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We study local and nonlocal correlations of light transmitted through active random media. The conventional
approach results in divergence of ensemble-averaged correlation functions due to the existence of lasing
realizations. We introduce a conditional average for correlation functions by omitting the divergent realizations.
Our numerical simulation reveals that amplification does not affect local spatial correlation. The nonlocal
intensity correlations are strongly magnified due to selective enhancement of the contributions from long
propagation paths. We also show that by increasing gain, the average mode linewidth can be made comparable
to the average mode spacing. This implies that light transport through a diffusive random system with gain may
exhibit some similarities with that through a localized passive system.
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Without a counterpart in the electronic system, the coher-
ent amplification of light adds a new dimension to the fun-
damental study of mesoscopic wave transport. An inherent
quantum/wave signature of mesoscopic transport is nonlocal
intensity correlation,1–3 which reflects the closeness to
Anderson localization transition.4 Light transport in an am-
plifying random medium experiences enhanced contribution
from long paths,5 which should have a profound effect on the
nonlocal intensity correlation.

Due to formal similarity, it is tempting to treat a random
system with gain as if it had “negative absorption,”6 and
directly adopt the results obtained for an absorbing system.
Such a simplistic approach to correlation functionssCFsd is
fundamentally flawed. Theoretically, the spatial and spectral
CFs are obtained by average over an infinite number of ran-
dom realizations. Among them, there exist rare configura-
tions containing more localized modes that could lase in the
presence of gain. Light intensity in the lasing configurations
diverges, and so do the ensemble-averaged CFs. Experimen-
tally, the divergence of laser intensity is prevented by gain
saturation. Nevertheless, the lasing configurations have much
higher intensity than the nonlasing ones, thus they dominate
the CFs. The width of spectral CFs is simply equal to the
lasing mode linewidth, while the spatial CFs only reflect the
spatial extent of the lasing modes. This is in contrast to the
“negative absorption” model, which does not contain the di-
vergent contribution of the rare events.7 The analytical theo-
ries are based on perturbation approaches which implicitly
drop long-path contributions described by high-order terms.
In order to obtain the CFs that reflect light transport in am-
plifying random media, we introduce the conditional average
over all nonlasing configurationsk¯l→ k¯lc. Such replace-
ment, together with the fact that the fraction of lasing con-
figurationsvaries with the amount of gain, makes any ana-
lytical derivation challenging. Numerical simulations turned
out to be a fruitful alternative.

In this paper, based on numerical simulations, we present
a phenomenological analysis of the local and nonlocal corre-
lations of light transmitted through active random media.

The systems under consideration are in the diffusive regime,
but not too far from the localization threshold. We show that
“negative absorption” formulas give a good fit to the condi-
tional CFs only at low gain; with a decrease of the dimen-
sionless conductanceg this range of applicability is further
reduced. For high gain, even after discarding the contribu-
tions of lasing configurations, the long-range correlations are
significantly stronger than the prediction of “negative ab-
sorption” theory, especially for the systems closer to the lo-
calization threshold. At first glance, the removal of all lasing
configurations, which are dominated by more localized
modes and have stronger nonlocal correlations, should have
weakened the long-range correlations averaged over the rest
nonlasingsless localizedd configurations. Moreover, the av-
erage mode linewidthdn, found from the width of condi-
tional spectral CF, does not exhibit any widening compared
to the “negative absorption” expression. This is unexpected
because exclusion of the narrowest modesswhich have
lasedd should have overestimated the “average” mode line-
width. Therefore, the enhancement of long-range correlations
and narrowing of the conditional spectral correlation width
caused by coherent amplification exceed the expectations
from “negative absorption” model. It reveals the absence of
duality between gain and absorption. We also calculate the
effective Thouless numberd;dn /dn, wheredn is the aver-
age mode spacing. In the absence of gain, the onset of local-
ization is marked byd=1. We show that for diffusive sys-
tems, as gain increases,d decreases monotonically to below
1 before reaching the diffusive lasing threshold predicted by
the “negative absorption” theory that ignores fluctuations.
This is an intriguing result, which seems to imply that trans-
port in a diffusive system with gain could exhibit some simi-
larities to that through a localized passive system.

