
Into the Wild: Studying Real User Activity Patterns to
Guide Power Optimizations for Mobile Architectures

Alex Shye Benjamin Scholbrock Gokhan Memik
Northwestern University

Electrical Engineering and Computer Science Department
{shye, scholbrock, g-memik}@northwestern.edu

ABSTRACT
As the market for mobile architectures continues its rapid
growth, it has become increasingly important to understand
and optimize the power consumption of these battery-driven
devices. While energy consumption has been heavily ex-
plored, there is one critical factor that is often overlooked –
the end user. Ultimately, the energy consumption of a mo-
bile architecture is defined by user activity. In this paper,
we study mobile architectures in their natural environment
– in the hands of the end user. Specifically, we develop a
logger application for Android G1 mobile phones and release
the logger into the wild to collect traces of real user activity.
We then show how the traces can be used to characterize
power consumption, and guide the development of power
optimizations.

We present a regression-based power estimation model
that only relies on easily-accessible measurements collected
by our logger. The model accurately estimates power con-
sumption and provides insights about the power breakdown
among hardware components. We show that energy con-
sumption widely varies depending upon the user. In addi-
tion, our results show that the screen and the CPU are the
two largest power consuming components. We also study
patterns in user behavior to derive power optimizations. We
observe that majority of the active screen time is dominated
by long screen intervals. To reduce the energy consumption
during these long intervals, we implement a scheme that
slowly reduces the screen brightness over time. Our results
reveal that the users are happier with a system that slowly
reduces the screen brightness rather than abruptly doing so,
even though the two schemes settle at the same brightness.
Similarly, we experiment with a scheme that slowly reduces
the CPU frequency over time. We evaluate these optimiza-
tions with a user study and demonstrate 10.6% total system
energy savings with a minimal impact on user satisfaction.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]:
Real-time and embedded systems; C.0 [Computer Sys-
tems Organization]: General—Modeling of computer ar-
chitecture; H.1.2 [Models and Principles]: User/Machine
Systems—Human Factors

General Terms
Design, Measurement, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION
In recent years, there has been a tremendous shift in the

market for personal computing. Users are in the midst of
a mass transition from stationary desktop computers to a
mix of mobile architectures, e.g., PDAs, cellular phones,
media players, and netbooks. Portable music players are
now ubiquitous with nearly four in ten Americans owning a
portable MP3 player [2]. Mobile phones have been adopted
faster than any technology in history [12]. Netbooks are
projected to follow a similar trend in the coming years [11].
Although mobile architectures provide the convenience of
portable computation, entertainment, and communication,
their utility is severely constrained by their battery life. As
the demand for mobile architectures continues to grow, it
will become increasingly important for architects to focus
on understanding and optimizing the power consumption of
these energy-constrained architectures.

Power estimation and optimization has been a popular
area of research in embedded and mobile architectures for
many years. Researchers have studied power at many levels,
including the circuit, architecture, and system levels. How-
ever, there is one critical factor that architects have largely
ignored – the end user. On a mobile architecture, the end
user is the workload: mobile architectures typically run ap-
plications which interact directly with them. Execution of
batch jobs and long-running services are minimized, or even
disallowed, as on the iPhone [1]. As a result, the usage
behavior of the end user drives execution, which in turn,
determines the power consumption. Architects should treat
the end user as the workload, and study trends, properties,
and patterns in user activity. Without understanding these
patterns, it is not possible to clearly understand the impact
of any optimization on user experience or the real device
power consumption.

In this paper, we describe tools and methods for studying
the power consumption of real mobile architectures with re-
spect to user activity. We develop a logger application for
Android G1 mobile phones that logs user activity and sends
traces back to our servers. We release the logger into the
wild to collect traces of real users on real mobile devices
in real environments. We then demonstrate how the traces
can be used to characterize power consumption, and guide
optimizations on mobile architectures.

We present an regression-based power estimation model
which uses high-level system measurements to estimate power
consumption. The measurements used as inputs are cho-
sen to be representative of underlying hardware components.
Furthermore, the measurements are easily accessible and can
be collected by our logger (which operates entirely in user
space). We develop the model using in-house power mea-
surements and show that the power estimation model can
accurately predict the power consumption by validating the
model using a separate device and random workloads.

We then use our power model to characterize the power
consumption of the Android G1. We first analyze a set of

synthetic testing workloads, and find that the breakdown
of power consumption among hardware components varies
significantly based upon the workload. Our findings moti-
vate the need for understanding real workloads in real en-
vironments. We then analyze the traces from our 20 real
users. Again, we find a large variation in the power break-
down between users. Averaged across our users, our results
also indicate that the CPU and the screen are the two most
power-consuming components.

Finally, we demonstrate an example of studying user ac-
tivity patterns to guide the development of novel power opti-
mizations. We study active screen behavior and observe that
the majority of active screen time is dominated by a rela-
tively small number of long active screen intervals. Thus,
optimizing for long screen intervals would be profitable for
reducing power consumption. Targeting these long intervals
enables us to develop a novel scheme that utilizes change
blindness. Change blindness refers to the inability of humans
to notice large changes in their environments, especially if
the changes occur in small increments. We implement op-
timizations that slowly decrease CPU frequency and screen
brightness during long active screen intervals. We conduct
a user study testing these schemes and show that users are
more satisfied with a system that slowly reduces the screen
brightness rather than abruptly doing so, even though the
two schemes reach the same brightness level. Overall, our
schemes save 10.6% of the phone energy consumption on
average with minimal impact on user satisfaction.

Overall, we make the following contributions:

• We develop an accurate linear-regression-based power
estimation model which leverages easily-accessible mea-
surements to accurately predict the system-wide power
consumption of a mobile architecture;

• We use our power estimation model to characterize the
power consumption of an Android G1 mobile architec-
ture with respect to user activity patterns;

• We demonstrate an example of developing optimiza-
tions for CPU frequency scaling and screen brightness
based upon user activity patterns; and

• We utilize change blindness for power optimization
during active use.

The rest of the paper proceeds as follows. In Section 2,
we discuss our experimental setup. Section 3 presents our
linear-regression-based power estimation model. In Section 4,
we study user activity traces to derive the power breakdown
on real mobile phones and identify a potential optimization
direction by studying screen activity. Section 5 presents op-
timizations for the CPU and screen that leverages change
blindness. We evaluate the optimizations in Section 6. Sec-
tion 7 discusses related work and we conclude in Section 8.

2. EXPERIMENTAL SETUP
Our target mobile architecture in this paper is the HTC

Dream, a smartphone developed by HTC that supports the
open source Google Android mobile device platform [14].
Although we focus on a specific mobile architecture for ex-
perimentation, our contributions and findings could easily
extend to other mobile architectures.

We use the G1 Android Developer Phone 1 (ADP1), a
rooted and SIM-unlocked version of the HTC Dream. We
use the Android OS 1.0 stock system image for the ADP1
and develop with the Android 1.0 SDK. The Android plat-
form consists of a slightly modified 2.6.25 Linux kernel, and

Apps
Processor

Modem
Processor

DSP

SIM
Card

Flash

Display

Wi-Fi Radio

Phone/EDGE
Radio

Compute Hardware

Storage Communication

Bluetooth

Misc.
(Keypad,
Speakers

I/O

Figure 1: High-level overview of the target mobile
architecture.

a general framework of C, C++, and Java code. The frame-
work includes the Dalvik Virtual Machine (VM), a variant
of Java implemented by Google. All userspace applications
are Dalvik executables that run in an instance of the Dalvik
VM.

