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We report the development and validation of the equiphase-sgE&® approximation for calculating the
total-scattering cross-sectighSCS spectra of inhomogeneous microparticles having complex interior struc-
tures. We show that this closed-form, analytical approximation can accurately model the TSCS of randomly
inhomogeneous spherical particles having internal refractive index variations with geometrical scales spanning
from nanometersi.e., subwavelengyto microns(i.e., suprawavelengghMoreover, we derive an easy-to-use
criterion for the range of validity of the EPS approximation in modeling TSCS of inhomogeneous patrticles.
The work discussed in this paper may positively impact tissue optical imaging and diagnostic applications.
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I. INTRODUCTION In this paper, we advance beyond the simple uncorrelated

Examples of inhomogeneous particles range from minerdparticle inhomogeneity considered if4], and report a
particles and atmospheric aerosols to cell nuclei in biologicaf!0sed-form analytical approximation that provides accurate
tissue. Characterizing the light-scattering properties of thes€SCS spectra characterization despite the internal complex-
particles is important for a variety of applications in atmo- ity of the particle. Specifically, the particles considered here
spheric science, oceanography, astronomy, and biomedicare spheres that have internal distributions of a refractive
optics[1]. index synthesized using the isotropic Gaussian random field

Analytical methods capable of accurately modeling light(GRF model. GRF models have been used previously to
scattering by inhomogeneous particles have been developetharacterize the morphology of randomly inhomogeneous
for only a small set of particle geometries, such as the conmaterials and characterizing complex microstruct(iésac-
centrically stratified spherg?] and sphere with spherical in- counting for many features observed in naturally occurring
clusions[3]. However, naturally occurring particles usually random media. For such an assignment of a refractive index,
have much more complex shapes and internal structures. Fare demonstrate that the equiphase-spliERS approxima-
such particles, approximation methods are desirable for praion introduced in Refs[7-9] provides an accurate closed-
viding practical solutions to light-scattering problems. How-form calculation of the TSCS spectra of highly inhomoge-
ever, despite significant interest in the development of apneous particles having GRF refractive index variations with
proximation methods for characterizing the light-scatteringgeometrical scales spanning nanometers to microns. More-
properties of inhomogeneous and nonspherical particles, sadver, using the Wentzel-Kramers-BrillouiGWKB) tech-
isfactory results have not been achieved. The complexity ofiique, we derive the validity range of the EPS approximation
this problem is illustrated by a quote from Bohren in hisas a function of the statistical parameters of the interior re-
chapter on light scattering in Ref26], “This search re- fractive index distribution. In all cases reported in this paper,
sembles that for the Holy Grail—and has been as fruitless.Validation studies are conducted using high-resolution FDTD

Recently, we have investigated the light-scattering propsimulations that model particles having a wide range of stan-
erties of inhomogeneous spherical particles having an interdard deviations and correlation lengths for the internal
nal refractive indexn, assigned as an uncorrelated randomrefractive-index distribution.
variable to uniformly sized cubic subvolumes within each
particle [4]. Numerical experiments using high-resolution |, peview oF THE EPS APPROXIMATION FOR LIGHT
f|n|te—d|ffe.rence—t|me—domalr(FDTD) _computatlonal elec- SCATTERING BY MICROPARTICLES
trodynamics modelq5] and supporting analyses demon-
strated that the spectral dependence of the total-scattering We recently introduced the EPS approximation for calcu-
cross sectiofTSCS of such a particle can closely resemble lating the TSCS spectra of nonspherical particles with sizes
that of its homogeneous, volume-averaged counterpart if thim the resonance rang@—9]. Using a simple expression, this
size of each cubic subvolume inhomogeneity within themethod explicitly links the size and shape parameters of non-
original particle is sufficiently small relative to the optical spherical particles to the oscillation feature in their TSCS
wavelength. spectra.
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In the EPS approximation, the wavelength-dependentlirection of the light-ray propagatioiieqg. (5)], the formulas
TSCS spectrum of a particle is given by the sum of thegiven by Eqs(1), (2), and(6) provide improved accuracy for
“edge-effect” term o'(ss)()\) and the, “volume-diffraction- calculating the TSCS spectra, particularly for particles with

effect” terma”’(\) [7] higher refractive indices.
S Motivated by the questions whether the interference struc-
asN) =P\ + o (). (1)  tures are preserved for nonspherical particles, and how their