In our numerical simulation, we consider 2D random
medium in a waveguide geometry, shown in the inset
of Fig. 1sad. It consists of a metallic waveguide filled
with circular dielectric scatterers of refractive index
n=2. Our numerical method for calculation of CFs in passive
systems has been described elsewhere.8 Physically, our
system is quasi-one-dimensional, and the transition from
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diffusion to localization can be realized by increasing the
length L of the random medium. To demonstrate the inde-
pendence of our results on microscopic structure of the sys-
tem, we varied both the filling fraction of scatterers and the
length of the random medium to obtain samples with dimen-
sionless conductance,g, from 2.2 to 9. The effect of absorp-
tion or gain sinside the scatterersd is treated by a classical
Lorenzian model9 with positive or negative conductivity. The
advantage of our numerical model is the ability to introduce
spatially uniform gain as well as to separate coherent ampli-
fication of an input signal from spontaneous emission of the
active medium. In the numerical experiment, a short pulse
was launched via a point source at the input end of the wave-
guide. The Fourier transform of the electromagnetic field at
the output end gave the CFs for field10 CEsDr ,Dnd=kEsr
+Dr ,n+DndE*sr ,ndl / fkIsr +Dr ,n+Dndl1/2kIsr ,ndl1/2g and
intensity3 CsDr ,Dnd=kIsr +Dr ,n+DndIsr ,ndl / fkIsr +Dr ,n
+DndlkIsr ,ndlg−1 ssee Ref. 8 for details on numerical statis-
tical averagingd. In the presence of gain, long after the short
excitation pulse, the electromagnetic field decays with time
in the nonlasing realizations, while it keeps increasing in the
lasing ones. We excluded the lasing realizations from the
ensemble average for CFs.

Based on the pairing of incoming and outgoing channels,
three11 contributions to intensity CF have been identified:3 a
local sshort-ranged C1= uCEu2,12 and two nonlocalC2 slong-
ranged and C3 sinfinite-ranged ones. For diffusive transport
g@1, in a waveguide geometryC1,1, C2,1/g, and
C3,1/g2, making the values ofC2 andC3 small.3 The non-
local terms are brought about by long propagation paths
which are most sensitive to the effect of amplification. De-

spite their small values in the passive systems, we observe a
dramatic enhancement of the nonlocal correlations by coher-
ent amplification.

The spatial field CF in 3D bulk was originally found by
Shapiro in Ref. 10. Later Eliyahuet al.13 calculated it at the
output surface of 3D random medium. Similarly, we derived
the corresponding expression in the 2D case:8

CEsDrd =
pszb/ldJ0skDrd + 2 sinskDrd/kDr

pzb/l + 2
, s1d

wherek=2p /l, l is the transport mean free path,J0 is Bessel
function of zeroth order, and the extrapolation lengthzb, l
accounts for boundary effects. The imaginary part ofCEsDrd
should vanish due to isotropy,14 which is confirmed by our
calculation where its value is less than 10−3. The real parts of
CEsDrd are found unchanged in the presence of gain or ab-
sorption, as shown in Fig. 1sad for a system ofg=2.2.
Equation s1d gives excellent fit for passive, absorbing,
and amplifying systems with the same value ofzb/ l. Physi-
cally, this invariance can be explained by the local nature
of CEsDrd. The spatial field correlation contains information
that comes from the length scale of order of the mean free
path. l is always shorter than the ballistic gain lengthlg:
lg/ l . s2neff

sed /p2d ·sL / ld2@1, because the system is below the
diffusive lasing thresholdL,plamp. In the above expres-
sions, the amplification lengthlamp=ÎDtamp, whereD is the
diffusion coefficient andtamp= lg/c, the effective index of
refractionneff

sed=c/vE, wherevE is the energy transport veloc-
ity. Since amplification occurs on the scale much longer than
l, it has negligible effect on short-range transport and local
spatial correlations.