A high-level diagram of the mobile architecture is shown
in Figure 1. The ADP1 has a 3.2 inch HVGA 65K color ca-
pacitive touch screen, uses a Qualcomm MSM7201A chipset,
and a 1150 mAh lithium-ion battery [30]. The Qualcomm
MSM7201A chipset contains a 528 MHz ARM 11 apps pro-
cessor, an ARM 9 modem processor, a 528 MHz ARM 11
Jazelle Java hardware acceleration, QDSP4000 and QDSP5000
high-performance digital signal processors, quadband GPRS
and EDGE network, integrated Bluetooth, and Wi-fi sup-
port.

To the best of our understanding, the ARM 11 apps pro-
cessor runs the Android platform and executes the applica-
tions on the device. It is rated at 528 MHz and supports
dynamic frequency scaling (DFS), but is scaled down in the
platform to run at 124 MHz, 246 MHz, and 384 MHz. The
highest frequency of 528 MHz is not used. The ARM 9 mo-
dem processor is a separate processor that runs a proprietary
operating system and is in charge of the communications of
the phone. The Jazelle Java hardware acceleration processor
is not used as the Android platform runs Dalvik executables
which are not fully compatible.

We build our power estimation model using real power
measurements. We instrument the contact between the phone
and the battery and measure the current with a Fluke i30
AC/DC current clamp. We use the OS reported battery
voltage as the operating battery voltage. The linear regres-
sion model is created using the R Statistical Computing En-
vironment [24].

We develop a logger application that logs system perfor-
mance metrics and user activity. The logger runs as a Dalvik
executable. It does not require any special hardware or OS
support, and runs on consumer HTC Dream devices, such
as the T-Mobile G1 phone. The logger periodically looks for
a network connection and sends the logs back to our server.
All data is anonymous by the time it reaches our server.

To obtain users for our study, we publicized our project
for a month on multiple university campuses, as well as to
the general public. Users install the logger through the An-
droid Market. To minimize potential bias in our data, all
volunteers remain anonymous. Volunteers are notified that
we do not collect any data that could be used to identify
them. We also provide a complete list of collected data to
maintain transparency with the users. To avoid any change
in user behavior, the logger application is designed to be

HW Unit Parameter Description Range Coefficient
(of βi,j) (cj) units

CPU hi_CPU_util Average CPU utilization while operating at 384 MHz 0–100 3.97 mW /%

med_CPU_util Average CPU utilization while operating at 246 MHz 0–100 2.79 mW /%

Screen screen_on Fraction of the time interval with the screen on 0–1 150.31 mW
brightness Screen brightness 0–255 2.07 mW /(step)

Call call_ringing Fraction of the time interval where the phone is ringing 0–1 761.70 mW
call_off_hook Fraction of time interval during a phone call 0–1 389.97 mW

EDGE edge_has_traffic Fraction of time inverval where there is EDGE traffic 0–1 522.67 mW
edge_traffic Number of bytes transferred with the EDGE network

during time interval
≥ 0 3.47 mW /byte

Wifi wifi_on Fraction of time interval Wifi connection is on 0–1 1.77 mW
wifi_has_traffic Fraction of time inverval where there is Wifi traffic 0–1 658.93 mW
wifi_traffic Count of bytes transferred with Wifi during interval ≥ 0 0.518 mW /byte

SD Card sdcard_traffic Number of sectors transferred to/from Micro SD card ≥ 0 0.0324 mW /sector

DSP music_on Fraction of time interval music is on 0–1 275.65 mW
System system_on Fraction of time interval phone is not idle 0–1 169.08 mW

Table 1: Parameters used for linear regression in our power estimation model.

as unintrusive as possible. It automatically starts upon in-
stallation or after the boot process, and consumes minimal
system resources.

For the data in this paper, we use the logs from the 20
users who have the largest logged activity. The cumulative
log data represents approximately 250 days of real user ac-
tivity. To explore usage patterns when the mobile device
is battery-constrained, we focus on time intervals when the
battery is not charging. From all of the logs, we extract 860
time intervals where the battery is not charging, which add
up to a total of 145 days of user activity.

3. POWER MODEL
We now discuss our approach to system-level power esti-

mation for mobile architectures. We model the architecture
having two distinct power states:

Active : The apps processor is operational. This occurs
during active usage when the screen is on, or if a sys-
tem wake lock is held to ensure that the apps processor
remains on while the screen is off.

Idle : The device is in a low-power sleep mode. The apps
processor is not operational but the modem processor
is still active (also called ”Standby” mode).

The power consumed in the Idle state is significantly lower
than the Active state, and is relatively invariant under typi-
cal circumstances (measured to be around 70 mW). In con-
trast, power consumed in the Active state is considerably
higher (300∼2000+ mW), and varies significantly by work-
load. Our power estimation model focuses primarily on
modeling Active state power consumption.

We build our power estimation model based on high-level
measurements collected for a set of the hardware units. We
choose a linear regression method to build the model. Linear
regression fits an output variable to a set of independent
input parameters by corresponding linear coefficients.

3.1 Choosing Parameters
Table 1 lists the parameters selected for the power esti-

mation model, including the final coefficients used in our
power estimation model. We model most of the hardware
components on the ADP1, including the CPU, screen, calls,
EDGE/Wi-fi network, SD card, and the DSP processor.

CPU : The CPU refers to the apps processor and supports
DFS between three frequencies, as described in Sec-
tion 2. The lowest frequency is never used on consumer

versions of the phone, and is too slow to perform basic
tasks. Thus, only the high (384 MHz) and medium
(246 MHz) frequencies are considered in our model.

Screen : The screen parameters include a constant offset
indicating whether the screen is on and a second pa-
rameter to model the effect of the screen brightness.

Call : We model the power during phone calls by measuring
the time spent ringing and the duration of the phone
calls.

EDGE : The EDGE network power consumption parame-
ters consider whether there is any traffic and the num-
ber of bytes of traffic during a particular time interval.

Wi-fi : The Wi-fi power consumption is modeled similar to
the EDGE network but also includes a parameter for
whether Wi-fi connectivity exists.

SD Card : We consider the number of sectors transferred
per time interval.

DSP : We model the DSP by checking an internal variable
within the Android SDK for whether there is a mul-
timedia file playing. This variable is on during music
and video playback.

System : The power that is not accounted for with the
hardware components listed above are put into a catch-
all variable that we simply refer to as the miscellaneous
System power in Table 1. The System power corre-
sponds to the constant y-intercept in a linear regres-
sion model, or k, as it will be described in the following
section.