TSCS spectra are associated with the particle size and shape
characteristics, we previously introduced the concept of the
“equiphase sphere[7]. Most recently, we proposed to use
the equiphase-sphe(EPS approximationEgs.(1), (2), and

oS (\) = 29 27(3VI4Am) AN, (2 (6] to calculate the TSCS spectra of a variety of nonspheri-
cal particles[8,9], where p is replaced by the equivalent

whereS is the particle’s maximum cross-section area transmaximum phase shift calculated according to the particle’s
verse to the direction of the incident light, ands the vol-  geometrical characteristics.

ume of the particle.
For a particle with 2Zrd(n—1)/A>1 and(n-1) <1, where
d is the mean diameter and is the refractive index, the
volume termoé”()\) can be approximated using the WKB
technique[11] In this section we focus our discussion on applying the
EPS approximation to spherical particles with inhomoge-
O-(SV)()\) =92 RE(I J {1- exp{if(r')]}d%’), (3) neous interior refracti_ve index. Herp,_of Eq. (6) is simply
s replaced by the maximum phase shift produced by the ho-
L . . mogeneous counterpart of the particle withequal to the
wherer’ is a position vector in the plane orthogtr)n.al to the,olume-averaged refractive index of the inhomogeneous par-
direction of propagation of the incident wave aid’) is the  icje Upon this substitution, Eq6) predicts that the oscilla-
phase shift of a light ray crossing plaBait positionr’. £(r')  tjon features in the TSCS spectrum of an inhomogeneous

Here, when the high frequency ripples resulting from inter-
ference of the surface waves is neglecteéf,)()\) can be
approximated a§7,10Q]

Ill. APPLICATION OF EPS THEORY TO THE
INHOMOGENEOUS SPHERES: RANGE OF VALIDITY

is expressed as particle follow that of its homogeneous counterpart with a
volume-averaged refractive index.
&r')= (Zw/A)J [n(I(r")) = 1]dl, (4) In order to apply the EPS method in practice, it is impor-
L(r")

tant to determine the validity conditions of this approxima-
tion. We now investigate how the internal refractive-index
distribution affects the validity and accuracy of the EPS ap-
proximation applied to inhomogeneous particles. The deriva-
L=d[1 - sirf y(r")/n3]*2, (5)  tion of an analytical validity condition for Eq3) is summa-
. o . rized below.
where y is the angle between the incident-ray propagation  tpe yajidity analysis of the EPS approximation is based
dlref:tlon and the radla_l vector.pomtmg from the cen(tye):r of theon the WKB techniqudEg. (3)] from which Eq.(6) is de-
particle. After performing the integration in E(B), o;"(\)  rived. For an inhomogeneous spherical particle, the relative
for a homogeneous spherical particle is given by phase shifté(r') can be expressed a@#r')=&(r')+8&(r").
og”)(?\) =291 - 2ng sinplp + 4ny siff(p/2)p?],  (6) Here, §O(r’)='27r(n0—1)L(r')/)\ is the phase shift of a light
ray propagating through the homogeneous counterpart of the
where p=2md(no—-1)/\ is the maximum phase shift pro- particle. The terms&(r’) accounts for the phase-shift differ-

whereL(r’) is the path of the light ray crossing. For a
homogeneous spherical particle with refractive indgx

duced by the homogeneous sphere. ence due to refractive-index inhomogeneity. If
We note Eq.(6) becomes equivalent to the van de Hulst )
approximation[12] SE(r') < ml2, (8)
od\) =291 - 2 sinplp + 4 sir(p/2)/ p?] (7)  the exponent in Eq(3) can be expanded to perform the in-

. o ~ tegration analytically. This yields
for spheres with low refractive indexes. The most distinctive

feature that can be observed from both E§$and(7) is the o) = 051'2 + 80!, 9)
“interference structure’13], which refers to slow oscilla- o) ) ) .

