Equiphase-sphere approximation for analysis of light
scattering by arbitrarily shaped nonspherical particles
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Introduction

We extend the previously proposed concept of equiphase sphere (EPS) to analyze light-scattering prop-
erties of arbitrarily shaped particles. Our analyses based on the Wentzel-Kramers—Brillouin technique
and numerical studies based on the finite-difference time-domain method demonstrate that a wide range
of irregularly shaped particles can be approximated as their equivalent equiphase ellipsoids to determine
their total scattering cross-section (TSCS) spectra. As a result, a simple expression given by the EPS
approximation can be used to calculate the TSCS spectra of these particles. We find that the accuracy
of the EPS approximation is influenced by both the magnitude and the geometric scale of the surface
perturbation of the particle, and we derive validity conditions of the EPS approximation to guide the
practical application of this method. © 2004 Optical Society of America
OCIS codes: 290.5850, 290.0290.

Light scattering by nonspherical particles is of sig-
nificant research interest in a variety of disciplines
such as optical tissue diagnosis,-6 astronomy, mete-
orology, and remote sensing.” It is well known that
most natural particles have nonspherical geometries.
However, no general analytical theory has been de-
veloped to characterize light-scattering properties of
arbitrarily shaped particles. These particles are of-
ten replaced by spheres with an equivalent volume,
an equivalent surface area, or an equivalent cross-
sectional area and then modeled with Mie theory.
However, to our knowledge no systematic analysis
has been developed to guide the optimum choice of
the equivalent sphere of an arbitrary particle.
Moreover, no general rules have been established to
determine the validity criteria to apply such approx-
imations. As a result, Mie theory has been applied
in many applications only semiempirically at best.
Therefore it is of critical importance to develop sim-
ple, yet accurate, approximation methods to model
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light scattering by a wide range of nonspherical par-
ticles and, importantly, identify their validity condi-
tions.

Significant research interest has been focused on
the spectral properties of the total scattering cross
section (T'SCS) of particles with sizes in the resonance
range. TSCS plays a fundamental role not only in
light scattering but also in light transport in turbid
media. The most distinctive feature observed from
the T'SCS spectrum o,(\) of a spherical particle with
refractive index n < 3 is the interference structure,®
which refers to slow oscillations of the TSCS as a
function of wavelength with the frequency of these
oscillations proportional to the diameter of the parti-
cle. The interference structure is evidently noted in
the well-known approximation derived by van de
Hulst® for spherical particles with a low refractive
index, i.e., n approaching 1.

o.(\) = % wd’[1— 2 sin p/p + 4 sin’(p/2)/p%], (1)

where d is the diameter of the spherical particle and
p is the maximum phase shift of a light ray propa-
gating through the particle along a straight path with
respect to the phase shift of a light ray propagating
outside the particle:

2 -1 9
P (n—1). (2)
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With sufficiently large p, the higher-order term 4
sin®(p/2)/p® can be neglected in Eq. (1), and the os-
cillation of the interference structure is predomi-
nately due to the sin(p)/p term. Thus the diameter
of the particle can be easily derived from the oscilla-
tion frequency:

1 NiNg
d=—"r S
n—1M;—\)

3)

where \; and A, are wavelengths corresponding to
two adjacent maxima or minima in the TSCS spec-
trum.

This direct association between the size of a spher-
ical particle and the oscillation feature of its TSCS
spectrum makes the van de Hulst approximation one
of the most useful formulas in the domain of Mie
theory. For applications involving nonspherical
particles, however, it is important to answer the fol-
lowing questions: Is the interference structure a
unique phenomenon for light scattering by spheres or
it is preserved for nonspherical particles as well? If
the latter case is true, how does the oscillation feature
associate with the size and shape parameter of the
particle? In other words, is it possible to derive ap-
proximations that explicitly link the particle size and
shape parameters to its interference structure and to
model light scattering by nonspherical particles?
Furthermore, how do the shape characteristics of the
particle affect the validity and accuracy of the ap-
proximation?