3.2 Building the Estimation Model
To develop our model, we use real-time measurements of

our target phone. The overall idea is to find the relationship
between the collected system statistics and the power con-
sumption. Hence, the input to our model is the statistics
collected from the phone. The output is the total power
consumption. During training, we provide the measured
power consumption and use the R-tool to build the linear
regression model. Specifically, during training, we have per-
formed a series of tasks to stress different components of the
hardware. During these tests, we (1) measure the real-time
power consumption of the phone and (2) collect statistics
about the chosen parameters described in the previous sec-
tion. The raw data samples are collected every second for
the synchronous data (e.g., CPU utilization). We sample
at 1 Hz to reduce perturbation on the system and mini-
mize the execution and power consumption of the logger.

●●
●
●
●●●
●●●●

●●●●
●
●●
●●

●●●

●

●●
●

●

●

●●

●

●

●

●

●
●
●●

●
●●

●
●
●●●●●●●

●

●

●

●

●

●

●●●●●●

●
●
●

●

●

●●●●●●●●
● ●●●●●●

●
●

●●●●●
●●●●●
●●●

●

●●
●
●

●

●

●●

●

●●

●
●●● ●●●●●●●●●●

●
●
●●
●
●●●
●●●
●●●●

●●●
●
●●●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●
●●●●

●●

●
●●

●
●
●

●
●●●●
●

●●●●●●

●

●

●

●

●

●

●●●●●
●●
●
●●●●
●
●●●●
●●
●●
●●●●●●●●●●●●
●
●

●
●●
●●●
●●
●●●●

●

●

●

●
●●●

●
●
●●●
●●●●

●
●
●

●

●
●

●●●●
●
●

●●
●

●●

●●●●●●●

●●●

●

●●●

●

●●●●●
●
●
●

●●●
●

●
●

●
●

●●●
●
●●●
●
●●●
●
●●●●
●●●●●●
●●
●●●
●
●
●●●
●
●

●●

●
●●●●●

●
●
●●●●●●
●●
●●

●

●
●●

●

●●●

●
●●●

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

0.0

0.2

0.4

0.6

0.8

Error of Linear Regression Model
Er
ro
r

(a) Absolute relative error.

●●

●●

●●

●●●●●●●
●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●●
●●●●●●●
●

●
●

●

●

●

●

●
●
●●
●●
●

●
●

●●●●●

●
●

●

●

● ●●

●●

●●●

●●

●●●

●
●●●
●
●

●●●●

●●

●●●

●●

●●
●●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●
●●●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●
●
●●●
●●
●●
●

●●
●

●
●●●
●

●●●●●●
●

●
●

●

●

●

●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●
●●●●●
●●●●
●

●

●

●
●●●
●
●●●
●
●●●●

●
●●
●
●
●
●●●●
●●
●●●
●

●●●●●●●
●●●

●

●●●
●

●●●●●
●
●
●
●●

●●

●
●
●●●●●●●●●
●●●●●●●

●●●●●●
●
●●

●●●●●●

●
●
●●●●●●●

●●

●
●●

●

●●
●●●●

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4

Error of Linear Regression Model

Er
ro
r

(b) Relative error.

Figure 2: Error of logger when building the power estimation model on one ADP1 and validating with logs
from another ADP1 device.

During training, the collected statistics and the measured
power consumption levels are fed into the R-tool to find the
regression coefficient cj for each parameter. Once a model is
generated, one can predict the power consumption by simply
providing the statistics for the selected parameters.

As we will discuss in Section 3.3, this approach results in
a highly accurate power model. In addition, it can be used
to estimate the power consumption of each individual hard-
ware component. If a single measurement (e.g., the value
for screen brightness) in sample i is βi,j , then the power pi,j

contributed by the corresponding hardware component for
the parameter coefficient cj is:

pi,j = βi,j · cj (1)

Power not attributable to any available measurement is
aggregated into a constant offset k. The total system power
Pi for sample i with n available measurements is then mod-
eled with the sum of these n power values:

Pi = k + (pi,0 + pi,1 + . . . + pi,n) (2)

= k + ((βi,0 · c0) + (βi,1 · c1) + . . . + (βi,n · cn)) (3)

Allowing xi = (βi,0, βi,1, · · ·βi,n) for each sample i and
c = (c0, c1, · · · cn) reduces this to:

Pi = k + xi · c (4)

Taken across m samples, this model takes the form:

0

BBB@

P0

P1

...
Pm

1

CCCA
= k ·

0

BBB@

1
1
...
1

1

CCCA
+

2

6664

β0,0 · · · β0,n

β1,0 · · · β1,n

...
. . .

...
βm,0 · · · βm,n

3

7775

0

BBB@

c0

c1

...
cn

1

CCCA

(5)

Letting P =

0

B@
P0

...
Pm

1

CA, X =

2

6664

β0,0 · · · β0,n

β1,0 · · · β1,n

...
. . .

...
βm,0 · · · βm,n

3

7775

and e =
`

1 · · · 1
´T

yields:

P = k · e + Xc (6)

Once values for k and c have been determined, any sam-
ple of system measurements xi may be used to approximate
the power consumed by the whole system Pi at the time of
the sample with Equation 4, and the power contributed by
each hardware component during the sample may be approx-
imated using its corresponding measurement in Equation 1.

Additionally, the total energy E consumed by the system
across a set of such samples X with sampling period ts may
be approximated by the sum:

E = ts · sum (P) =
mX

i=0

ts · Pi = ts

mX

i=0

(k + xi · c) (7)

When the phone is in the Idle state, a constant power
value (pidle ≈68.3 mW) is used to approximate power con-
sumption. The system_on ratio from Table 1 indicates the
portion of time the system is in the Active state as a ratio
between 0 and 1. Thus, when a log contains both the Active
and Idle states, power consumption for a single sample i is
modeled as:

Poweri = system_on · (Pi) + (1− system_on) · (pidle) (8)

When the system is in Active state, the power is approxi-
mated by the linear regression model Pi; in Idle state, pidle

is used as the approximation. In the linear regression model
for Active power, k represents the coefficient for system_on.

3.3 Validating the Power Model
We approximate the values of offset k and the coefficient

vector c using a set of sampled system measurements X with
experimentally measured power consumption P̂ . Samples
are taken from varying workloads to cover the spectrum of
possible use scenarios. From Equation 6 in Section 3.2, this
produces the linear equation P̂ = k · e + Xc, solving for an
approximation of k and c. The approximations are shown
in Table 1 (k is represented by the coefficient for system_on;
other values in the column jointly form the vector c).

To demonstrate the accuracy of the model, we collect ad-
ditional logs of system measurements and power consump-
tion. In addition, we collect this set of logs on a separate
ADP1 device to ensure that our power estimation model
generalizes beyond the device used for training the model.
We collect two types of logs. The first type targets spe-
cific hardware components of the phone. We name these
logs Runi_Unit. For example, Run1_CPU corresponds to a log
with varying CPU utilization. These logs are used for train-
ing our power model. The second type of log corresponds to
a scenario, or a mix of usage behavior, that stresses multiple
hardware components. We name these logs Scenarioi. As
an example, Scenario2 simulates a user listening to music
while browsing the web, and then answering a phone call.
These logs are not used during training and used to analyze
the accuracy of our model for workloads that are not part of
the training set. Each log is approximately 5 minutes long.

We use this set of logs from a separate mobile device to
approximate the error of our power estimation model. Equa-

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of Power Estimation Errors

Error

F(
Er
ro
r)

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●

●●● ●● ●

Figure 3: Cumulative distribution of power estima-
tion error.