The spectral field CFCEsDnd contains an important dy-
namical parameter of transport—the diffusion coefficient
D=vEl /2. The conditional spectral correlation widthdn is
defined as the width at half maximum ofuCEsDndu2 divided
by a numerical factor 1.46.8 In a passive system,dn is equal
to the average mode linewidthD /L82, where L8=L+2zb.
Since vE can be determined separately through calculation
of energy distribution between air and dielectric scatterers,8

the transport mean free path was found by fitting of the
real and imaginary parts ofCEsDnd fFig. 1sbdg. The value
of l allowed us to determineg=sp /2dneff

sedNl /L8, where
N=2W/l.20–40 is the number of propagating modes in
the waveguide, andW is its width. In the presence of
absorption,15 the numerically calculatedCEsDnd fits well the
expression derived in Ref. 16. For the case of amplification,
we obtained the “negative absorption” formula by making
the substitution −tabs→tamp:

CEsDnd =
sinhsq0ad
sinhsq0L8d

sinsL8/lampd
sinsa/lampd

, s2d

where q0=g+− ig−, g±
2=sÎ1/lamp

4 +b471/lamp
2 d /2,

b=Î2pDn /D, anda. l is randomization length.3 By fitting
CEsDnd with Eq. s2d, we obtaineddn, which is plotted in Fig.
2 for systems ofg=4.4 and 9.0. The narrowing of the con-
ditional spectral correlation width by gain is due to partial
compensation of light leakage through the system bound-

FIG. 1. sad The real part ofCEsDrd andsbd the realsopen sym-
bols, solid lined and imaginaryssolid symbols, dashed lined parts of
CEsDnd. Circles, squares, and triangles represent numerical data for
passive stabs/amp=`d, absorbing stabs=−5tamp

cr d, and amplifying
stamp=5tamp

cr d systems, respectively.tamp
cr is the critical amplification

time constant at the diffusive lasing threshold.L=0.4 m,
W=0.2 m, l =1.8 cm. Curves represent theoretical fit with
zb/ l =0.8. The inset is a sketch of the numerical experiment.
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aries. Absorption, on the contrary, introduces an additional
loss mechanism, which leads to an increase ofdn. For both
amplifying and absorbing media, the calculateddn agrees
well with the diffusion prediction. This agreement is surpris-
ing for the case of amplification. The “negative absorption”
theory neglects the fluctuation of lasing threshold, and as-
sumes the spectral width of all modes decreases with gain
uniformly. However, the widthg of resonant modes has a
distributionPsgd, schematically plotted in the inset of Fig. 2.
For a given amount of gain, the modes with smallg in the
tail sV1d of Psgd lase, and they are excluded from the en-
semble average. Such selective elimination of the narrowest
modes should have led to an overestimation ofdn. The ab-
sence of deviation from Eq.s2d indicates amplification not
only reduces the width of all nonlasing modes, but also en-
hances the weight of the modes with narrower-than-average
width sin V2d in the averaging.

In Fig. 2, the diminishing correlation width in the ampli-
fying system signifies an approach to the lasing threshold for
the mode with average linewidth. According to Eq.s2d,
dn=0 when sinsL8 / lampd turns to zero atL8 / lamp=p. This
“average” lasing threshold agrees with the diffusive lasing
threshold derived by Letokhov.17 Our calculation, Fig. 2,
shows that thesconditionald average mode linewidthdn can
become comparable to the average mode spacingdn before
the diffusive lasing threshold is reached. Namely, with in-
creasing gain,dn decreases todn before reaching zero. This
means the effective Thouless numberd can be reduced to-
ward unity by coherent amplification for a system that is
diffusive in the absence of gain.