Motivated by the need to answer the above impor-
tant questions, we previously introduced the concept
of the equiphase sphere (EPS) to approximate the
light-scattering characteristics of nonspherical parti-
cles.’® We demonstrated both theoretically and nu-
merically that certain spheroids exhibit interference
structures in the TSCS spectra similar to those of
spheres that generate equivalent maximum phase
shifts. TSCSs of such spheroids can be modeled
with the EPS approximation. We also provided the
range of aspect ratios for which the EPS approxima-
tion is valid for spheroids. In our most recent
study,* we conducted initial numerical experiments
to test the feasibility of using the EPS approximation
to calculate the TSCS spectra of a wide range of non-
spherical shapes.

This paper is focused on the practical applicability
of EPS approximation for arbitrarily shaped parti-
cles. We provide a detailed procedure to apply the
EPS approximation to calculate the TSCS spectrum
of an arbitrarily shaped particle (Section 2). We also
present a theoretical analysis to determine the valid-
ity conditions on the particle-shape statistics under
which the EPS approximation can be applied (Section
2). Finally, we report a comprehensive numerical
study using finite-difference time-domain (FDTD)
simulations!? conducted on a wide range of particle
shapes that supports our theoretical analyses (Sec-
tion 3).
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Throughout this paper, without loss of generality,
the incident light is assumed to propagate in the +2
direction. The expression o (\) denotes the TSCS
spectrum. The term o(f) without the subscript rep-
resents the standard deviation of the variable f. Fi-
nally, the symbol (f) denotes the mean of f.

2. Formulation and Validity of the Equiphase-Sphere
Approximation

The geometric characteristics of an arbitrary non-
spherical particle can be classified into two catego-
ries: the overall shape deviation from a sphere and
the surface perturbation at smaller scales. The first
property can be characterized by the aspect ratio of a
best-fitting ellipsoid of the particle. The second
property can be quantified with statistical parame-
ters such as a radial standard deviation and the cor-
relation length or correlation angle of the surface
perturbation. The effect of each of these geometric
properties on the TSCS spectrum of a nonspherical
particle is investigated separately in Subsections 2.A
and 2.B. The theoretical results presented are val-
idated in our rigorous numerical experiments as dis-
cussed in Section 3.

A. Equiphase-Sphere Approximation for Spheroids and
Ellipsoids

The natural extensions of a spherical shape include
spheroids and ellipsoids. A spheroid is obtained
when an ellipse is rotated about one of its principal
axes; therefore it has two principal axes equal in
length (2a > 2b = 2c or 2a = 2b > 2¢). Ellipsoids
are generalizations of spheroids with generally un-
equal principal axes (2a = 2b = 2¢).

We first summarize the EPS approximation previ-
ously derived for spheroids.l® To improve accuracy,
the TSCS spectrum is given by the sum of the edge-

effect term o and volume-diffraction-effect term

O'S’) :

a,(\) =o'\ + a(N). (4)

We note that the high-frequency ripple structure in
the edge term o usually is not observed in experi-
mental measurements of polydisperse particle en-

sembles. Therefore we neglect this effect. Thus
o can be approximated as10.11,13,14
o¥(\) =~ 28[2m(3V/4m) /3 /\] %3, (5)

where S is the particle’s maximum cross-sectional
area transverse to the direction of the incident light
and V is the volume of the particle. The volume
term ¢’ can be derived with the Wentzel-Kramers—
Brillouin technique!?.15.16:

ol = 2 Re

JJ {1- exp[ig(r)]}dzr) , (6)
~

where r is a position vector in the plane S and &(r) is
the phase shift of a light ray crossing plane S in point



r. By examining the light path-length distribution
inside of a spheroidal particle, we derive ¢’ from the
integration in Eq. (6), which is given by10-14

a”(\) = 28[1 — 2n sin p/p + 4n sin’(p/2)/p?], (7)

where p is the maximum phase shift produced by a
corresponding equiphase sphere that generates the
same maximum phase shift as the spheroid. The
diameter of the equiphase sphere d is equal to either
the major axis 2a or minor axis 2b of the spheroid,
depending on which axis aligns with the incident
light.