Ru
n0
_C

PU

Ru
n1
_S
cr
ee
n

Ru
n2
_E
DG

E

Ru
n3
_W

ifi

Ru
n4
_C

al
l

Ru
n5
_M

us
ic

Ru
n6
_S
dC

ar
d

Sc
en
ar
io
0

Sc
en
ar
io
1

Sc
en
ar
io
2

Sc
en
ar
io
3

Sc
en
ar
io
4 Al
l

Error of Cumulative Energy

Er
ro
r

−0.10
−0.05
0.00
0.05
0.10

Figure 4: Cumulative total energy error.

tion (4) in Section 3.2 provides a power estimation for each
sample i. The error considered is the percent absolute rela-
tive error (errori) and the percent relative error (errorj):

errori =

˛̨
˛̨actual − estimated

actual

˛̨
˛̨ = 100 ·

˛̨
˛̨
˛
P̂i − Pi

P̂i

˛̨
˛̨
˛ % (9)

errorj =
actual − estimated

actual
= 100 · P̂i − Pi

P̂i

% (10)

Figure 2 presents the range of errors for each of the logs
collected, including the logs used in training and the scenario-
based logs used for validation. In the figures, the median
error for each set is a bold line, the boxes extend to 25%
and 75% quartiles, the whiskers extend to the most extreme
sample point within 1.5× the interquartile range, and out-
liers are independent points. Figure 2(a) shows the absolute
relative error and Figure 2(b) shows the relative error.

Our results indicate that the power estimation model ac-
curately predicts the system-level power consumption of the
logs, even though a separate mobile device is used. The me-
dian absolute relative error across all of the samples is 6.6%.
The median relative error rate is < 0.1%. The hardware-
specific logs demonstrate the accuracy of predicting the power
consumption of specific hardware components. In general,
the model predicts the CPU, EDGE, and music with a low
median error rate, and a low variance in the error rates. The
error rates in the screen, Wi-fi, phone call, and SD card show
a higher amount of variance; but their power consumption
can still be predicted accurately with a low median error
rate. The scenario-based logs demonstrate that our power
estimation model also extends to workloads that combine
multiple hardware components, with median errors similar
to the hardware-specific logs. Figure 3 shows the cumulative
distribution of the sample errors. Each (x, y) point repre-
sents the ratio of samples (y) at or below a particular ab-

Figure 5: Power consumption timeline.

Ru
n0

_C
PU

Ru
n1

_S
cr

ee
n

Ru
n2

_E
DG

E

Ru
n3

_W
ifi

Ru
n4

_C
al

l

Ru
n5

_M
us

ic

Ru
n6

_S
dC

ar
d

Sc
en

ar
io

0

Sc
en

ar
io

1

Sc
en

ar
io

2

Sc
en

ar
io

3

Sc
en

ar
io

4 Al
l

Power Breakdown

%
 P

ow
er

0
20
40
60
80

100 misc_sys
call_off_hook
call_ringing
wifi_on
cell_has_traffic
wifi_has_traffic
cell_traffic
wifi_traffic
med_cpu_util
hi_cpu_util
screen_on
brightness
sdcard_traffic
music_on

Figure 6: Power consumption breakdown for traces
that stress specific hardware units.

solute relative error (x). 65% of the individual samples are
approximated by the model to within 10% absolute relative
error, and 90% of the samples are within 20%.

The errors shown in Figure 2 are for estimating the av-
erage power consumption of individual 4 second time win-
dows. However, it does not provide any indication of total
energy estimation across an entire trace. In Figure 4, we
present the error when comparing the total energy between
the power readings, and the results of our power estimation
model. Over all of the logs, we achieve < 0.1% mean error.

3.4 Per-Component Power Consumption
With an accurate power estimation model, the combined

system power Pi may easily be approximated for any sam-
ple i. Furthermore, since this approximation is a sum of
smaller power components pi,j each corresponding to indi-
vidual hardware units, the power contribution of an indi-
vidual unit in the model may also be approximated, using
Equation 1 in Section 3.2.

Figure 5 shows an example of the estimated and actual
power over time for Scenario4. Each colored region repre-
sents the power pi,j attributed to a particular measurement,
as labeled on the right of the plot. The total system power
approximation at any point in time is represented by the top
of the shaded regions. Measured system power is overlaid as
a bold line. In this scenario, the user is surfing the Internet,
then activates streaming media at 160 seconds. Our model
estimates a total system power that closely tracks the actual
measured power.

The same approach for per-component power approxima-
tion is applied to each of the logs used for the validation
of our power estimation model. The estimated power from
each product term in the linear regression model is accumu-
lated and shown in Figure 6. The x-axis represents each of
the logs, and each of the stacked bars corresponds to the
power contribution from a specific parameter in our linear-

Us
er

1
Us

er
2

Us
er

3
Us

er
4

Us
er

5
Us

er
6

Us
er

7
Us

er
8

Us
er

9
Us

er
10

Us
er

11
Us

er
12

Us
er

13
Us

er
14

Us
er

15
Us

er
16

Us
er

17
Us

er
18

Us
er

19
Us

er
20 Av

g

Power Breakdown
%

 P
ow

er

0

20

40

60

80

100
system
idle
call
wifi
edge
cpu
screen_on
brightness
sdcard
music

(a) Power breakdown including idle time.

Us
er

1
Us

er
2

Us
er

3
US

er
4

US
er

5
US

er
6

Us
er

7
Us

er
8

Us
er

9
Us

er
10

Us
er

11
Us

er
12

Us
er

13
Us

er
14

Us
er

15
Us

er
16

Us
er

17
Us

er
18

Us
er

19
Us

er
20 Av

g

Power Breakdown

%
 P

ow
er

0

20

40

60

80

100
system
idle
call
wifi
edge
cpu
screen_on
brightness
sdcard
music

(b) Power breakdown excluding idle time.

Figure 7: Power consumption breakdown from real user traces.

regression-based power estimation model. The y-axis repre-
sents the percent of total power for the particular log. Test
logs stressing particular components, such as EDGE or Wi-
fi communications, have larger portions of power attributed
to corresponding measurements.

The power breakdown for each of the test logs indicates
that the relative power contribution per-component may
vary drastically based upon the workload. For example,
during a phone call (shown in Run4_Call), over 50% of the
total system power is consumed by the call. If only music
is playing, and the screen is off (shown in Run5_Music), the
DSP consumes significant power. The power breakdown is
also dependent upon the system settings. For example, in
Scenario0, the screen is at the highest brightness the entire
time and dominates the power consumption of the system.

To better improve power consumption of any mobile plat-
form, optimizations must target components with significant
relative power consumption. However, as Figure 6 demon-
strates, the per-component power breakdown widely varies
with respect to the workload. Thus, it is important for
architects to use representative workloads to characterize
power consumption on mobile architectures. Such workloads
should reflect the real user activity to correctly estimate the
effect of any optimization.

Overall, our results show that (1) our high-level power es-
timation model can accurately predict the power consump-
tion of the total system, (2) the power model can be used to
derive a power breakdown of the total system, and (3) the
power breakdown of a system is highly dependent upon the
workload running on the mobile architecture.

