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ABSTRACT
Automatic Speech Recognition (ASR) has made tremendous
progress in the last few decades. Even so, audio-only speech
recognition (A-ASR) does not work well in noisy environ-
ments. The standard approach to dealing with this short-
coming is to use visual information along with the audio.
Many approaches to using the visual modality have been
devised. In this paper, I propose a method that will try to
mimic human perception of visual speech by measuring ac-
tivity in regions of the lower face and applying the measures
to train Hidden Markov Models.

1. RELATED WORK
From intuition, it is apparent that humans use visual speech
information in day to day interactions. This has also been
demonstrated experimentally and is known as the McGurk
effect [2]. In any proposed audio-visual automatic speech
recognition (AV-ASR) system, two fundamental questions
arise: how is the visual information to be used and what
are helpful features that should be extracted. Much work
has been done to find the most useful features and then
to combine these with audio in order to create noise-robust
AV-ASR systems.

Over the past 30 years, there have been three main ap-
proaches to choosing visual features: Appearance based fea-
tures, shape based ones, or some combination of both [4].
In systems that utilize the first approach, pixels in the re-
gions of interest around the mouth, where the majority of
the lipreading information is thought to be contained, are
transformed using principal component analysis or by tak-
ing the discrete cosine transform. This makes it possible
to represent each instance of a mouth region with relatively
few parameters. In theory, the advantage is that every pixel
in the mouth region is utilized, however the dimensionality
of the data is greatly reduced. The parameters obtained
are then merged with audio features and then fed into a
speech recognition system. Systems that utilize the second
approach, perform procedures such as finding the edges in
an image and then extracting the approximate lip contours.
These contours are then fit to pre-defined parameterized
models, again, greatly reducing the amount of information
needed to describe the pixels in the mouth region. As in
the previous case, the model parameters are combined with
audio parameters and fed into a recognition system.

An example of the second approach is the work done by
Aleksic [1]. In this system, edges in the mouth region are

used to find the general outline of the lips. A gradient vec-
tor field is found, and elastic ’snakes’ finally settle on an
approximation of the outline of the lips. Facial animation
parameters, as defined by the MPEG-4 standard, are ob-
tained from the changes of the shapes of the snakes from
frame to frame. These parameters are then combined with
the Mel frequency cepstral coefficients of the audio wave-
forms and fed into a Hidden Markov Model based system.
While this system performs well on the female speaker of
the Bernstein Lipreading Corpus, it does not do nearly as
well on databases in which the video sequence has less ideal
conditions (such as shadows). More recently, much of the
AV-ASR work has combined elements of both appearance
and shape based features to describe regions of interest that
are thought to be useful in speech recognition.

2. PROPOSED METHOD
The proposed method of feature extraction is inspired by
the idea that human perception of speech does not rely on
specific anatomical features. That is, it appears that hu-
mans are not consciously (or subconsciously) aware of the
precise borders of lips or the exact geometrical relationships
between the various parts of the face. I propose that humans
infer meaning from regions of activity in certain parts of the
face. Clearly, this idea needs experimentation to be proved
or at least better defined. Some insight can be obtained by
examining the images in Figures 1 and 2. In the first figure,
the outline of the lips can be clearly picked out. However,
in the second figure, the top lip is merged with the inner
mouth, while the bottom lip is missing with only its shadow
present. However, when the sequences of both speakers are
played in a video, both segmentations seem to be just as
helpful to a human observer. This leads me to believe that
the segmentation performed picks up the useful, dominant
features that are necessary for a human being. My method
attempts to pick out some regions around the mouth area
and measure the activity in these regions to get an estimate
of how useful they are in AV-ASR.

The feature extraction method proceeds as follows: a) The
face-tracking component from [1] is used to get a rough es-
timate of the region of interest, in this case, defined as the
region containing the mouth. b) The Adaptive Clustering
Algorithm [3] is applied to the region of interest to obtain
a two-level (binary) image c) Find and track lip corners. d)
Based on lip corners, segment the six regions shown in Fig-
ure 3 e) For each frame, sum all of the black pixels in each
region



Figure 1: Example of database in which lip contours
are well segmented (nevermind the rest of the face)

Figure 2: Example of database in which outline of
lip is not directly segmented

Figure 3: Regions used to define visual features

Once the features have been extracted, they are combined
with audio features consisting of 12 Mel frequency cepstral
coefficients and an energy coefficient. These are then passed
in as observations to the Machine Learning component of
the algorithm.

The machine learing portion used the Hidden Markov Model
Toolkit (HTK) [5]. Before any learning occurred, HTK was
used to take the combined audio and visual features and
find the frame to frame ’difference’ and ’acceleration’ values
for each observation. The difference and accelerations for
the visual features can be seen as an interpretation of the
’activity’ in a given region of the face.

