| Statistics Toolbox |    | 
Confidence intervals on predictions of nonlinear models
Syntax
ypred = nlpredci(FUN,inputs,beta,r,J) [ypred,delta] = nlpredci(FUN,inputs,beta,r,J) ypred = nlpredci(FUN,inputs,beta,r,J,alpha,'simopt','predopt')
Description
ypred = nlpredci(FUN,inputs,beta,r,J)
ypred, given the fitted parameters beta, residuals r, and the Jacobian matrix J. inputs is a matrix of values of the independent variables in the nonlinear function.
[ypred,delta] = nlpredci(FUN,inputs,beta,r,J)
delta, of confidence intervals for the nonlinear least squares predictions. The confidence interval calculation is valid for systems where the length of r exceeds the length of beta and J is of full column rank. The interval [ypred-delta,ypred+delta] is a 95% non-simultaneous confidence interval for the true value of the function at the specified input values.
ypred = nlpredci(FUN,inputs,beta,r,J,alpha,' controls the type of confidence intervals. The confidence level is simopt','predopt')
100(1-alpha)%. 'simopt' can be 'on' for simultaneous intervals or 'off' (the default) for non-simultaneous intervals. 'predopt' can be 'curve' (the default) for confidence intervals for the function value at the inputs, or 'observation' for confidence intervals for a new response value.
nlpredci uses the outputs of nlinfit for its inputs.
Example
Continuing the example from nlinfit, we can determine the predicted function value at [100 300 80] and the half-width of a confidence interval for it.
load reaction [beta,resids,J] = nlinfit(reactants,rate,@hougen,beta); [ypred,delta] = nlpredci(@hougen,[100 300 80],beta,resids,J) ypred = 13 delta = 1.4277
See Also
nlinfit, nlintool, nlparci
|   | nlparci | normcdf |  |