Gate Sizing for Crosstalk Reduction under Timing Constraints by Lagrangian Relaxation

Debjit Sinha and Hai Zhou
NuCAD Research, ECE
Northwestern University
{debjit, haizhou}@ece.northwestern.edu

November 8, 2004
ICCAD 04, San Jose, CA
Outline

• Introduction
• Modeling
• Problem formulation
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Introduction

• Crosstalk / Coupling noise – Functionality failure
• Coupling induced delay variations – Timing violation

* from Technology white paper – Sequence Design Inc.
Prior work: Gate sizing for crosstalk reduction

- Post route
 - Scalable libraries
 - Existing fill space
- Shown effective
 - Xiao et al. [ASP DAC 99]
 - Hashimoto et al. [ISPD 02]
 - Becer et al. [DAC 03]
 - Sinha et al. [ISPD 04]
Outline

• Introduction
• **Modeling**
• Problem formulation
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Modeling

\[c_5(s_5) \]

\[r_4(s_4) \]

\[C_x \]

\[R_w \]

\[C_w / 2 \]

Coupling graph

Required arrival time \(\leq A_0 \)

(Timing Constraint)

\[N_i \leq U_i \]

(Noise Constraint)
Outline

• Introduction
• Modeling
• **Problem formulation**
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Gate sizing problem

- Minimize weighted sum of gate-sizes under given constraints
 - Area optimization
 - Power optimization

\[
\text{Minimize } \sum_{i=0}^{n-1} w_i \cdot s(i)
\]

such that –

- Timing constraint
 \[T_{\text{arrival}}(PO) \leq A_0 \]
- Noise constraints
 \[N(i) \leq U(i) \quad \forall i \in \text{nets} \]
- Size constraints
 \[l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates} \]
Outline

• Introduction
• Modeling
• Problem formulation
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Gate sizing problems

- Determine optimal gate sizes under constraints for timing and crosstalk reduction

\[
\text{Minimize } \sum_{i=0}^{n-1} w_i \cdot s(i)
\]

such that –

- \(\overline{T_{\text{arrival}}(PO)} \leq A_0 \)
- \(N(i) \leq U(i) \quad \forall i \in \text{nets} \)
- \(l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates} \)

- Optimal gate sizing for coupling & wire sizing by iterative fixpoint computation using Lagrangian relaxation - Chen et al. [TCAD 99]
- Optimal gate sizing for coupling-noise reduction by iterative fixpoint computation - Sinha et al. [ISPD 04]
Lagrangian Relaxation (LR)

• Simplify the optimization problem
 • Relax “troublesome” constraints
 • Incorporate them into the objective function

• LR Sub-problem (LRS)
 \[Z = \max \ f(x) \quad \text{such that} \quad g(x) \leq A, \ h(x) \leq B \]
 \[Z(u) = \max \ f(x) + (A - g(x))u \quad \text{such that} \quad h(x) \leq B \]

• Lagrangian Dual Problem (LDP)
 • Optimal \(u^* \) : Solution to LRS same as original problem
 • Sub gradient optimization
Gate sizing for timing

[Chen et al. – TCAD 99]

Optimize gate sizes under timing constraints

\[\text{Minimize } \sum_{i=0}^{n-1} w_i \cdot s(i) \]

such that –

- \(a_j \leq A_0 \quad \forall j \in \text{input}(PO) \)
- \(a_j + D_i \leq a_i \quad \forall i \cap j \in \text{input}(i) \)
- \(l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates} \)

Timing constraint
Gate sizing for crosstalk reduction

Optimize gate sizes under noise constraints

\[
\text{Minimize } \sum_{i=0}^{n-1} w_i \cdot s(i)
\]

such that –

\[
N(i) \leq U(i) \quad \forall i \in \text{nets}
\]

\[
l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates}
\]
Monotonicity of the noise function

• **Sizing up driving gate of a net**
 - Decreases induced noise on itself
 - May increases noise on coupled nets

• **Vice versa**

Net N1 (Victim): Affected by coupling noise from nets N2 and N3

- Sizing up driving gate of N1 reduces noise on itself, but it acts as an aggressor now!
- Driving gate of N2 sized down to reduce noise on N1. It now becomes a victim!
Gate sizing for crosstalk reduction
[Sinha et al. – ISPD 04]

