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Three-Dimensional Diffraction by Infinite
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FDTD Formulation
Jiuan-Her Chang and Allen Taflove, Fellow, IEEE

Abstract—We extend the generalized total-field/scattered-field
formulation of the finite-difference time-domain method to permit
efficient computational modeling of three-dimensional (3-D)
diffraction by infinite conducting and dielectric wedges. This
new method allows: 1) sourcing a numerical plane wave having
an arbitrary incident angle traveling into, or originating from, a
perfectly matched layer absorbing boundary and 2) terminating
the infinite wedge inside the perfectly matched layer with neg-
ligible reflection. We validate the new method by comparing its
results with the analytical diffraction coefficients for an infinite
3-D right-angle perfect electric conductor wedge obtained using
the uniform theory of diffraction. Then, we apply the new method
to calculate numerical diffraction coefficients for a 3-D infinite
right-angle dielectric wedge, covering a wide range of incident and
scattering angles. Finally, we show means to compactly store the
calculated diffraction coefficients in a manner which permits easy
interpolation of the results for arbitrary incidence and observation
angles.

Index Terms—Diffraction, finite-difference time-domain
(FDTD) method, wedges.

I. INTRODUCTION

WIRELESS communication systems ideally provide con-
tiguous coverage for mobile users in the geographical

areas served. A combination of software planning tools and
on-site measurements is used to determine the location and type
of radio equipment that is required to achieve this goal. In urban
environments, where cells are small, planning tools usually em-
ploy deterministic prediction models. Here, accurate estimation
of radio wave diffraction from building corners and edges be-
comes very important. However, existing analytical methods
are generally inadequate in calculating electromagnetic wave
diffraction from such material wedges. Inaccurate diffraction
models could lead to significant errors in RF coverage predic-
tions for cellular systems in urban environments.

In this paper, we extend the generalized total-field/scattered-
field (G-TF/SF) formulation [1] of the finite-difference time-
domain (FDTD) method [2] to permit efficient computational
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modeling of three-dimensional (3-D) diffraction by infinite con-
ducting and dielectric wedges. While a number of recent papers
have been published dealing with improvements on the TF/SF
formulation (for example [3], [4]), the present work is the first to
extend the TF/SF interface into the 3-D perfectly matched layer
(PML) absorbing boundary region. This work is an advance rel-
ative to the two-dimensional (2-D) technique reported in [1] in
that, here, all six vector electromagnetic field components are
accounted for at various FDTD space lattice points along and
immediately adjacent to the TF/SF interface. Furthermore, we
demonstrate how to calibrate the PML in 3-D to numerically
obtain the incident field components needed to implement the
TF/SF algorithm where the TF/SF interface is embedded within
the PML. In essence, we show how to efficiently setup and use
an auxiliary 3-D FDTD space lattice to obtain the necessary in-
cident wave data within the PML.

Our new method allows: 1) sourcing a numerical plane wave
having an arbitrary incident angle traveling into, or originating
from, a perfectly matched layer absorbing boundary and 2)
terminating the infinite wedge inside the perfectly matched
layer with negligible reflection. We validate the new method by
comparing its results with the analytical diffraction coefficients
for an infinite 3-D right-angle perfect electric conductor (PEC)
wedge obtained using the uniform theory of diffraction (UTD)
[5]. Then, we apply the new G-TF/SF method to calculate
numerical diffraction coefficients for a 3-D infinite right-angle
dielectric wedge, covering a wide range of incident and scat-
tering angles. Finally, we show means to compactly store the
calculated diffraction coefficients in a manner which permits
easy interpolation of the results for arbitrary incidence and
observation angles. This storage/interpolation technique is also
a significant advance relative to [1].

II. GENERAL DESCRIPTION OF THE 3-D G-TF/SF FDTD
FORMULATION

The G-TF/SF formulation of the FDTD method permits ac-
curate modeling of an infinite material wedge inside a compact
3-D FDTD grid to efficiently obtain numerical diffraction coef-
ficients. As shown in Fig. 1, the G-TF/SF boundary is located
in part within the PML [6] absorbing boundary region of the
FDTD grid.

Fig. 2 shows the six faces of the 3-D TF/SF interface of
Fig. 1, where a 3-D right-angle wedge is located inside the
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Fig. 1. G-TF/SF formulation of FDTD extends the material wedge into the PML to suppress spurious diffraction. Only diffraction from the desired corner is
observed.