tions of TSCS as a function of wavelength with the fre-Where o (\)=251~2ngsinp/ p+4ngsir(p/2)/p?] is the
guency of these oscillations proportional to the diameter ofcattering produced by the equiphase-sphere counterpart of
the particle. With sufficiently large, the higher order term the particle, anddo'” is the error term produced by
sirt(p/2)/ p? can be neglected; thus the diameter of the parrefractive-index inhomogeneity. The EPS approximation is
ticle can be easily derived from the oscillation frequency byvalid provided thatﬁ(r(")«o(E”gs

d=N\o/ (Ao—Nq)/(ng—1), wherex; and\, are wavelengths We point out that the expansion in E(Q) depends on
corresponding to two adjacent maxima or minima in thecondition (8). Thus, we shall examine the inequalii§) in
TSCS spectrum. In addition, by including a surface tgEn.  detail. The phase shift erra#(r’) due to inhomogeneity is
(2)] and implicitly incorporating the refraction effect on the given by
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20 have more significant impact on the accuracy of the EPS
o&(r') = . Téh(f’,')dh (100 approximation.
L(r
whereén(r’,l) denotes the refractive-index fluctuation from
its volume average at positian’,l). If the spatial distribu- IV. GAUSSIAN RANDOM FIELD MODEL
tion of the refractive index has a correlation lengith then FOR INHOMOGENEOUS REFRACTIVE
Eq. (10) can be approximated by the sundé(r’) INDEX DISTRIBUTION

=~ (Zw/)\)E{\iléhiLc. Furthermore, if(r) is a stochastic func-
tion with a probability density function characterized by a In order to investigate light scattering by particles with a
standard deviatiow,, 6§(r’') can be approximated as wide variety of shapes and interior structures, statistical ap-

N — proaches are very useful for modeling the particle geometry
(') ~ ZWLC\/NU"/A < 2myLday/A. (1D) [14]. In particular, the Gaussian random sphere has been suc-
Therefore, the inequalitgd) is replaced by cessfully used as a geometric model to study light scattering
by irregularly shaped nonspherical particf&§]. In this sec-
B=4Ldo/\ <1. (12) tion, we describe how to use the Gaussian random field

Note that the parametg quantifies the most probable maxi- (GRF) model to synthesize the stochastic distribution of the
mum phase shift erroé&(r’) in an inhomogeneous particle reéfractive index within inhomogeneous particles.

with a stochastic distribution of its refractive index. g  Three-dimensional(3D) GRFs are analogs of one-
<1, this phase error is negligible, and therefore EPS apdimensional stochastic processes having a Gaussian prob-
proximation gives accurate estimate of the TSCS spectrum @bility density function. Here, we consider the refractive in-
the inhomogeneous particle. On the other hand, whert,  dexn(r) as a function of spatial location=(x,y,z). Each

the expansior(9) may not be performed. In this case, EPSValue ofn(r) is a Gaussian random variable with mea
approximation may give erroneous results. We also note that(n(r)) and standard deviatiow,={[n(r)-ny]%. For a

B is proportional to the square root bf. This indicates that GRF model with unit standard deviation, the two-point cor-
refractive index fluctuations within larger geometrical scaleselation functionC,(r) is defined as
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FIG. 2. (Color) Examples of
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5 . . but with increasing correlation
1 Wl lengths. (a) L,=100 nm, (b) L.
0 1 1 =600 nm,(c) Le=1.2 um.

-1 41 0
y(m) -2 -2 7 x(um)

2 [} IEITIE
1 11
ol £
P =2 : 2 0

LB ¢ :

2 ? ) <]

1°-14“  0 1 ° 24 01 2
yem "2 2 7 um) y (am)
C(r) =([n(0) - ng][n(r) - no), (13) Figures 1a)-1(c) graph shows sample inhomogeneous

spherical particles with fixedy=1.5 and correlation length
L.=400 nm, but increasing standard deviations ranging from
_ . . . 0,=0.05[Fig. (@] to 0,,=0.163[Fig. 1(c)]. In each figure,
wherer=|r|. In this paper, we use the Gaussian function aspe particle refractive-index distribution is depicted in the 3D
the correlation model view of a surface plotleft pane), a cross-sectional cut in the
5 5 %-z plane (middle panel, and a cross-sectional cut in the
Cp(r) = e 7kd2”) (14) -z plane(right pane). Each colormap of the particle interior
illustrates the spatial distribution of the particles’ refractive
indices. The corresponding scale of the variation is illus-
wherel. is the characteri'stic correlation_length representingﬂfetésvgsg]%%etqﬁaﬁcifébgzc?I;g?%i?r; thrtfe“fjerf‘:aigti%i?iuélgi
the length scale over which _the correlatlon_ drops toa negll'spatial distribution is unique for each case since the stochas-
gible level. For such a choice of correlation function, the