4. STUDYING THE USER FOR GUIDING
OPTIMIZATIONS

In this section, we explore the real user activity logs up-
loaded onto our server. We apply the power estimation
model developed in Section 3 to characterize the power break-
down of mobile phones in the wild. We then present a study
of active screen intervals, which suggest a potential power
optimization for long screen intervals.

4.1 Characterizing Real User Workloads
As described in Section 3.4 (and shown in Figure 6), the

workload of a mobile architecture has a large effect on its
power consumption; the hardware components that dom-
inate power consumption vary drastically depending upon
the workload. Since the user determines the workload for
a mobile architecture, we must study real user behavior to
understand the actual power consumption of mobile archi-
tectures in real environments. To this end, we have collected
logs from users who have downloaded our logging applica-

tion from Android Market, as described in Section 2. The
logs contain the activity of 20 users, each for a duration ex-
ceeding a week, and accounting for approximately 250 days
of user activity.

The power breakdown from each of the user logs is shown
in Figure 7. Figure 7(a) shows the power breakdown includ-
ing the estimated power contribution of the Idle state. To
provide a clear breakdown of the power in the Active state,
Figure 7(b) shows the same power breakdown excluding the
samples from the Idle state. The x-axis represents each of
the users. The product terms for each of the hardware com-
ponents are combined for readability. The only exception is
the screen, which is still shown separately as screen_on and
brightness. We show both because the screen contributes
heavily to the power breakdown of the system, and also be-
cause one of our optimizations (described later in Section 5)
specifically targets reducing the screen brightness.

When examining the power consumption of the Idle state
in Figure 7(a), two points are apparent. First, the power
consumed during the Idle state can contribute to a signifi-
cant fraction of the total system power consumption. The
power consumed in the Idle state accounts for 49.3% of the
total system power when averaging across all of the users.
Second, the fraction of total power consumed during the Idle
state varies significantly across the users. At the extremes,
the power consumption of Idle states contribute to 89.9% of
the total power for User 5, but only 7.17% for User 16. This
indicates that there is considerable variation in the usage
patterns of mobile architectures across individual users.

When isolating the power consumption during the Active
state (shown in Figure 7(b)), we again notice a large vari-
ation in the activity among all 20 users. For example, the
power breakdown for User 4 and User 12 is dominated by the
phone calls. User 6 and User 19 have their screen brightness
set high, and thus, the brightness dominates their power
breakdown. In addition, there is varying activity with re-
gard to EDGE network usage versus Wi-fi network usage.

Overall, during Active usage time, two hardware com-
ponents dominate the power consumption when averaging
across all users: the screen and the CPU. The screen largely
dominates the Active power breakdown and consumes 35.5%
of the Active power; 19.2% due to the screen brightness and
16.3% due to the screen being on. The CPU accounts for
12.7% of the total Active power.

Although the Idle state may sometimes dominate the to-
tal system power, in this paper, we primarily focus on the
power during the Active state. There are three reason to be
concerned with the Active state. First, the power consumed
during the Idle state (≈ 68 mW) is significantly lower than
the power that can be consumed in the Active state (up to

(a) CDF of screen interval durations. (b) Percentage of screen time relative to
percentage of screen durations.

(c) Ratio of Total Screen Duration Con-
stituted by Screen Interval

Figure 8: Screen durations based upon user activity.

2000 mW when listening to music and using Wi-fi as shown
in Figure 5). Second, the Active state contributes highly to
the user experience since the user is actively engaged dur-
ing the Active state. Any application that requires the apps
processor would require the device to wake up and exit Idle
mode. Finally, the Active state still accounts for large frac-
tion of the power consumed, accounting for 50.7% of the
total system power.

4.2 Screen Usage of Real Users
Because the screen is the primary output device for in-

teracting with the end user, the screen is a good indicator
of user activity patterns. In addition, as we have shown
in the previous section, it is the highest power consuming
component on the device. We parse all of the user activ-
ity logs to extract screen intervals. A screen interval is a
continuous block of time where the screen is on. The du-
ration of a screen interval refers to the length of time that
corresponds to the screen interval. The total duration time
refers to the sum of durations for all screen intervals. From
these intervals, we extract 9678 screen durations from our
database, which accounts for 8.8 days worth of cumulative
active “screen on” time.

Figure 8(a) shows the cumulative fraction of the total du-
ration for screen intervals up to 500 seconds. We see that
screen intervals of 100 seconds or more constitute roughly
70% of the total screen duration (equivalently, as shown in
Figure 8(a), 30% of the total screen duration is contributed
by intervals shorter than 100 seconds). Figure 8(b) shows
the cumulative distribution function (CDF) relating the to-
tal duration time to percentage of screen intervals. In other
words, it shows the percentage of total duration time (shown
on the y-axis) accounted for by the fraction of screen inter-
vals with the shortest durations (x-axis). Figure 8(c) shows
the ratio of total duration time accounted for by intervals
shorter than a specific screen duration time, up to 150 sec-
onds. This means that it shows the fraction of total duration
if the first X seconds of each screen interval is considered.

Studying the screen intervals indicates that the total du-
ration time is dominated by a relatively small percentage
of long screen intervals. If we observe the 40 second mark
on the x-axis of Figure 8(b) and Figure 8(c), we see that
the first 40 seconds of all screen intervals only accounts for
31% of the total duration time, but accounts for over 80%
of all screen intervals. This means that if we have an opti-
mization that saves power after 40 seconds of screen time, it
would affect 69% of the total screen duration time, and only
take effect in about 17% of the screen intervals. Based upon
these observations, we conclude that it would be profitable
to optimize for power during the long screen intervals. In
the next section, we describe such an optimization.

5. USER-AWARE OPTIMIZATIONS
As described in the Section 4, surprisingly, a few long

screen intervals dominate the overall screen duration time.
In addition, the power consumption during Active time is
dominated by the screen and the CPU. To reduce the power
consumption during these long intervals, we devise a scheme
that reduces the brightness. Instead of simply dropping the
brightness abruptly, we utilize change blindness, which is de-
scribed in the next section. We also devise a similar scheme
to control the CPU frequency.

5.1 Change Blindness
Researchers in human psychology and perception have

revealed an inability for humans to detect large changes
in their surrounding environment. One commonly-known
study involves a video that prompts the viewer to count the
number of times a basketball is passed. Halfway through the
video, a man in a gorilla suit walks into the middle of the
group of basketball players, thumps its chest, and then walks
away. Surprisingly, the majority of viewers do not remem-
ber seeing a man in a gorilla suit, even though the concept
is absurd and is in clear view in the middle of the video [27].
Change blindness refers to this inability for humans to detect
large changes in their environment. The gorilla-suit study
refers to change blindness of dynamic events, and occurs
because although a human will view the entire video, their
attention dictates the visual data that is processed. There
have also been studies exploring change blindness in the case
of gradual changes. Change blindness in the presence of
gradual changes is more surprising as humans will miss sig-
nificant changes without being distracted or disrupted. One
study demonstrates change blindness as objects within im-
ages are removed from a picture, or as the color of objects are
slowly changed [28]. Another demonstrates change blindness
as facial expressions are slowly changed in a picture.