- Developed a gate sizing transformation
 - $g_i = \min (\text{driving gate size of net } i) : \text{No noise violation on net } i$, given driving gate sizes of coupled nets
 - Monotonic transformation guarantees optimality when starting from minimum gate-sizes
 - Optimal solution is a fixpoint of the transformation
Need for combined optimization

• Multi-stage optimization
 ▪ Timing \rightarrow Crosstalk
 • Circuit may violate timing constraint
 ▪ Crosstalk \rightarrow Timing
 • New noise violations may be introduced

• Combined optimization
 ▪ Timing + Crosstalk
 • Handle constraints simultaneously
Gate sizing problem

Optimize weighted sum of gate sizes under constraints

$$\text{Minimize } \sum_{i=0}^{n-1} w_i \cdot s(i)$$

such that –

- $a_j \leq A_0$ $\forall j \in \text{input(PO)}$
- $a_j + D_i \leq a_i$ $\forall i \cap j \in \text{input}(i)$
- $l(i) \leq s(i) \leq u(i)$ $\forall i \in \text{gates}$
- $N(i) \leq U(i)$ $\forall i \in \text{nets}$

Timing constraints

Noise constraints
Gate sizing by Lagrangian Relaxation

- Relax constraints on arrival times
 - Sub-problem objective a posynomial
 - Leverage fixpoint computation approach

\[
\begin{align*}
\text{Minimize} & \quad \sum_{i=0}^{n-1} w_i s(i) + \sum_{j \in \text{input}(PO)} \lambda_{j0} (a_j - A_0) \\
& + \sum_{i=0}^{n-1} \sum_{j \in \text{input}(i)} \lambda_{ji} (a_j + D_i - a_i) \\
\text{such that} & \quad N(i) \leq U(i) \quad \forall i \in \text{nets} \\
& \quad l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates}
\end{align*}
\]

Lagrange multipliers
Simplifying the LRS

• Reformulate problem as

\[\text{Minimize } \sum_{i=0}^{n-1} w_i s(i) + \sum_{i=0}^{n-1} \mu_i D_i \]

\[\text{such that } \]

\[\mu_i = \sum_{j \in \text{input}(i)} \lambda_{ji} \]

\[N(i) \leq U(i) \quad \forall i \in \text{nets} \]

\[l(i) \leq s(i) \leq u(i) \quad \forall i \in \text{gates} \]
Solving the Lagrangian sub-problem – LRS(µ)

\[L_\mu(S) = \sum_{i=0}^{n-1} w_i s(i) + \sum_{i=0}^{n-1} \mu_i D_i = A_i(S) \cdot s(i) + \frac{B_i(S)}{s(i)} + E_i(S) \]

Define local refinement functions

\[h_i(S) = \min \{ s(i) : L_\mu \} = \sqrt{\frac{B_i(S)}{A_i(S)}} \]

Function of upstream resistance, downstream capacitance ...

Noise constraint satisfied on all driven nets

\[g_i(S) = \min \{ s(i) : N(i) \leq U(i) \} \]
Solving the Lagrangian sub-problem – LRS(μ)

\[L_\mu(S) = \sum_{i=0}^{n-1} w_i s(i) + \sum_{i=0}^{n-1} \mu_i D_i = A_i(S) \cdot s(i) + \frac{B_i(S)}{s(i)} + E_i(S) \]

L_\mu is convex

\[\phi_i(S) = \min[u(i), \max(l(i), g_i(S), h_i(S))] \]
Algorithm : Solve LRS(µ)

• begin
 ▪ init driver sizes to minimum : \(s(i) = l(i), \; \forall i \in (0, n-1) \)
 ▪ do for each gate
 • evaluate \(g_i(S) \)
 • evaluate \(h_i(S) \)
 • \(s(i) = \phi_i(S) \)
 ▪ while (no further improvement)
• return gate-sizes
• end
Solving the Lagrangian Dual Problem – LDP

- Sub gradient optimization
 - Start with arbitrary non-negative λ_{ij}’s
 - Move to new point
 - Multiply sub-gradient direction by step size ρ_k
 - Add to λ – Ensure conditions are satisfied
 \[
 \lambda_{ji} = \begin{cases}
 \lambda_{ji} + \rho_k (a_j - A_0) & \text{if } i = PO \\
 \lambda_{ji} + \rho_k (a_j + D_i - a_j) & \text{otherwise}
 \end{cases}
 \]
 - Repeat till convergence
 - Can be guaranteed under conditions on ρ_k
Crosstalk aware gate sizing algorithm