- S ; . tic method is used in randomly generating these geometries.
statistics of the spatial distribution afr) is uniquely deter- However, since the three particles all have the same correla-
mined by the parametér. If L,— o0, we haveC,(r)=1 and

: e ke tion lengthL,=400 nm, their spatial refractive-index distri-
the resulting spatial distribution is homogeneous. Lower pytions have fluctuations on the same geometrical scale. It is

corresponds to refractive-index fluctuations in smaller geog|so evident that the standard deviatiop determines the
metric scales. magnitude of the refractive-index fluctuation. For example,
Various methods can be used to generate realizations @6r the particle shown in Fig. (t), the standard deviation
the GRF model. In this paper, we have adopted the turnings,,=0.163 results in refractive-index fluctuations raging ap-
band method16], where the 3D realizations of the GRF proximately from 1.0 to 2.0.
model are generated by summing independent realizations of Figure 2 shows sample inhomogeneous spherical particles
one-dimensional random functions with directional vectorswith fixed ny=1.5 and o,=0.1 but L. increasing from
uniformly distributed over the unit sphere. Using this 100 nm[Fig. 2a)] to 1.2um [Fig. 2(c)]. These examples
method, we create geometrical models of spherical particledemonstrate the capability of the GRF model to mimic
with the refractive index having GRF distributions. refractive-index fluctuations occurring over a wide range of
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FIG. 3. (Color) Comparison of TSCS spectra
I\~ calculated using rigorous FDTD numerical mod-
— EPS eling and EPS analyses. The spatial distribution
1 of the particle refractive index in th&-Z cross-
500 600 wa@?engtk??r?m) 900 1000 sectional cut is displayed in the left panéh)
11 0,=0.1, L,=50 nm, =0.36. (b) 0,=0.08, L.
4 =100 nm, 8=0.40. (¢) 0,=0.05, Lc;=1 um, B
o =0.78.(d) 0,=0.08,L,=600 nm,3=0.97. Good
agreement is observed between the EPS-
calculated TSCS spectra and the FDTD bench-

marks sinceB3<1.
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geometrical scales appropriate for simulation of naturakcribed in our previous worfo], we calculated TSCS spectra

particles. of (ng=1.5, d=4 um) spherical particles ranging from
slightly inhomogeneougl.45<n=<1.55 to highly inhomo-
V. NUMERICAL VALIDATION OF THE EPS geneoug1.0=n=2.0). The numerical experiments include
APPROXIMATION AND ITS EXPECTED RANGE a wid range of geometrical scales of interior refractive-index
OF VALIDITY fluctuations withL ranging from 50 nm to 1.2um.

. o S Figure 3 shows four representative results of our numeri-
We now describe our validation of the EPS approximation al experiments. In each example, the spatial distribution of

d|scu_ssed in Secs. I and lil. To this end, we have conducteﬁm particle refractive index in one cross-sectional cut is dis-
a series of numerical experiments that compared TSCS spe, fayed on the left, and the TSCS spectra calculated with
tra calculated using the EPS gpprox!matioq with numericaEpTpD and the EPS approximation are graphed on the right.
FDTD benchmark data for a wide variety of inhomogeneousye note that although these inhomogeneous particles have a
spherical particles such as shown in Figs. 1 and 2. This COMyariety of values ofc, and L., the validity conditions
parison permits us to validate the EPS approximation and te- 4. do,/\ <1 is satisfied for all four cases. Indeed, the
explore the correlation between the approximation accuracyScCs spectra calculated by the EPS approximation very well
and the geometric characteristics of the refractive-index dismatched the benchmark data provided by FDTD for all four
tribution. cases.