G-TF/SF boundary and partially embedded within the PML.
An all Berenger split-field PML formulation is assumed for
simplicity. The portion of the G-TF/SF surface located inside
the PML is indicated by shading. For the special field points
along this surface that lie in free space, we use the well-known
update equations for the conventional TF/SF boundary [2].
The special field points in the PML absorbing region require
special update equations, to be discussed in the following
section.

III. SPECIAL UPDATE EQUATIONS FOR G-TF/SF BOUNDARY

IN PML REGION

Referring to Fig. 2(a), we first consider the face of
the TF/SF surface inside the PML region, i.e., Regions I and
III–VI, for the E-field updates. Here, the special update equation
for is given by:

TF/SF Face in PML: [Regions I and III–VI, in
Fig. 2(a)]

(1)

Since ,
therefore

(2)

Rewriting the above equation in a more convenient form, we
have

(3a)

Similarly, at this same face of the TF/SF surface in the PML, we
have

(3b)

In an analogous manner, we proceed to the other five faces of
the TF/SF surface in the PML.

TF/SF Face in PML: [Regions I–VI in Fig. 2(b)]

(4a)

(4b)

TF/SF Face in PML: [Regions I–IV in Fig. 2(c)]

(5a)

(5b)
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Fig. 2. Six faces of the total-field/scattered-field interface of Fig. 1. (a) j = j face; (b) j = j face; (c) k = k face; (d) k = k face; (e) i = i face; (f) i = i

face.

TF/SF Face in PML: [Regions I–IV in Fig. 2(d)]

(6a)

(6b)

TF/SF Face in PML: [Regions I and III–VI in Fig. 2(e)]

(7a)

(7b)
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TF/SF Face in PML: [Regions I–VI in Fig. 2(f)]

(8a)

(8b)

Equations (3)–(8) represent the complete set of special elec-
tric-field update equations required to implement the 3-D gen-
eralized TF/SF boundary of Figs. 1 and 2.

Next, we consider the face adjacent to the TF/SF
surface inside the PML for the required H-field updates. Here,
the special update equation for is given by:

Face in PML: [Adjacent to regions I and III–VI
in Fig. 2(a)]

(9)

Since

, therefore

(10a)

Similarly, at this same face adjacent to the TF/SF surface in the
PML, we have

(10b)

In an analogous manner, we proceed to the other five faces ad-
jacent to the TF/SF surface in the PML:

Face in PML: [Adjacent to regions I–VI in
Fig. 2(b)]

(11a)

(11b)

Face in PML: [Adjacent to regions I–IV in
Fig. 2(c)]

(12a)

(12b)

Face in PML: [Adjacent to regions I–IV in
Fig. 2(d)]

(13a)

(13b)

Face in PML: [Adjacent to regions I and III–VI
in Fig. 2(e)]

(14a)

(14b)

Face in PML: [Adjacent to regions I–VI in
Fig. 2(f)]

(15a)

(15b)

Equations (10)–(15) represent a complete set of special mag-
netic-field update equations required to implement the general-
ized TF/SF boundary of Figs. 1 and 2. These equations, as well
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as (3)to (8) can be implemented as long as we know the appro-
priate incident fields in the PML. Note that all of these equa-
tions, knowledge of the total incident field components

, etc., and not the individual split incident field is required.

IV. CALIBRATION PROCESS

In this section, we discuss the method to obtain the incident
E and H field components in the PML region that are required
in (3)–(8) and (10)–(15).

We cannot assume a perfect exponential decay of the incident
wave in the PML region. For accuracy, this decay must be ob-
tained numerically in a calibration process

(16)

Here, represents the required incident E or H field com-
ponent at an observation point in the PML region, is
the corresponding free space incident field (which can be ob-
tained using the table look-up procedure of [2]); is an
appropriate multiplying factor to be determined in the calibra-
tion process and is the direction of the incident plane
wave.

