Recap: Solution to Branch Hazard

- In the Simple Pipeline Processor if a Beq is fetched during Cycle 1:
 - Target address is NOT written into the PC until the end of Cycle 4
 - Branch’s target is NOT fetched until Cycle 5
 - 3-instruction delay before the branch take effect

- This Branch Hazard can be reduced to 1 instruction if in Beq’s Reg/Dec:
 - Calculate the target address
 - Compare the registers using some “quick compare” logic
Recap: Solution to Load Hazard

In the Simple Pipeline Processor if a Load is fetched during Cycle 1:
- The data is NOT written into the Reg File until the end of Cycle 5
- We cannot read this value from the Reg File until Cycle 6
- 3-instruction delay before the load take effect

This Data Hazard can be reduced to 1 instruction if we:
- Forward the data from the pipeline register to the next instruction

Outline of Today's Lecture

- Recap and Introduction
- Memory System: the BIG Picture?
- Questions and Administrative Matters
- Memory Technology: SRAM
- Memory Technology: DRAM
- A Real Life Example: SPARCstation 20's Memory System
- Summary
The Big Picture: Where are We Now?

- The Five Classic Components of a Computer

- Today's Topic: Memory System

An Expanded View of the Memory System

- Speed: Fastest
- Size: Smallest
- Cost: Highest
- Slowest
- Biggest
- Lowest
The Principle of Locality

- The Principle of Locality:
 - Program access a relatively small portion of the address space at any instant of time.

- Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.

Memory Hierarchy: Principles of Operation

- At any given time, data is copied between only 2 adjacent levels:
 - Upper Level: the one closer to the processor
 - Smaller, faster, and uses more expensive technology
 - Lower Level: the one further away from the processor
 - Bigger, slower, and uses less expensive technology

- Block:
 - The minimum unit of information that can either be present or not present in the two level hierarchy
Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)
 • Hit Rate: the fraction of memory access found in the upper level
 • Hit Time: Time to access the upper level which consists of RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieve from a block in the lower level (Block Y)
 • Miss Rate = 1 - (Hit Rate)
 • Miss Penalty: Time to replace a block in the upper level + Time to deliver the block to the processor

° Hit Time << Miss Penalty

Memory Hierarchy: How Does it Work?

° Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 • Keep more recently accessed data items closer to the processor

° Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.
 • Move blocks consists of contiguous words to the upper levels
Memory Hierarchy of a Modern Computer System

- By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.

Memory Hierarchy Technology

- Random Access:
 - “Random” is good: access time is the same for all locations
 - DRAM: Dynamic Random Access Memory
 - High density, low power, cheap, slow
 - Dynamic: need to be “refreshed” regularly
 - SRAM: Static Random Access Memory
 - Low density, high power, expensive, fast
 - Static: content will last “forever”

- “Non-so-random” Access Technology:
 - Access time varies from location to location and from time to time
 - Examples: Disk, tape drive, CDROM
Random Access Memory (RAM) Technology

- Why do computer designers need to know about RAM technology?
 - Processor performance is usually limited by memory bandwidth
 - As IC densities increase, lots of memory will fit on processor chip
 - Tailor on-chip memory to specific needs
 - Instruction cache
 - Data cache
 - Write buffer

- What makes RAM different from a bunch of flip-flops?
 - Density: RAM is much more denser

Technology Trends

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic: 2x in 3 years</td>
<td>2x in 3 years</td>
</tr>
<tr>
<td>DRAM: 4x in 3 years</td>
<td>1.4x in 10 years</td>
</tr>
<tr>
<td>Disk: 2x in 3 years</td>
<td>1.4x in 10 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1980</td>
</tr>
<tr>
<td>1983</td>
</tr>
<tr>
<td>1986</td>
</tr>
<tr>
<td>1989</td>
</tr>
<tr>
<td>1992</td>
</tr>
<tr>
<td>1995</td>
</tr>
</tbody>
</table>
Static RAM Cell

6-Transistor SRAM Cell

° Write:
1. Drive bit lines
2. Select row

° Read:
1. Precharge bit and bit' to Vdd
2. Select row
3. Cell pulls one line low
4. Sense amp on column detects difference

Typical SRAM Organization: 16-word x 4-bit

<table>
<thead>
<tr>
<th>Address Decoder</th>
<th>Precharge</th>
<th>WrEn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word 0</th>
<th>Word 1</th>
<th>Word 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wr Driver & Precharger+</td>
<td>Wr Driver & Precharger+</td>
<td>Wr Driver & Precharger+</td>
</tr>
<tr>
<td>SRAM Cell</td>
<td>SRAM Cell</td>
<td>SRAM Cell</td>
</tr>
<tr>
<td>Sense Amp</td>
<td>Sense Amp</td>
<td>Sense Amp</td>
</tr>
<tr>
<td>Dout 0</td>
<td>Dout 1</td>
<td>Dout 3</td>
</tr>
</tbody>
</table>

memory.15

memory.16
Logic Diagram of a Typical SRAM

- Write Enable is usually active low (WE_L)
- Din and Dout are combined:
 - A new control signal, output enable (OE_L) is needed
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
 - Both WE_L and OE_L are asserted:
 - Result is unknown. Don’t do that!!!