In our previous study'® we also derived the validity
range of the equiphase sphere approximation to pro-
late (¢ > b = c¢) spheroids. We demonstrated both
analytically and numerically that the oscillatory be-
havior of the TSCS spectrum of a spheroid follows
that of its EPS in phase provided that

p>>1,n <2, (8)

PLOL(Y) Jmax < /2, 9)

where 3L(r) is the path-length difference of light
propagation inside a spheroid compared with that
inside a sphere. For a spheroid with major axis 2a
perpendicular to the incident light, inequality (9) is
equivalent to

B=4(n — 1)b3L/\

16 (n — 1)* (2a)\(b/a — b*/a®
ol A 1+ a?/b”

) <1. (10a)
T n

If the spheroid is oriented parallel to the incident
light, inequality (9) becomes

B=4(n — 1)adL/\

16 (n —1)? [2a\{ a/b -1
*wzn(x)(mw%l- (10)

We note that for refractive index n < 2 and size
range 2a = 10\, Eq. (10a) is satisfied for any aspect
ratio a/b, whereas Eq. (10b) is satisfied only for a
limited range of a/b < (a/b),,,x- For example, in the
case in whichn = 1.5 and @ = 10\, (@/b),,.x ~ 1.4 is
the upper limit of the aspect ratio for Eq. (10b) to be
satisfied. For a smaller refractive indexn = 1.1, Eq.
(10b) can be satisfied for much more elongated sphe-
roids with aspect ratios as large as (a/b),,.x =~ 5.

The next step is to extend this analysis from sphe-
roidal particles to ellipsoidal particles with one of the
three axes parallel to the incident light. Without
loss of generality, we assume that the semiaxis c is
parallel to the incident light propagation direction 2
and semiaxis a and b are located in the transverse
plane. Following the derivation presented in our
previous study,1 the volume term of the TSCS spec-

trum of an ellipsoid can also be approximated by Eq.
(7) with

S = mab, 1D
4
p=—c(n—1). (12)
A
The validity condition analogous to Egs. (10a) and
(10b) is given by
B=4(n — 1)bdL/\
160 (2]

a? n N

|c/min(a, b) — 1|
1 + min(a?, 5%)/c?

(13)

The criterion given in Eq. (13) can be intuitively
interpreted as the following. Because Eq. (13) is de-
rived from inequality (9), the intrinsic validity condi-
tion is that the path-length difference between the
ellipsoid and its EPS 8L must be small. Note that
3L becomes greater as the direction of propagation of
the light within the particle deviates from that of the
incident light because of refraction. Therefore 3L
increases with higher refractive index [8L « (n —
1)2/n] and with increased curvature of the particle’s
front surface {SL = |c/min(a, b) — 1|/[1 + min(a?,
b?)/c?]l. Similar to the spheroidal particle cases, if
the ellipsoid is oriented in the position such that the
maximum cross-sectional plane is transverse to the
incident light (@ > ¢ and b > ¢), Eq. (13) is satisfied in
most cases. Here the EPS approximation can be
applied to calculate the TSCS spectrum of the ellip-
soid as long as inequalities (8) are also satisfied.

For convenience of future discussion, we now refor-
mulate the EPS approximation for ellipsoids by com-
bining Eq. (4), approximation (5), and Eqgs. (7) and
(12). This yields

a,(\) = 25[2w(8V/4m)Y3/\]¥% + 28[1
— 2n sin p/p + 4n sin*(p/2)/p?], (14)

where S = mwab, V = (4mw)/(3)abe, and p = (4m)/
(MNe(n — 1).

Note that the volume term in the EPS approxima-
tion [Eq. (7)] becomes equivalent to the van de Hulst
approximation [Eq. (1)] for spheres with low refrac-
tive indexes, i.e.,n —1anda = b =c. However, the
EPS approximation [Eq. (14)] includes an additional
surface term o®. It also implicitly incorporates the
effect of refraction, which is embedded in the deriva-
tion of Eq. (7). Therefore the EPS approximation
provides improved accuracy even for spherical parti-
cles compared with the expression given by the van
de Hulst approximation [Eq. (1)], particularly for
higher refractive indices. More importantly, the
EPS approximation predicts the interference struc-
ture in the TSCS spectra of ellipsoidal particles
where the validity conditions of inequalities (8) and
Eq. (13) are satisfied. The accuracy and validity
condition of the EPS approximation applied to ellip-
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soids are demonstrated with numerical studies pre-
sented in Subsection 3.A.