The system made HMMs with 5 states for each phoneme
in the English language, with an additional silence model.
Because some of the observations had floating point values,
all of them were treated as continuous distributions. Several
combinations of multidimensional Gaussian mixtures were
used to describe the observation distributions for each state;
i.e. 3 mixtures for each audio coefficient and 5 mixtures
for each visual coefficient. The models were trained on one
portion of the data and tested on the the other. The learning
task consisted determining which (phoneme) model was the
most likely to have produced each observation sequence in
the test set.

The audio waveforms used in this experiment were sampled
at a rate of 90 Hz, while the video was sampled at 30 frames
per second (30 Hz). In order to have the same number of
audio and visual samples, the visual features had to be inter-
polated between each frame. This trippled the total number
of features. As an aside, it was found that performance of a
system that simply repeated the visual features 3 was sim-
ilar on in which interpolation occurred. The integration of
the audio and visual features utilized what is known as ’late
integration’ [1], a technique in which HMMs are trained in a
way that assigns differing weights to multiple input streams.
In this method, there were two streams: the audio stream
and the video stream. The stream weights applied to each
stream added up to 1.

3. EXPERIMENT
The experiment utilized the Bernstein Lipreading Corpus
as the data set. This high quality audio-visual database
includes two speakers, one male, one female. A total of
474 sentences uttered by the female speaker were used for
this machine learning task. For each of the sentences, the
database contains a speech waveform, a word-level tran-
scription, and a video sequence time synchronized with the
speech waveform. The vocabulary size is approximately
1,000 words. In order to extract visual features from the
database, the video was sampled at a rate of 30 frames/sec
(fps) with a spatial resolution of 320 x 240 pixels, 24 bits
per pixel.

To simulate a noisy environment, additive Gaussian white
noise was applied to the audio waveforms. The highest level
of noise in this experiment reduced the audio signal to noise
ration (SNR) to 0 dB. Though other noise levels were experi-
mented with, only the results for the 0 dB case are displayed.
It was observed, as has been shown many times, that the
visual features gave the greatest performance boost at the



highest noise levels.

Of the 474 sentences, 95% were used to train the system,
while the other 5% were used to test it. Each word-level
transcription was broken down into the phoneme compo-
nent parts to be used for both testing and training. Once the
system was trained, the test set was used to evaluate how
much these ’activity’ features contributed over the audio-
only system. The detected phonemes were grouped into
words. These words were compared to the original tran-
scriptions for each sentence. The system finally obtained
the percentage of the words that were correctly identified.

The results obtained are shown in Figure 4. As mentioned
previously, multiple combinations of varying numbers of mix-
tures were tested for both the audio and visual features.
There was no single ideal combination that was better than
all of the others for all noise levels and all combinations of
stream weights. The graph displays the case in which each
audio parameter was modeled by 5 mixtures and each visual
parameter was modeled by 7 features.

The results show that with these features, an 80-20 distri-
bution of weight yields the highest performance. With the
same dataset and noise level, the audio only speech recog-
nition got about 42% of words correct. Adding the visual
features boosted the recognition performance by over 10%.

4. CONCLUSION
This experiment attempted to capture activity in the mouth
region for a set of video sequences. This activity did not de-
pend on finding the exact outline of the lips or any other
anatomical feature – something that is quite difficult to ac-
complish in less ideal databases. It was hypothesized that
the resulting segmentation of the adaptive clustering algo-
rithm preserves important dominant features that are useful
to human lipreading. I showed that these same segmenta-
tion results are also useful for automatic speech recognition.
It should be noted that the visual features used in this ex-
periment are quite simple. They are simply summations of
pixels of one color for constant sized regions. Even so, these
scalar values seem to carry a lot of information. The basic
goal of this experiment was to see if these features add any
improvement to the automatic speech recognition. The fact
that such simple features boosted the performance by over
10 percent is a very promising prospect for future work. It
should be noted that in most cases the performance of this
system was only a few (2-4) percent poorer than that of the
significantly more complex system proposed by [1].

5. FUTURE WORK
It has been demonstrated that the described method is cer-
tainly not shape based. It is also a bit different than most
appearance based methods, particularly because it uses bi-
nary images. I plan to investigate the difference between
applying appearance based techniques to gray-scale (256
shades or more per pixel) images, and the binary images
obtained by using ACA. I would also like to better define
the concept of measuring activity in a region of the face.
The segmentations seem to carry much useful information,
but the challenge is in finding the best way to fully utilize
this information. Lastly, better techniques of face localiza-
tion can be looked into in order to more precisely extract

the desired region in the face.
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Figure 4: Some preliminary results