Typical SRAM Timing

Write Timing:
- D
- Data In
- High Z
- Garbage
- Data Out
- Junk
- Data Out

Read Timing:
- A
- Write Address
- Junk
- Read Address
- Read Address

OE_L

WE_L

Write Setup Time

Write Hold Time

Read Access Time

Read Access Time

Read Access Time
1-Transistor Cell

° Write:
 • 1. Drive bit line
 • 2. Select row

° Read:
 • 1. Precharge bit line to Vdd
 • 2. Select row
 • 3. Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons
 • 4. Write: restore the value

° Refresh
 • 1. Just do a dummy read to every cell.

Introduction to DRAM

° Dynamic RAM (DRAM):
 • Refresh required
 • Very high density
 • Low power (.1 -.5 W active, .25 - 10 mW standby)
 • Low cost per bit
 • Pin sensitive:
 - Output Enable (OE_L)
 - Write Enable (WE_L)
 - Row address strobe (ras)
 - Col address strobe (cas)
 • Page mode operation
Classical DRAM Organization

- Row and Column Address together:
 - Select 1 bit at a time

Each intersection represents a 1-T DRAM Cell

Typical DRAM Organization

- Typical DRAMs: access multiple bits in parallel
 - Example: 2 Mb DRAM = 256K x 8 = 512 rows x 512 cols x 8 bits
 - Row and column addresses are applied to all 8 planes in parallel
Logic Diagram of a Typical DRAM

Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low

Din and Dout are combined (D):
- WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
- WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin

Row and column addresses share the same pins (A)
- RAS_L goes low: Pins A are latched in as row address
- CAS_L goes low: Pins A are latched in as column address

DRAM Write Timing

Every DRAM access begins at:
- The assertion of the RAS_L

Early Wr Cycle: WE_L asserted before CAS_L
Late Wr Cycle: WE_L asserted after CAS_L
DRAM Read Timing

- Every DRAM access begins at:
 - The assertion of the RAS_L

[Diagram showing DRAM Read Timing]

- DRAM Read Cycle Time:
 - A
 - 256K x 8 DRAM
 - D

- Early Read Cycle: OE_L asserted before CAS_L
- Late Read Cycle: OE_L asserted after CAS_L

Cycle Time versus Access Time

- DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time

- DRAM (Read/Write) Cycle Time:
 - How frequent can you initiate an access?
 - Analogy: A little kid can only ask his father for money on Saturday

- DRAM (Read/Write) Access Time:
 - How quickly will you get what you want once you initiate an access?
 - Analogy: As soon as he asks, his father will give him the money

- DRAM Bandwidth Limitation analogy:
 - What happens if he runs out of money on Wednesday?
Increasing Bandwidth - Interleaving

Access Pattern without Interleaving:

- Start Access for D1
- Start Access for D2

Access Pattern with 4-way Interleaving:

- Access Bank 0
- Access Bank 1
- Access Bank 2
- Access Bank 3

We can Access Bank 0 again

Fast Page Mode DRAM

- Regular DRAM Organization:
 - N rows x N column x M-bit
 - Read & Write M-bit at a time
 - Each M-bit access requires a RAS / CAS cycle

- Fast Page Mode DRAM:
 - N x M “register” to save a row

- Column Address N cols
- Row Address N rows
- M bits
- M-bit Output
Fast Page Mode Operation

- Fast Page Mode DRAM
 - \(N \times M\) "SRAM" to save a row
- After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - \(RAS_L\) remains asserted while \(CAS_L\) is toggled

SPARCstation 20's Memory System Overview
SPARCstation 20’s Memory Module

- Supports a wide range of sizes:
 - Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM
 - Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

SPARCstation 20’s Main Memory

- Biggest Possible Main Memory:
 - 8 64MB Modules: 8 x 64 MB DRAM 8 x 16 KB of Page Mode SRAM

- How do we select 1 out of the 8 memory modules?
 Remember: every DRAM operation start with the assertion of RAS
 - SS20’s Memory Bus has 8 separate RAS lines
Summary:

° Two Different Types of Locality:
 • Temporal Locality (Locality in Time): If an item is referenced, it will tend to be referenced again soon.
 • Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:
 • Present the user with as much memory as is available in the cheapest technology.
 • Provide access at the speed offered by the fastest technology.

° DRAM is slow but cheap and dense:
 • Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:
 • Good choice for providing the user FAST access time.

Where to get more information?

° To be continued ...