- Input: Layout extraction results
- begin
 - construct DAG from circuit
 - superimpose coupling-graph
 - call $LDP \rightarrow$ optimal Lagrange multipliers μ
 - call $LRS(\mu)$
- end
Optimality guaranteed in special cases

- Optimal solutions to sizing problems
 - S^* \rightarrow timing
 - S^{**} \rightarrow timing + noise
- If S^* and S^{**} have an ordering

Given by monotonic properties of $h(S)$ and $\phi(S)$

Proposed heuristic yields optimal solution = S^{**}
Outline

• Introduction
• Modeling
• Problem formulation
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Experimental setup

• ISCAS’85 benchmarks and larger circuits
 ▪ 200 – 20,000 nodes (Runtime < 75 secs)
 ▪ Parameters – 0.18µ technology
• 2Π model – crosstalk modeling (Cong et al.)

Comparisons

• Proposed approach
 ▪ Timing + Noise
• Multi-stage approach
 ▪ Timing – Circuit optimized using LR for timing [Chen et al. TCAD99]
 ▪ Timing → Noise – Further noise optimization [Sinha et al. ISPD 04]
Noise reduction results – I

<table>
<thead>
<tr>
<th>Circuit</th>
<th># Node</th>
<th># CEdge</th>
<th>Timing</th>
<th>Timing → Noise</th>
<th>Timing + Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area</td>
<td>Ta</td>
<td>NV</td>
</tr>
<tr>
<td>C1355</td>
<td>589</td>
<td>1653</td>
<td>100</td>
<td>0.99</td>
<td>12</td>
</tr>
<tr>
<td>C1908</td>
<td>915</td>
<td>2655</td>
<td>100</td>
<td>0.95</td>
<td>10</td>
</tr>
<tr>
<td>C7552</td>
<td>3721</td>
<td>10823</td>
<td>100</td>
<td>1.00</td>
<td>33</td>
</tr>
<tr>
<td>CKT2</td>
<td>18K</td>
<td>53114</td>
<td>100</td>
<td>0.98</td>
<td>83</td>
</tr>
<tr>
<td>CKT3</td>
<td>20K</td>
<td>59389</td>
<td>100</td>
<td>0.99</td>
<td>140</td>
</tr>
</tbody>
</table>

- **Area Gain = 1.5%**
- **All violations removed**
- **Area Gain = −4.3%**

- **$U_i = 0.2V_{dd}$**
- **Required time = 1.0**
Noise reduction results – II

- $U_i = 0.1V_{dd}$
- Required time $= 1.0$

<table>
<thead>
<tr>
<th>Circuit</th>
<th># Node</th>
<th># CEdge</th>
<th>Timing</th>
<th>Timing \rightarrow Noise</th>
<th>Timing $+$ Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Area</td>
<td>Ta</td>
<td>NV</td>
</tr>
<tr>
<td>C1355</td>
<td>589</td>
<td>1653</td>
<td>100</td>
<td>0.99</td>
<td>65</td>
</tr>
<tr>
<td>C1908</td>
<td>915</td>
<td>2655</td>
<td>100</td>
<td>0.95</td>
<td>111</td>
</tr>
<tr>
<td>C7552</td>
<td>3721</td>
<td>10823</td>
<td>100</td>
<td>1.00</td>
<td>414</td>
</tr>
<tr>
<td>CKT2</td>
<td>18K</td>
<td>53114</td>
<td>100</td>
<td>0.98</td>
<td>1573</td>
</tr>
<tr>
<td>CKT3</td>
<td>20K</td>
<td>59389</td>
<td>100</td>
<td>0.99</td>
<td>1860</td>
</tr>
</tbody>
</table>

- Area Gain = 5.4%
- NV Gain = 12
- Area Gain = 18.4%
Outline

• Introduction
• Modeling
• Problem formulation
• Gate sizing by Lagrangian Relaxation
• Experimental results
• Conclusions
Conclusions

• Gate sizing for crosstalk reduction
 • Timing constrained
 • Based on Lagrangian Relaxation
• Shown effective
 • Comparisons to design methodology of independent sizing for timing and crosstalk successively

Thank You