Figure 3 shows the nonlocal part of spatial intensity CF,
CsDr ,tamp

cr /tampd− uCEsDr ,tamp
cr /tampdu2, in samples ofg=4.4

and 9.0. According to Refs. 12 and 18, spatial variation and
absorption contribution should factorize. Accounting for
terms up to 1/g2 we obtained the “negative absorption” ex-
pression for nonlocal intensity correlation,15,16,18–20

CsDr,s= L/lampd − uCEsDr,sdu2 = s1 + FsDrdd

3 F 1

4gs

2ss2 − cos 2sd − sin 2s

sin2 s
+

4

g2

sin2 s

s2

3 S2s2 − scots+ 1

16 sin2 s
− 3

s2 + scots+ 1

16 sin4 s

+
3s2

8 sin6 s
DG , s3d

whereFsDrd= uCEsDrdu2. The inset of Fig. 3 plots the profile
of CsDrd−C1sDrd, normalized to its value atDr =0. For pas-
sive, absorbing, and amplifying systems, the dependence of
C−C1 on Dr is almost the same. In particular, the value of
C−C1 at Dr →` is exactly 1/2 of that atDr =0, in agree-
ment withf1+FsDrdg dependence. This tells us amplification
sabsorptiond increasessdecreasesd the nonlocal correlations

FIG. 2. The conditional spectral correlation widthdn as a func-
tion of amplification timetamp strianglesd or absorption timetabs

ssquaresd. dn is normalized to the value without gain or absorption
stamp/abs=`d, tamp/abs to tamp

cr . Solid symbols correspond tog=4.4,
open symbols tog=9. The solid curves are given by the diffusion
theory. The inset schematically shows the distribution of the reso-
nant mode linewidthssee text for discussiond.

FIG. 3. C−C1 at Dr =0 andDn=0 in absorbingssquaresd and
amplifying strianglesd systems. Solid symbols correspond tog
=4.4, open symbols tog=9. Solid and dashed curves are obtained
from Eq.s3d without any fitting parameters. The inset compares the
dependence ofC−C1 on Dr with fFsDrd+1g /2 sthick lined. Thin
solid, dotted, and dashed lines represent passive, absorbing, and
amplifying systems as in Fig. 1.

FIG. 4. The frequency dependence of the nonlocal contribution
to CsDnd normalized to its value atDn=0. The frequency differ-
ence,Dn, is expressed in units of the correlation linewidth,dn,
determined from the correspondingC1sDnd= uCEsDndu2 shown in
the inset. System parameters and symbol notations are the same as
in Fig. 1.
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at everyDr uniformly. Therefore, the enhancementsreduc-
tiond can be characterized by a single number, e.g., the value
of C−C1 at Dr =0 as shown in Fig. 3. In two absorbing
samples ofg=4.4 and 9, the decrease of nonlocal correla-
tions is in good agreement with the diffusion prediction. For
amplifying media, only when the fraction of omitted lasing
realizations is small does Eq.s3d adequately describe the
nonlocal correlations of the transmitted intensity. For high
gain, we see strong deviations: even after removing the las-
ing realizations, nonlocal correlation still exceeds the “nega-
tive absorption” predictionfEq. s3dg. The deviation becomes
more pronounced as the dimensionless conductance de-
creases. The rapid increase of nonlocal correlation with gain
is caused by enhanced contribution from long trajectories
that cross upon themselves.

Finally, we calculated the spectral correlations of
transmitted intensities. Figure 4 reveals the changes of
C1sDnd and CsDnd−C1sDnd due to gain and absorption.
CsDnd−C1sDnd is normalized to its value atDn=0. Similar
to the effect of localization8 C1 andC−C1 are narrowed by

gain. In the case of localization, the narrowing occurs as the
system length is increased, while in the case of gain, it oc-
curs in the sample with fixed length. In the main part of Fig.
4, we choose to normalize the frequency separationDn by
the corresponding linewidth ofC1sDnd, dn. We can see that
the correlation width of the nonlocal terms diminishes
swithin numerical accuracyd at the same rate as that ofC1. In
contrast, in passive systems at the onset of localization, we
found8 slower decrease of the width ofCsDnd−C1sDnd con-
tribution. This shows that when a passive system approaches
the localization transition, the more conductive channels
dominate the nonlocal correlations, whereas in a diffusive
system with gain, the modes with narrow widths are prefer-
ably amplified and lead to stronger decrease of the width of
CsDnd−C1sDnd.
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