We aim to utilize change blindness to reduce the power
consumption of the device without causing any dissatisfac-
tion to the users. Specifically, we devise schemes that re-
duce the screen brightness and CPU frequency slowly to
save power. We compare these schemes to alternatives where
the brightness and frequency are abruptly reduced and show
that change blindness can indeed be utilized to save power
consumption while minimizing the user dissatisfaction. We
describe these schemes in the following section. To the best
of our knowledge, this is the first study analyzing change
blindness in the context of computer performance.

5.2 CPU Optimization
Existing DFS. The default system image used on the

HTC Dream platform supports dynamic frequency scaling (DFS)
on the ARM 11 apps processor, but uses a näıve DFS al-

Algorithm 1: ondemand DFS algorithm.

procedure Ondemand-DFS(cpu util)1
if cpu util ≥ UP_THRESHOLD then2

Set-Frequency(highest frequency)3
else if cpu util ≤ DOWN_THRESHOLD then4

requested freq ← frequency that maintains a5
utilization of at least UP_THRESHOLD−10%
Set-Frequency(requested freq)6

return7

8
procedure Set-Frequency(freq)9

if powersave_bias = 0.0 then10
Set CPU frequency to freq11

else12
Alter CPU frequency dynamically to maintain an13
effective frequency of:
freq × ((1000 - powersave_bias) * 0.001)14

return15

16

gorithm based upon the screen1. If the apps processor is
active and the screen is on, the processor is set to the high-
est frequency (384 MHz). If the apps processor is active
and the screen is off, the processor is set to the middle fre-
quency (246 MHz).
ondemand governor. A commonly used DFS scheme on

desktop/server environments is the Linux ondemand DFS
governor. The general algorithm is shown in Algorithm 1.
At a high-level, the ondemand makes decisions based upon
the CPU utilization. If the utilization is above a UP_THRESHOLD,
it raises the CPU to the highest frequency. If the utiliza-
tion is below a DOWN_THRESHOLD, it calculates the frequency
that would maintain the utilization below UP_THRESHOLD,
and sets the frequency to that level. By setting the CPU
frequency based upon CPU utilization, the ondemand gover-
nor saves power by reducing the frequency during times of
low CPU utilization. We tune a knob within the ondemand
governor called the powersave_bias, which is typically set
to 0. The powersave_bias is a value between 0 and 1000
that specifies percentage with which to decrease the effective
frequency of the CPU. powersave_bias increases in incre-
ments of 0.1%. A value of 0 indicates that the frequency
should not be reduced at all. A value of 1000 indicates that
the frequency should always be reduced by 100%, effectively
reducing the CPU to its lowest frequency. If the power-
save_bias indicates that the CPU frequency should be set
to a frequency between two processor-supported frequencies,
the ondemand governor will dynamically switch between the
frequencies to simulate the frequency required.

Our DFS scheme: We use the ondemand governor and
tune the powersave_bias knob leveraging change blindness
for long screen intervals. Our DFS scheme hooks into the
screen events. Every four seconds, we increase the power-
save_bias in increments of 30 (decrease effective frequency
by 3%), until a maximum limit of 300 is reached. If the
screen is turned off, the powersave_bias is reset back to 0.
Thus, it reaches 70% of the frequency requested by ondemand
within 40 seconds.

5.3 Screen Optimization
We implement a screen optimization to leverage change

blindness that is similar to our CPU optimization. Again,
we hook into the screen on and off events. We keep track

1We have not found a confirmed description of this DFS
scheme in any documentation on the HTC Dream, but have
discovered this DFS behavior through our own experience
with the device.

of the user-set screen brightness. When the screen turns on,
we set a timer for 3 seconds. Every 3 seconds, we decrease
the brightness of the screen by 7 units (out of a maximum
brightness of 255). We continue until the brightness reaches
60% of the user-set screen brightness and then stop. When
the screen is turned off, we set the brightness back to the
regular user-set screen brightness.

The idea in this scheme is to utilize two previous obser-
vations. First, since we slowly reduce the screen bright-
ness, we will not reduce the power consumption on small
screen intervals. However, as we have shown in the previ-
ous section, long screen intervals dominate the total screen
duration, hence our optimization should still be able to save
considerable fraction of the overall screen power consump-
tion. Second, since our scheme reduces the screen brightness
slowly, we expect that the users will be less likely to distin-
guish the change when compared to a sudden decrease in the
screen brightness. Our experiments, described in Section 6,
confirm that both of these goals are achieved.

6. EXPERIMENTAL RESULTS
We now evaluate our optimizations described in Section 5.

We refer to the two optimizations as Screen Ramp and CPU
Ramp, for the screen and CPU optimizations, respectively.
To test the change blindness hypothesis, we also introduce
two more control schemes: Screen Drop and CPU Drop.
Both of the Drop schemes wait 30 seconds before drop-
ping to the respective minimum threshold levels of each of
the change-blindness-inspired optimizations. In other words,
the Drop and Ramp schemes eventually settle at the same
brightness/frequency. However, the Ramp schemes slowly
reach this destination, whereas the Drop schemes wait at
the high brightness/frequency for the initial 30 seconds, be-
fore adjusting sharply to the final level.

We first evaluate the potential power savings of the opti-
mization schemes by emulating the optimizations on the user
logs. We then conduct a user study to assess user acceptance
of our optimization schemes and to test our hypothesis on
whether change blindness can be leveraged to optimize long
screen intervals.

6.1 Power Savings
We approximate the power savings for each of our schemes

by emulating the optimizations on user activity logs. To es-
timate the power savings of the screen optimizations, we
adjust the brightness measurements in the logs to reflect
the Screen Drop and Screen Ramp optimizations. Then,
these new values are fed into the power model to generate
the power consumption of the alternatives. To estimate the
power savings of the CPU optimization, we first perform an
estimation of the ondemand governor. If the CPU utilization
is below 20%, we assume that ondemand would set the fre-
quency to the lower level. We then simulate our ramp-down
mechanism on top of the ondemand scheme by multiplying
the CPU product terms by a fraction that decreases in sim-
ilar to CPU Ramp or CPU Drop. The newly-generated logs
are processed with our power model to find the power con-
sumption of CPU Ramp, CPU Drop, and ondemand.

Figure 9 shows the total system power savings when com-
pared to the base scheme for each of the studied optimiza-
tions. On average, CPU Ramp saves 4.9% of the total sys-
tem power. This corresponds to a 22.8% power savings when
considering only the total CPU power. Of this, we esti-
mate that 10.5% of the savings can be attributed to the
base ondemand DFS governor, and the other 12.3% power
savings is due to ramping the CPU frequency with the pow-

!"

#"

$"

%"

&"

'!"

'#"

'$"

'" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!" ,-."

!
"#
$
%
&
'"
(
)
*
+,
-
."

/.&'"

0$1)2"(3.1&4"#$%&'"()*+,-."