For a given FDTD grid configuration and an arbitrary
, is obtained by conducting preliminary

FDTD runs to calibrate the performance of the PML. In these
runs, we illuminate the desired PML region of the grid with a
pulsed incident plane wave having a desired center frequency,

, and full-width at half-maximum (FWHM) bandwidth, .
We record the amplitude of the E and H field components
within the PML, at each required depth, .
We also compute the amplitude of the corresponding incident
electric and magnetic fields, , in free
space. Then, for a wave impinging upon a given PML region,
we define the attenuation factor, , as

(17a)

Similarly, for a wave originating within a given PML region, we
define the amplification factor, , as

(17b)
Note that is obtained in the prelimi-
nary FDTD run by illuminating the given PML region with a
plane wave incident at .

We now summarize the calibration procedure. For each re-
quired incident direction , we set up three prelimi-
nary FDTD calibration runs to obtain in ,

, PML regions. In the preliminary FDTD runs we launch
an approximate plane wave impinging upon the local PML re-
gion of interest by exciting a nearby parallel TF/SF boundary
plane. For example, to obtain the calibration for a plane wave
penetrating into the PML region, we use a nearby TF/SF
boundary having only an face, and observe penetration
into the PML at points away from the edges of the face. Here,
in one preliminary run, we obtain and

for all PML depths in the PML region. Correspond-
ingly, in another two preliminary runs we obtain ,

, , and for all PML depths
( , ) in the and PML region.

We can now obtain from , ,
, , , and for all

G-TF/SF boundary segments in PML, and all angles of inci-
dence. For example, referring to Fig. 2; consider the
face:

For ,
Region I:

(18a)

where
Region II:

(18b)

Region III:

(18c)

where
Region IV:

(18d)

where and where
Region V:

(18e)
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where
Region VI:

(18f)

where and
For ,
Region I:

(19a)

where
Region II:

(19b)

Region III:

(19c)

where
Region IV:

(19d)

Fig. 3. Snapshot visualizations of a Gaussian pulsed sinusoidal plane wave
launched within an empty 3-D total-field zone that extends into PML. (a)
Horizontal cut through the space lattice. (b) Vertical cut through the space
lattice.

where and
Region V:

(19e)
where

Region VI:

(19f)
where and .
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Fig. 4. Snapshot visualizations of a Gaussian pulsed sinusoidal plane wave
illuminating a right-angle PEC wedge that extends into PML. (a) Horizontal cut
through the space lattice. (b) Vertical cut through the space lattice.

The of , , , , faces
can be obtained by analogy [7]. We use the above equations and
(16) to obtain the incident E and H field components at any point
in the PML region. We then use the special update (3)–(8) and
(10)–(15) to implement the G-TF/SF boundary in the PML.

V. NUMERICAL RESULTS FOR THREE DIMENSIONAL

SCATTERING

A. Empty Total-Field Zone

We first demonstrate how the G-TF/SF formulation al-
lows launching a numerical plane wave within an empty 3-D
total-field zone that extends into PML. Fig. 3 is a snapshot
visualization of a Gaussian pulsed sinusoidal plane wave prop-
agating at , . The center frequency is

and the full width at half maximum (FWHM)
bandwidth . Here, three preliminary calibra-
tion runs were required to obtain , ,

, , , and for all
PML depths ( , , ). From Fig. 3, we see that the propa-
gating wave generated by the G-TF/SF technique maintains its
plane nature despite the presence of the PML. Further, the wave
is well confined within the TF zone, with little external leakage.

Fig. 5. Comparison of G-TF/SF FDTD and UTD results for the diffraction
coefficient of a right-angle PEC wedge. (a) At 850 MHz as a function of
scattering angle � for fixed � = 30 , � = 55 , and � = 35 .
(b) As a function of frequency for � = 30 , � = 165 , � = 55 ,
and � = 65 .

B. Right-Angle PEC Wedge in Total-Field Zone

We next apply the G-TF/SF technique to calculate the diffrac-
tion coefficients for an infinite right-angle PEC wedge. The 3-D
geometry of the wedge in the FDTD grid and sample field vi-
sualizations are shown in Fig. 4. Here, the incident illumina-
tion is a Gaussian pulsed plane wave with
and . The diffracted wave observation points
are marked in the scattered-field region outside of the TF/SF
boundary. FDTD grid resolution equals , where is the
wavelength at 850 MHz.

