| MATLAB Function Reference |    | 
Numerically evaluate double integral
Syntax
q = dblquad(fun,xmin,xmax,ymin,ymax) q = dblquad(fun,xmin,xmax,ymin,ymax,tol) q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...)
Description
q = dblquad(fun,xmin,xmax,ymin,ymax)
 calls the quad function to evaluate the double integral fun(x,y) over the rectangle xmin <= x <= xmax, ymin <= y <= ymax. fun(x,y) must accept a vector x and a scalar y and return a vector of values of the integrand.
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
 uses a tolerance tol instead of the default, which is 1.0e-6.  
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)
 uses the quadrature function specified as method, instead of the default quad. Valid values for method are @quadl or the function handle of a user-defined quadrature method that has the same calling sequence as quad and quadl. 
dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...)
 passes the additional parameters p1,p2,... to fun(x,y,p1,p2,...). Use [] as a placeholder if you do not specify tol or method.   dblquad(fun,xmin,xmax,ymin,ymax,[],[],p1,p2,...) is the same as dblquad(fun,xmin,xmax,ymin,ymax,1.e-6,@quad,p1,p2,...)
Example
where integrnd.m is an M-file. 
The integrnd function integrates y*sin(x)+x*cos(y) over the square pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated with a vector x and a scalar y . 
Nonsquare regions can be handled by setting the integrand to zero outside of the region. For example, the volume of a hemisphere is
See Also 
inline, quad, quadl, triplequad, @ (function handle)
|   | dbdown | dbmex |  |