The FDTD method has been shown to be a robust means As L. or o,, of the interior refractive-index distribution
to numerically solve the Maxwell's equations in studies ofbecome greater, the accuracy of the EPS approximation is
light scattering problemgL7]. We used a staircasing scheme expected to decline. This effect is illustrated in Fig. 4. For
with 25-nm resolution to sample the refractive-index spatiathese four particles with increasing, the EPS-calculated
variations of interest. Following the same procedures as deFSCS spectra progressively deviate from the FDTD data. In
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FIG. 4. (Color) Comparison of TSCS spectra
calculated using FDTD modeling and the EPS
approximation for particles with large;, or L.
500 600 700 800 900 1000 (@) 0,=0.08,L.=1.0 um, B=1.29.(b) 0,,=0.13,

L, Wavelength (nm) L.=800 nm, 8=1.90. (¢) ¢,=0.15, L,=1.0 zm,
B=2.32.(d) 6,=0.16,L,=1.0 um, B=2.61. AsB
increases well above 1, the EPS calculated TSCS
spectra progressively deviate from the FDTD
benchmarks.
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an extreme case shown in Figd$ where both the magni- rameters of refractive-index distributioftharacterized by
tude and geometrical scale of the refractive-index inhomogethe 8 factor) on the validity and accuracy of the EPS method.
neity are large(1.0=n=<2.0,L.=1.0 um, andB=2.6), the  We used two complimentary parameters, the rms ékrand
oscillatory period of the TSCS spectrum calculated by thethe correlation coefficient, to quantify the accuracy of the
EPS approximation completely departs from the FDTDapproximate EPS-calculated TSCS spectra with respect to
benchmark data. the exact FDTD benchmark data. The rms error measures the

We summarize our numerical experiments with a paraoverall estimation accuracy, while the correlation coefficient,
metric study to demonstrate the impact of the statistical pawhich is defined as

P ([tsCsprp(Ni) — {tsCsprp(N\)) I[tSCEpdNi) — (tSCERN)) ])

¢ oftscsprp(\)]oftscspdN)] ’ )

measures the capability of the EPS approximation to replicovering a wide variety of refractive index distributiofis,

cate the oscillation characteristics of the TSCS spectrum. ranging from 50 nm to 1.Zum ando,, ranging from 0.02 to
Figure 5 plots the rms errdR and the correlation coeffi- 0.163. In order to better illustrate the connection between

cient r, as functions ofg for 26 inhomogeneous spheres the quality of the EPS approximation and the accuracy mea-
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sures, we cross-reference eight data points in Figg.@nd  can accurately model the TSCS of randomly inhomogeneous
5(b) with their corresponding particle geometries and TSCSspherical particles having internal refractive index variations
spectra shown in Fig. 3 and Fig. 4. with geometrical scales spanning from nanometiees, sub-

We observe from Fig. 5 that when criteri@) is satisfied  wavelength to microns(i.e., suprawavelengfhAn easy-to-
(B<1), the EPS approximation is sufficiently accurate, i.e.,use criterion for the range of approximation validity has been
re=0.9 andR<5%. It is also evident from Fig. @) that  provided to guide the practical application of this method.
wheng>1, the accuracy of the EPS approximation degrades Although not limited to a single category of applications,
rapidly asg increases. This further demonstrates the imporne work discussed here may positively impact tissue optical
tance of theB parameter in determining the validity of the ;yaging and diagnostic applications. It is recognized that the
EPS approximation. analysis of spectral, angular, and other characteristics of light
scattered from living tissue can provide valuable diagnostic
information [18—29. Due to the complexity in the microar-
chitecture of biological tissue, the understanding of light
scattering by particles with complex shapes and interior
structure is of great importance for the future refinement of

We have presented the development and validation of théhe current optical techniques. Importantly, the development
equiphase-sphere(EPS approximation for the total- of methods such as the EPS approximation to analyze tissue
scattering cross-sectiofSCS spectra of inhomogeneous light scattering will enable gathering new accurate informa-
spherical particles having complex interior structures. Wetion about tissue organization and its alteration in disease. In
have shown that the closed-form, analytical approximatiorturn, these insights can be further used for disease diagnosis

VI. SUMMARY AND DISCUSSION
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