| MATLAB Function Reference | ![]() |
Syntax
Description
The svd command computes the matrix singular value decomposition.
s = svd(X)
returns a vector of singular values.
[U,S,V] = svd(X)
produces a diagonal matrix S of the same dimension as X, with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that X = U*S*V'.
[U,S,V] = svd(X,0)
produces the "economy size" decomposition. If X is m-by-n with m > n, then svd computes only the first n columns of U and S is n-by-n.
Examples
U = -0.1525 -0.8226 -0.3945 -0.3800 -0.3499 -0.4214 0.2428 0.8007 -0.5474 -0.0201 0.6979 -0.4614 -0.7448 0.3812 -0.5462 0.0407 S = 14.2691 0 0 0.6268 0 0 0 0 V = -0.6414 0.7672 -0.7672 -0.6414
The economy size decomposition generated by
U = -0.1525 -0.8226 -0.3499 -0.4214 -0.5474 -0.0201 -0.7448 0.3812 S = 14.2691 0 0 0.6268 V = -0.6414 0.7672 -0.7672 -0.6414
Algorithm
svd uses LAPACK routines to compute the singular value decomposition.
| Matrix |
Routine |
| Real |
DGESVD |
| Complex |
ZGESVD |
Diagnostics
If the limit of 75 QR step iterations is exhausted while seeking a singular value, this message appears:
References
[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User's Guide (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.
| surfnorm | svds | ![]() |