Statistics Toolbox | ![]() ![]() |
Confidence intervals on predictions of nonlinear models
Syntax
ypred = nlpredci(FUN,inputs,beta,r,J) [ypred,delta] = nlpredci(FUN,inputs,beta,r,J) ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt
','predopt
')
Description
returns the predicted responses, ypred = nlpredci(FUN,inputs,beta,r,J)
ypred
, given the fitted parameters beta
, residuals r
, and the Jacobian matrix J
. inputs
is a matrix of values of the independent variables in the nonlinear function.
also returns the half-width, [ypred,delta] = nlpredci(FUN,inputs,beta,r,J)
delta
, of confidence intervals for the nonlinear least squares predictions. The confidence interval calculation is valid for systems where the length of r
exceeds the length of beta
and J
is of full column rank. The interval [ypred-delta,ypred+delta]
is a 95% non-simultaneous confidence interval for the true value of the function at the specified input values.
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'
controls the type of confidence intervals. The confidence level is simopt
','predopt
')
100(1-alpha)
%. '
simopt
'
can be 'on'
for simultaneous intervals or 'off'
(the default) for non-simultaneous intervals. '
predopt
'
can be 'curve'
(the default) for confidence intervals for the function value at the inputs, or 'observation'
for confidence intervals for a new response value.
nlpredci
uses the outputs of nlinfit
for its inputs.
Example
Continuing the example from nlinfit
, we can determine the predicted function value at [100 300 80]
and the half-width of a confidence interval for it.
load reaction [beta,resids,J] = nlinfit(reactants,rate,@hougen,beta); [ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J) ypred = 13 delta = 1.4277
See Also
nlinfit
, nlintool
, nlparci
![]() | nlparci | normcdf | ![]() |