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

Figure 9: Total system power savings for each of the optimizations as estimated by our power model.

ersave_bias. The CPU Drop, on the other hand, achieves
a total system power savings of 1.9%. When we compare
the CPU Ramp to CPU Drop, we see that our CPU Ramp
scheme achieves higher power savings. The reason for this
result is the 30 second wait period of the CPU Drop scheme;
while the CPU Ramp almost immediately starts reducing
the CPU frequency, the CPU Drop scheme remains at the
high frequency for 30 seconds, which causes a higher power
consumption level. Screen Ramp saves 5.7% of total system
power over all of the 20 users, and saves 19.1% of the total
screen brightness power. With Screen Drop, 4.6% of the to-
tal system power is conserved. Similar to the CPU schemes,
when we compare the Screen Ramp to Screen Drop, we see
that Screen Ramp achieves a higher power reduction level.

6.2 Impact on User Satisfaction
To evaluate the impact of our power saving techniques

on the individual user satisfaction, we conduct another user
study with 20 users. The user study involves three applica-
tions:

• Web browsing: Surfing Wikipedia with the web browser
on the phone.

• Game: The BreakTheBricks game where the user
moves a paddle on the bottom of the screen to bounce
a ball and break a pattern of bricks.

• Video: The user watches a video with the PlayVideo
application.

For each application, we perform six runs consisting of (1)
CPU Ramp, (2) CPU Drop, (3) Screen Ramp, (4) Screen
Drop, (5) Ondemand, and (6) the Control. The Control
scheme is the default CPU and screen manager of the com-
mercial phone. The order of runs are randomized so that
the particular order is blind to the user as well as the proc-
tor of the user study. After each run, we ask the user for a
verbal user satisfaction rating ranging from 1 (Not Satisfied)
to 5 (Satisfied).

Figure 10 shows the results of our user study for three ap-
plications. The three graphs show the user satisfaction rat-
ings for each of the runs for the 20 users. Each of the graphs
shows a set of clustered bars, each bar corresponding to the
user satisfaction rating for a single run. At first glance, the
average user satisfaction ratings look very similar for both
Web Browsing and the Video, but they differ for the Game.
For an in-depth analysis, we perform a paired t-test analysis
for each application, comparing the set of user satisfaction
ratings for each of the optimizations, to the set of user satis-
faction ratings for the Control run. The paired t-test shows
that there are five comparisons against the Control scheme
where there is a statistically significant difference. In all
other cases, there were no statistically significant changes
between the Control and the studied schemes. Among the

five cases that show difference, the four are in the Game
application; all the four studied techniques exhibit reduced
user satisfaction when compared the Control. The fifth com-
parison that differs is the Screen Drop for Web Browsing.
Overall, when comparing the different schemes, Screen Drop
was statistically different from the Control run for the Game
and Web applications, and the other schemes (barring the
Ondemand scheme) differed from the Control run only on
the Game application.

6.3 User Feedback and Acceptance
At the end the study, we debriefed each user by inform-

ing them of the purpose of the experiment. We discussed
the power characterization study, that the CPU and screen
tended to dominate the power consumption, and introduced
our different power saving schemes to them. Afterwards,
we questioned each user about their opinions on our various
power saving schemes for the screen and CPU.

When compiling notes on the discussions with the users,
we recognized two general trends:

• Most users determine their user satisfaction based upon
how smoothly the computer responds to their input. 9
of the 20 users let us know they rated runs poorly when
there were pauses, or the screen became jumpy/jittery.
Our schemes performed the worst on the Game be-
cause any glitch would affect the smoothness of the
bouncing ball and would be immediately noticeable.
A result of this is that the rate of change for the CPU
frequency does not matter – once the application be-
comes jittery, user satisfaction decreases. This trend
is another reason why we did not observe a differ-
ence between the CPU Ramp and CPU Drop schemes;
both of these schemes cause jitters after a certain CPU
level is reached and regardless of how slowly we re-
duce the frequency, the glitches are noticeable. Hence
the users provided the same level of satisfaction for
these two alternatives. However, we must note that
the CPU Ramp achieves a higher power saving when
compared to CPU Drop.

• Change blindness can be leveraged for the screen. 8
out of the 20 users noticed the drop in screen bright-
ness during Screen Drop experiments. Only one of
the users noticed the screen slowly dimming during
Screen Ramp. In fact, almost all of the users were sur-
prised when we told them that the screen was being
slowly dimmed. As a result of this, we also observe
that the users were less satisfied with the Screen Drop
on the Web application, whereas they showed the same
satisfaction level with the Control and Screen Ramp
schemes.

At the end of the user study, we also asked the users
whether they would turn a combination of these schemes on

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-#.%/$+0"1,2%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-'.#%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

!"

#"

$"

%"

&"

'"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #)" #*" #+" $!" ,-."

!
"#
$%
&
'
(
")
'
*(
+
,
%

!"#$%

-./#+%

/01"2345"

/01"6785"

9:7;;<"2345"

9:7;;<"6785"

=<>;43<>"

/8<?78@"

Figure 10: Reported user satisfaction for the (a) Web Browsing, (b) Game, and (c) Video applications.

if they had a tool to control them and knew they would save
about 10% of their battery life. Out of the 20 users, 15 said
that they would use these optimizations, 1 was apathetic,
and 4 of the users would not use the optimizations. Out
of the 15 that responded with a yes, 5 of them expressed a
desire for application-dependent optimization. For example,
while they were fine with the dimming for the web applica-
tion, they preferred a brighter screen for the video.

In summary, our results show that we can achieve signifi-
cant reduction in power consumption by considering user ac-
tivity patterns. Our Screen Ramp and CPU Ramp schemes
reduce the power consumption by 5.7% and 4.9%, respec-
tively, achieving a combined power saving of 10.6%. We also
show successfully demonstrate power optimizations based
upon indiscernible changes on the system parameters.

7. RELATED WORK
Power modeling and estimation has been heavily studied

from various angles. Wattch estimates microprocessor power
consumption using low-level architectural features [7]. Sev-
eral researchers use performance counters to estimate the
power consumption of both high-performance and embed-
ded microprocessors [4, 5, 9, 18, 19]. Gurun uses perfor-
mance counters and communication measurements to esti-
mate power consumption on an iPaq [16]. Cignetti uses
power measurements to derive a power breakdown for Palm
devices [8]. Tan uses function-level power models for software-
implemented power estimation [29]. The power consump-
tion of the operating system has been explored for high-
performance [20] and embedded platforms [3, 10]. We dif-
fer from prior art by developing a software-implemented,

system-level power model that uses easily-accessible mea-
surements and does not require specialized hardware (e.g.,
hardware performance counters) or software (e.g., hooks into
the operating system).

SoftWatt uses simulation to understand the power con-
sumption of the processor, memory, and disk on a high-
performance architecture [15]. Mahesri measures the power
breakdown on a laptop and discovers that the hardware com-
ponents which dominate power consumption change depend-
ing upon the workload [21]. We use our power estimation
model and traces to estimate the power breakdown of mobile
architectures used by real users in real environments.

Recent studies incorporate the user into the architecture
evaluation and optimization process [25, 26]. PICSEL [22] is
the most related to our work and takes user perception into
account for controlling CPU frequency. Their work primar-
ily focuses on CPU frequency scaling on desktop and laptop
machines. In contrast, our work targets mobile architectures
and leverages user activity patterns for optimization.

Researchers have studied screen optimizations that would
be enabled with OLED display technology. They explore al-
tering the user interface to dim certain parts of screen to save
considerable power, and do a user acceptance study [6, 17].
Our work operates on existing screen technology and lever-
ages change blindness with gradual changes to save power.