As evident from Eq. (14), the frequency of the TSCS
spectrum oscillation is determined by the maximum
longitudinal extent 2c¢ of the ellipsoid, whereas the
averaged magnitude of the TSCS is roughly propor-
tional to the transverse cross-sectional area S = mab.
Therefore one can retrieve the size and aspect ratio of
an ellipsoid from its TSCS spectrum in a straightfor-
ward manner.

B. Equiphase-Sphere Approximation for Arbitrarily
Shaped Particles

To extend the EPS method to arbitrary shapes, we
propose to approximate the TSCS spectrum of an
irregularly shaped particle with the EPS-calculated
TSCS of its best-fitting ellipsoid having one axis par-
allel to the incident light. If the validity criteria of
inequalities (8) and Eq. (13) are satisfied for the best-
fitting ellipsoid, the EPS approximation given by Eq.
(14) can be used to calculate the TSCS spectrum of
the irregularly shaped particle. In this subsection,
we first define the best-fitting ellipsoid for an arbi-
trarily shaped particle and then discuss the effect of
particle surface fluctuations on the validity of the
approximation.

In general, finding the best-fitting ellipsoid for an
arbitrary three-dimensional (3-D) shape is a multipa-
rameter optimization problem with eight free
parameters—three semiaxes (a, b, and c¢), three co-
ordinates of the center (x,, y,, and z,), and two rota-
tional angles (6, and &;). For our specific
application, a few constraints can be added to sim-
plify the optimization procedure. First, we specify
one of the axes 2¢ to be aligned with the incident wave
vector 2. Thus we have 6, = 0. The second con-
straint is to match the cross-sectional area of the
ellipsoid with the projected area of the particle in the
£-9 plane (S, = mab). Furthermore, the location of
the geometric center (x, v, z,) is assigned to the
center of mass of the irregular particle. Therefore
we need to determine only three free parameters—
the longitudinal semiaxis ¢, the aspect ratio of the
cross section m, = a/b, and the transverse rotational
angle ¢, (the angle between the cross-sectional major
semiaxis a and £). The objective of the optimization
procedure is to minimize the mean-squared differ-
ence of the 2-directed light-ray path-length between
the irregular particle and the corresponding ellipsoid.
Parameters m,, ¢, and ¢, are chosen such that

arg(C, TlTy d)0)|min(<||8Lr||2>)' (15)
The TSCS spectrum of the irregularly shaped particle
is then approximated by that of its best-fitting ellip-
soid, which can be calculated by Eq. (14).

The next step is to determine the influence of par-
ticle surface fluctuations on the validity of the EPS
approximation. It is useful to statistically charac-
terize these fluctuations to account for both the mag-
nitude and the geometric scale. We use the root
mean square (rms) of the path-length difference
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Ry, = (({]BL|*)Y2 between the sample shape and its
ellipsoidal counterpart to quantify the magnitude of
the surface fluctuations and correlation angle I'" to
parameterize the geometric scale of these fluctua-
tions. I is defined as the solid angle within which
the path-length difference 3L is correlated.

The validity conditions of the EPS approximation
for arbitrary particles are derived by examination of
the Wentzel-Kramers—Brillouin integral given by
Eq. (6). For a homogeneous irregularly shaped par-
ticle, the relative phase shift &(r) inside the particle
can be expanded as &(r) = &y(r) + 8&(r), where &,(r) =
@2m)/(N)(n — 1)Ly(r) is the phase shift in the best-
fitting ellipsoid with path length L,(r), and the con-
tribution due to the shape irregularity is given by
8¢(r) = (2m)/(N)(n — 1)3L(x).

First, we stipulate that the average value of the
phase shift is small:

27
B, = ~ (n — DBL(r)) < 1. (16)

This criterion is equivalent to one of the validity con-
ditions of the Wentzel-Kramers—Brillouin approxi-
mation on which the EPS approximation is based:
The wavelength of light cannot change significantly
at a distance comparable to itself.15

Next, if

<1,

1
‘ Re j exp(id&)de — 1
21

<1 17
2 » A7)

L f exp(:5€)de

the exponent in Eq. (6) can be expanded to perform
the integration analytically. This yields 0" ~ o{)g
+ 80, and the EPS approximation is valid provided
that 806 << o(¥hs.