Fig. 5(a) and (b) compares the G-TF/SF FDTD-computed
diffraction coefficients for the infinite PEC wedge of Fig. 4 with
the UTD asymptotic results for the corresponding infinite wedge
(see [8] and Appendices A and B). Fig. 5(a) shows the variation
of the amplitude of the soft and hard diffraction coefficients at

as a function of the observation angle at
a fixed and a fixed observation distance
from the diffracting corner. Here, the incident wave propagates
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Fig. 6. G-TF/SF FDTD diffraction coefficients for a right-angle lossless
dielectric wedge (" = 6). 850-MHz incident plane wave at � = 55 . (a)
Soft diffraction coefficients. (b) Hard diffraction coefficients.

at ( , ). Fig. 5(b) shows the variation of
the amplitude of the soft and hard diffraction coefficients as a
function of frequency at a fixed observation point ( ,

, ) over the frequency range 700 MHz to
1.3 GHz for the incident plane wave propagating at ( ,

). Both figures show very good agreement of the
G-TF/SF FDTD results and the asymptotic UTD calculations.

C. Right-Angle Dielectric Wedge in Total-Field Zone

We now demonstrate the capability of the G-TF/SF FDTD
technique to calculate 3-D diffraction coefficients for an infinite
lossless right-angle dielectric wedge. The FDTD grid geometry
remains that of Fig. 4, but the finite PEC wedge is replaced by
a finite lossless dielectric wedge of permittivity .

Fig. 6(a) and (b) shows multiple curves for the G-TF/SF
FDTD-calculated soft and hard diffraction coefficients at

for plane waves at incident angles
and observation angles . In both cases

. We ensure that the distance from the vertex of
the wedge to each observation point is greater than , where

is the wavelength at .

Fig. 7. G-TF/SF FDTD calculated soft diffraction coefficient data set for the
3-D " = 6 dielectric wedge of Fig. 6. (a) Discrete values calculated at 10
increments of � and � in the range (15 � � � 75 , 165 �

� � 285 ) for � = 65 . (b) MATLAB interpolation of (a) visualized at
1 increments of � and � .

VI. DEVELOPMENT OF A DIFFRACTION COEFFICIENT LIBRARY

VIA INTERPOLATION

Finally, we present an efficient means to store G-TF/SF
FDTD-calculated diffraction coefficient data for a wide range
of incident and diffracted wave angles. We exploit the capability
of MATLAB to fit an interpolating hypersurface to multidimen-
sional data, in our case the calculated variation of the diffraction
coefficient as a function of the complete set of incident-wave
and diffracted-wave propagation angles. As an example, we
consider the same 3-D dielectric wedge of Fig. 6.
Fig. 7(a) is a 3-D surface visualization of a set of soft diffrac-
tion coefficient data for this dielectric wedge calculated using
G-TF/SF FDTD at 10 increments of and in the range

and for .
Fig. 7(b) shows the corresponding visualization generated by
MATLAB using a three-dimensional cubic surface interpola-
tion of the data of Fig. 7(a) at 1 increments of and .
Fig. 8(a) and (b) shows the corresponding visualizations for
the same dielectric wedge for the hard diffraction coefficients.
Finally, Fig. 9 visualizes the soft diffraction coefficient data for
incident angles and for
fixed angles and .

We see that the problem of generating a library of diffraction
coefficients could be greatly simplified. Namely, the G-TF/SF
FDTD method would be used to calculate the diffraction coeffi-
cients for a particular material wedge over a relatively coarsely
sampled set of incident and diffracted wave angles. This small
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Fig. 8. G-TF/SF FDTD calculated hard diffraction coefficient data set for the
3-D " = 6 dielectric wedge of Fig. 6. (a) Discrete values calculated at 10
increments of � and � in the range (15 � � � 75 , 165 �

� � 285 ) for � = 65 . (b) MATLAB interpolation of (a) visualized at
1 increments of � and � .

set of data would be supplied to a field engineer to be imported to
a MATLAB package which would subsequently interpolate the
FDTD data to any required resolution. In this manner, the burden
of performing the interpolation would fall upon the well-known
and widely available commercial software MATLAB.

VII. CONCLUSION

We have shown that 3-D numerical diffraction coefficients for
infinite right-angle material wedges can be efficiently calculated
using a generalized total-field/scattered-field FDTD technique.
This approach permits modeling an infinite material wedge in-
side a compact FDTD grid which contains only the volume in
the immediate vicinity of the diffracting corner. Our numerical
validation results for the PEC wedge show very good correspon-
dence with asymptotic UTD solution. Calculation of diffraction
coefficients for the infinite right-angle material wedge having
arbitrary permittivity and/or loss is a trivial extension of the PEC
wedge case. For the results shown here, the wedge size is re-
duced by about 4:1 in each dimension relative to the conven-
tional TF/SF method. This yields an approximate 64:1 reduc-
tion in computer memory and running time. Finally, MATLAB
provides a powerful and straightforward means to compactly
store and interpolate the numerical diffraction coefficients over
a broad range of propagation angles of the incident and scat-
tered waves. Future work involves extension and validation of
the technique for nonright-angle wedges.