Phillips studies user activity for predicting when to sleep
for wireless mobile devices [23]. MyExperience [13] gathers
traces from user phones in the wild, similar to our work,
but uses the traces to study high-level user actions. We
study user activity patterns to understand system perfor-
mance and for saving power on mobile architectures.

8. CONCLUSION
In this paper, we have studied mobile architectures in

their natural environment – in the hands of the end user.
We present tools and methods for collecting and analyzing
logs of real activity patterns for characterizing the power
consumption and guiding optimization of mobile architec-
tures accordingly. We build a logger application for the An-
droid G1 phone and release it to the general public to col-
lect logs from real users on real devices. We then develop a
linear-regression-based power estimation model, which uses
high-level measurements of each hardware component, to es-
timate the system power consumption. We show that the
power estimation model is highly accurate and that it can
provide insights about the power breakdown of the hardware
components in a mobile architecture. By analyzing the user
logs, we find that the power breakdown of a device is highly
dependent upon the individual user, but that the screen and
the CPU tend to dominate the active power consumption.
We then demonstrate an example of leveraging user behavior
to identify new optimizations. Specifically, we study active
screen intervals and discover that a relatively small num-
ber of long screen intervals dominate the active screen time.
Based upon this observation, we develop an optimization
for the screen and the CPU that advantage of change blind-
ness. We demonstrate that our optimizations can save up
to 10% total system power while minimally impacting user
satisfaction.

9. REFERENCES
[1] Apple Inc. iPhone OS Technology Overview: About iPhone

OS Development, October 2008.
[2] Arbitron and Edison Research Media. The Infinite Dial

2008: Radio’s Digital Platforms.
[3] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout,

C. Smit, T. Zhang, and B. Jacob. The performance and
energy consumption of three embedded real-time operating
systems. In Proceedings of the Intl. Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, pages 203–210, November 2001.

[4] F. Bellosa. The benefits of event-driven energy accounting
in power-sensitive systems. In Proceedings of the SIGOPS
European Workshop, September 2000.

[5] W. L. Bircher, M. Valluri, J. Law, and L. K. John.
Runtime identification of microprocessor energy saving
opportunities. In Proceedings of the Intl. Symposium on
Low Power Electronics and Design, pages 275–280, 2005.

[6] L. Bloom, R. Eardley, E. Geelhoed, M. Manahan, and
P. Ranganathan. Investigating the relationship between
battery life and user acceptance of dynamic, energy-aware
interfaces on handhelds. In Proceedings of the Intl.
Conference on Human-Computer Interaction with Mobile
Devices and Services, pages 13–24, September 2004.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the Intl. Symposium on
Computer Architecture, pages 83–94, 2000.

[8] T. L. Cignetti, K. Komarov, and C. S. Ellis. Energy
estimation tools for the PalmTM. In Proceedings of the
Intl. Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, August 2000.

[9] G. Contreras and M. Martonosi. Power Prediction for Intel
XScale R© Processors Using Performance Monitoring Unit
Events. In Proceedings of the Intl. Symposium on Low
Power Electronics and Design, pages 221–226, August
2005.

[10] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and
N. K. Jha. Power analysis of embedded operating systems.
In Design Automation Conference, pages 312–315, 2000.

[11] Display Search; NPD Group. Strong Mini-Note PC
Demand Expected to Buoy Notebook Market in 2009,
April 2009. http://www.displaysearch.com/.

[12] N. Eagle and A. Pentland. Social serendipity: Mobilizing

social software. IEEE Pervasive Computing, 4(2):28–34,
January–March 2005.

[13] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and
J. A. Landay. Myexperience: A system for in situ tracing
and capturing of user feedback on mobile phones. In
Proceedings of the Intl. Conference on Mobile Systems,
Aapplications and Services, pages 57–70, 2007.

[14] Google, Inc. Android - An Open Handset Alliance Project.
http://developer.android.com.

[15] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, M. Kandemir, T. Li, and L. K. John.
Using Complete Machine Simulation for Software Power
Estimation: The SoftWatt Approach. In Proceedings of the
Intl. Symposium on High Performance Computer
Architecture, pages 141–150, February 2002.

[16] S. Gurun and C. Krintz. A run-time feedback-based energy
estimation model for embedded devices. In Proceedings of
the Intl. Conference on Hardware/Software Codesign and
System Synthesis, pages 28–33, October 2006.

[17] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan,
and P. Ranganathan. Energy-aware user interfaces: An
evaluation of user acceptance. In Proceedings of the
Conference on Human Factors in Computing Systems,
pages 199–206, April 2004.

[18] R. Joseph and M. Martonosi. Run-time power estimation
in high performance microprocessors. In Proceedings of the
Intl. Symposium on Low Power Electronics and Design,
August 2001.

[19] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan,
M. J. Irwin, and A. Sivasubramaniam. vec: virtual energy
counters. In Proceedings of the Workshop on Program
Analysis For Software Tools and Engineering, June 2001.

[20] T. Li and L. K. John. Run-time modeling and estimation
of operating system power consumption. In Proceedings of
the Intl. Conf. on Measurements and Modeling of
Computer Systems, 2003.

[21] A. Mahesri and V. Vardhan. Power consumption
breakdown on a modern laptop, workshop on power aware
computing systems. In Proceedings of the Workshop on
Power-Aware Computer Systems, December 2004.

[22] A. Mallik, J. Cosgrove, R. Dick, G. Memik, and P. Dinda.
PICSEL: Measuring user-percieved performance to control
dynamic frequency scaling. In Proceedings of the Intl.
Conference on Architectural Support for Programming
Languages and Operating Systems, March 2008.

[23] C. Phillips, S. Singh, D. Sicker, and D. Grunwald.
Applying models of user activity for dynamic power
management in wireless devices. In Proceedings of the Intl.
Conference on Human-Computer Interaction with Mobile
Devices and Services, pages 315–318, September 2008.

[24] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2009. ISBN
3-900051-07-0.

[25] A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P. A.
Dinda, R. P. Dick, and A. N. Choudhary. Learning and
leveraging the relationship between architecture-level
measurements and individual user satisfaction. In
Proceedings of the Intl. Symposium on Computer
Architecture, June 2008.

[26] A. Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik,
P. A. Dinda, and R. P. Dick. Power to the people:
Leveraging human physiological traits to control
microprocessor frequency. In Proceedings of the Intl.
Symposium on Microarchitecture, December 2008.

[27] D. J. Simons and C. F. Chabris. Gorillas in our midst:
sustained inattentional blindness for dynamic events.
Perception, 28:1059–1074, 1999.

[28] D. J. Simons, S. L. Franconeri, and R. L. Reimer. Change
blindness in the absence of a visual disruption. Perception,
29:1143–1154, 2000.

[29] T. K. Tan, A. Raghunathan, G. Lakshiminarayana, and
N. K. Jha. High-level softwrae energy macro-modeling. In
Proceedings of Design Automation Conference, pages
605–610, June 2001.

[30] Wikipedia: The Free Encyclopedia. HTC Dream.
http://en.wikipedia.org/wiki/Gphone.

