Advanced Computer Architecture II:
Multiprocessor Design

Distributed Memory Multiprocessors II: Communication Architecture Design Space

Professor Russ Joseph
Department of Electrical and Computer Engineering
Northwestern University

February 1, 2005

Administrative Stuff

Announcements
Exam 1 will be on Thursday, 2/3/05
 • Covers all lectures up to and including today
 • Bring your calculator

Projects
I will email you about your proposals,
Don't forget weekly progress reports,

Distributed Memory Multiprocessors I:
Building Scalable Systems

Last Time: Introduced scalable design techniques for massively parallel, large scale machines,

Today:
 Talk about communication architecture design space.
 Review for Thursday's exam.

Review: Network Transactions

The fundamental interaction in distributed machines is the network transaction.
Analogous to the bus transaction in SMP machines.
Key properties:
 • One-way transfer of information from source output buffer to destination input buffer.
 • Causes some action at destination.
 • Occurrence is not directly visible at source (and in general is not globally visible).

Communication Network

serialized_msg

Source Node

Destination Node

output buffer

input buffer
Network Transaction Processing

Key design issues:
- Amount of message interpretation,
- Amount of dedicated processing in the communication assist.

Design Spectrum

There are many tradeoffs between the amount of hardware support for communication assist, degree of specialization, intrusiveness, and performance.

Today we will look at three classes of machines:
- **Physical DMA**
- **User-Level Access**
- **Dedicated Message Passing**

Physical DMA

Communication assist makes no interpretation of information within network transaction, hardware can be rather simple, but processing overheads are large.

Node-to-Network Interface:
- OS initiates transfers via physical memory and registers,
- On sender-side: construct system “envelope” around user data in kernel area,
- On receiver-side: receive into system area and ready for user process

Physical DMA: nCUBE Case Study

Known as direct network machine since data is forwarded from source to destination through intermediate nodes.

Each input/output DMA channel maps to own port.

No count registers on input channels, so kernel must safeguard against buffer overruns.
Physical DMA: LAN Interface

Most LAN controllers use queue of transmit and receive descriptors.

User-level Access: CM-5 Case Study

The network interface (NI) chip acts as communication assist,
Provides input/output FIFOs for each network.

User-level Access

Communication assist distinguishes between user-level and system messages.
Allows for low-overhead user-level transfers (no system intervention).

Node-to-Network interface:
Region of address space mapped to network input/output ports and status register.
Communication assist performs protection and destination node number into address or route.
May also insert/check error checking information.

Dedicated Message Passing

Allow sophisticated processing of network transaction:

Using dedicated hardware resources
Without binding interpretation to hardware design
Communication assist performed by communication processor (CP) which operates on the network interface directly.

• Network-to-Network interface:
• Provides clean abstraction to compute processor.
• Communication processor handles all the dirty work.
Dedicated Message Passing: Intel Paragon

Each node is shared memory multiprocessor with two or more I860XP processors.

Summary

Very broad range of choices in communication assist design.

Key Issues:
- Amount of dedicated hardware
- Degree of message interpretation