Statistics Toolbox | ![]() ![]() |
Principal Components Analysis (PCA) using the covariance matrix
Syntax
Description
takes the covariance matrix [pc,latent,explained] = pcacov(X)
X
and returns the principal components in pc
, the eigenvalues of the covariance matrix of X
in latent
, and the percentage of the total variance in the observations explained by each eigenvector in explained
.
Example
load hald covx = cov(ingredients); [pc,variances,explained] = pcacov(covx) pc = 0.0678 -0.6460 0.5673 -0.5062 0.6785 -0.0200 -0.5440 -0.4933 -0.0290 0.7553 0.4036 -0.5156 -0.7309 -0.1085 -0.4684 -0.4844 variances = 517.7969 67.4964 12.4054 0.2372 explained = 86.5974 11.2882 2.0747 0.0397
References
[1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons, Inc. 1991. pp. 1-25.
See Also
barttest
, pcares
, princomp
![]() | pareto | pcares | ![]() |