fixed- 1 1 32
. . . . . A \Tp—1 A 21
points foro?,. These motivate us to define the inconsistency (21— 22) P (21 —22) = > —5- (26)
of two Gaussian sources as follows. i=1 "

Definition 2: If zero is the only fixed-point fow?, in the From Eq. 25, we express Eq. 24 as a function) of 2, and

Bayesian EMj.e.in Eq. 20 and Eq. 2Kz, 3} and{z2, X2}  only need to analyze the solution of, for
areconsistentif there exist non-zero fixed-points fof,, they

areinconsistent 1 . 2 1
Floh)= Y b~ —1=0.  (27)

2 2
g TJ19

i=1 24+ 2+

2

o5

B. Proof of the inconsistency criterion . .

) ] o ) i Now we proceed to prove the conclusions in Theorem 1.
Given the aforementioned definition of inconsistency footW panote the left-hand side of Eq. 15 in Theorem 1dand
Gaussian sources in two-node Markov network, we Proposey@qg Eq. 26 in, thus Eq. 15 means
sufficient condition to check the convergent valueogf as
stated in Theorem 1. The basic idea of the proof is to check 1< 72 o? o2
if Eq. 21 has non-zero solutions. With some manipulations d= n Z o2 >2+ o2 + o2 > 4.
we express Eq. 21 as a functid®(c?,) in Eq. 27. Then, we =1t " !
show if the condition numbet, of X, + X, satisfies Eq. 15 Wheno?, = k; = (d — 2)o?, for anyi, we have

in Theorem 1, there exist two positive numbérs: ks < ky 1 1 1
such thatF'(k;) < 0 and F'(k2) > 0, which indicates there is = < =-.
a non-zero solution. 1€, satisfies Eq. 16F(c%,) < 0 for all 24+ 34+ 34 240+d-2 d
0%, > 0, thus there is no non-zero solution for Eq.21. Thus

Proof: Fixing o,, the fixed-point iteration in Eq. 20 ’ 122 1
is guaranteed to obtain the exact MAP estimate on the F(k) < — = —1=0.
joint posterior Gaussian. For simplification of notatione w ni7o d

denoteﬁg = Ajoxo + 12 and Zo = Az + H12. Define

2 P— = 2 2 )
P =3, +3, andS = P + ¢%,1. The convergent result in Whenot, =k = \/ojoy, for anyi,
1

the E-Step in Eq. 20 is the same as, 1 - 1 S 1
S o7 ofy — ok | ky o2 o2 — d’
[ X1 ] - { (0foI+ X2)S7 12y + 218712y 22) 2+ + 58 24T 24 ot/
X2 EgS‘lzl + (0’%21—{-21)8_122 thus
Embedding it to the M-Step in Eq. 21, we have i) > 1 n ﬁ 1 e
- 2 - .
1 . L A n < o; d
0%, = Eaﬂafz(zl — ) 871877y — 29). (23) !

Since0 < ky < ky and F'(+) is continuous, there must exist
To prove Theorem 1, since zero is a solutiow®f for Eq. 23, a k3 such thatk, < k3 < k; and F(k3) = 0. This proves
we only need to analyze the existence of non-zero solutiothgt the inequality Eq. 15 in Theorem 1 holds can indicate a
of o2, for non-zero solution for Eq. 24, namely there exists at least on
1, e et X non-zero fixed point fos2, in the Bayesian EM, which means
5012(21 —23) ST'S7(z1—22)—1=0. (24) the two Gaussian sources are not consensus according to our
definition of inconsistency. Thus, the first claim in Theorgém
is proved.

Eq. 16 meangl = 1 " | % < 4, then we have

P is the sum of two covariance matrices so irésl positive
definite thus there exists an orthonormal mat€ix such that
P =QD,Q", where

— 2 2 2 132 1
D, = diagloy, 03, ..., 0;] F(Jé)gfz%.z_lzz_1<0,

is the eigen-matrix withr? > 03 > ... > 02 > 0 andC, = =R

2
2. Then we haves = QD,Q", where for all o2, > 0. Therefore, there does not exist a non-zero

! solution for Eq. 27. Eq. 16 in Theorem 1 is proven. [

Ds = dlag[gf + 0—%2703 + 0—%27 ce 70721 + 0-%2]'
FurthermoreS~—! = Q" D;'Q where ACKNOWLEDGMENTS
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