Fig. 9. G-TF/SF FDTD calculated soft diffraction coefficient data set for the
3-D " = 6 dielectric wedge of Fig. 6. (a) Discrete values calculated at 10
increments of � and � in the range (15 � � � 75 , 25 � � �

75 ) for fixed angles (� = 185 , � = 30 ). (b) MATLAB interpolation
of (a) visualized at 1 increments of � and � .

APPENDIX A
UNIFORM THEORY OF DIFFRACTION FOR AN INFINITE

RIGHT-ANGLE PEC WEDGE

In Fig. 10(a), a plane wave is incident at an oblique angle to
the PEC wedge. This generates a cone of diffracted rays starting
from at an angle with respect to the edge. All the
observation point lying on this cone obeys the Keller’s law
of diffraction [9], . By choosing appropriate ray-fixed
coordinates, the diffracted-ray field is obtained as [5], [8]

(A1)

where the incident field components are

(A2a)

(A2b)

The uniform diffraction coefficients and are given by
(A3a) and (A3b) at the bottom of the next page, where

, , is Fresnel’s transition function, and
.

APPENDIX B
3-D DIFFRACTION COEFFICIENTS DERIVED USING FDTD

Fig.10(b) shows the 3-D geometry of the scatterer used in
the FDTD modeling and the relationship between the FDTD
coordinate system and the ray-fixed coordinate system. This
figure shows the edge-fixed plane of incidence with the
ray-fixed unit vectors and parallel and perpendicular to it,
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Fig. 10. (a) 3-D geometry of an infinite right-angle wedge illuminated by a plane wave at oblique incidence. The edge-fixed plane of incidence and diffraction,
the ray-fixed coordinate system, and (b) the FDTD coordinate system are shown.

respectively. Also shown is the edge-fixed plane of diffraction
with the ray-fixed unit vectors and parallel and per-

pendicular to it, respectively. The edge-fixed spherical angles
made by the incident ray and the diffracted ray are and

, respectively. The FDTD coordinate system ( , , )
is parallel to the three orthogonal edges of the scatterer.

We find the diffracted-field impulse response of the scatterer
numerically using FDTD. By illuminating the wedge with a
pulsed plane wave having an electric field (E-field) component
parallel to the plane of incidence, we obtain the diffracted-field
impulse response polarized parallel to the plane of
diffraction. An analogous procedure is performed with the
incident E-field component perpendicular to the plane of inci-
dence, yielding polarized perpendicular to the plane of
diffraction. The Fourier transforms of these diffracted-field im-
pulse responses, and , give the corresponding
spectra of the diffracted fields. The diffracted-ray field given by
the UTD in terms of the scalars and is shown in (A3a)

and (A3b), respectively. This indicates that the FDTD-com-
puted diffraction coefficients, and , can be
found using

(B1a)

(B1b)

where is the distance of the observation point from the scat-
tering edge and . The Fourier transform has been
defined using the convention. The factor, , in the
above equation arises from the nature of the Green’s function in
two dimensions. and can be obtained using

(B2a)

(B2b)

(A3a)

(A3b)
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where and are, re-
spectively, the components of the diffracted field parallel and
perpendicular to the plane of diffraction.
and are, respectively, the components of
the incident field at the point of diffraction, parallel to and per-
pendicular to the plane of incidence. Here, the angles
represent the direction of the incident plane wave illumination in
the FDTD coordinate system. Further, the angles repre-
sent the direction of the diffracted ray from the point of diffrac-
tion to the observation point .

In order to compute the dot products in (B2), we express the
ray-fixed unit vectors and in terms of the FDTD
unit vectors ( , , ) as follows:

(B3a)

(B3b)

(B3c)

(B3d)

From (B1) and (B2), it is clear that the FDTD computed
diffraction coefficients are obtained using [7]

(B4a)

(B4b)
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