We assume that 3¢ is a stochastic function of r.
Inequalities (17) are satisfied if

€ dede | < —
szJ.g‘P 2

Replacing the integral in inequality (18) by a sum-
mation, we obtain

1 -1
U(%f8§d@) zn)\ o

=" . L seoloLm)]\N,

(18)

N
> 8Li6cpi)

i=1

(19)

where 3¢ is the angle within which 3L is correlated.
Thus 8¢ = I', N = 2%/I', and the second EPS validity
criterion of inequality (18) becomes

2,2

Bo= (-1 \To[3L(r)] < 1.
\‘s"iT

(20)



To summarize the above analysis, to apply the EPS
approximation to an arbitrarily shaped particle, the
condition of Eq. (13) needs to be satisfied for its best-
fitting ellipsoid. The conditions of Egs. (16) and (20)
provide additional validity criteria accounting for the
surface fluctuations of the particle. Numerical stud-
ies validating the accuracy and validity conditions of
the EPS approximation applied to irregularly shaped
particles are presented in Subsection 3.C and 3.D.

3. Numerical Results

To verify the EPS approximation and its validity con-
ditions derived in Section 2, we conducted numerical
experiments for a wide range of particle shapes.
Comparison of the TSCS spectra calculated with the
EPS approximation with numerical FDTD bench-
mark data permit us to validate the EPS approxima-
tion and to explore the correlation between the
approximation accuracy and the geometric character-
istics of the particles. We first demonstrate the ap-
plication of the EPS approximation to ellipsoids with
a variety of aspect ratios. Subsequently, we demon-
strate the effect of surface fluctuations of irregularly
shaped particles on the accuracy of the EPS approx-
imation using Gaussian random spheres, which are a
class of well-parameterized geometries capable of
representing natural and artificial shapes with vary-
ing deviations from spheres,!? as geometric models.

A. Comparison of Total Scattering Cross-Sectional
Spectra Calculated by the Finite-Difference Time-Domain
Method and the Equiphase-Sphere Approximation for
Ellipsoids

The FDTD method numerically solves the Maxwell’s
equations and thus provides exact solutions to many
scattering problems. We use 3-D FDTD simulations
to accurately characterize the light-scattering prop-
erties of a wide variety of geometries. We have ex-
tensively validated our FDTD code by computing the
scattering patterns of homogeneous spheres and com-
paring the results with Mie theory. The geometry of
a particle having its size scaled to the resonance
range is imported to the FDTD grid by a staircasing
scheme with 25-nm resolution. The FDTD grid is
terminated by a Berenger perfectly matched layer
absorbing boundary condition.’® The total-field—
scattered-field technique!® is employed to source an
X-polarized plane wave propagating in the +2 direc-
tion within the FDTD grid. We choose a modulated
Gaussian pulse as the time-domain source waveform
that accommodates the complete frequency range of
visible light. The scattered-field frequency response
is extracted by a discrete Fourier transform of the
time-domain data recorded on the six surfaces of the
scattered-field region and normalized by the spec-
trum of the source pulse. A 3-D near to far-field
transformation in the phasor domain20 is imple-
mented to calculate the far-field scattered wave in the
forward direction, and the TSCS spectrum is calcu-
lated with the extinction formula for nonabsorbing
particles.®

FDTD simulations are conducted for ellipsoidal

particles with a wide range of aspect ratios to validate
the EPS approximation. Figure 1 shows six repre-
sentative examples of our numerical experiments.
In these examples, the lengths of two axes of the
ellipsoids are fixed, i.e., 2¢ = 3.5 um, 2b = 3.0 pum,
whereas the length of the third axis 2a is varied from
4.5 to 1.5 pm in Figs. 1(a)-1(f) to yield varying aspect
ratios. The refractive index of the particle is fixed at
1.5 in each case. The TSCS spectra are calculated
from the FDTD simulations over the wavelength
range of 500—-1000 nm to serve as benchmark data.
The EPS approximation of Eq. (14) is used to calcu-
late the TSCS spectrum of each ellipsoidal particle
and is compared with the FDTD data. The B factor
in the validity condition of Eq. (13) is calculated for
these particles. As illustrated in Figs. 1(a)-1(d),
when the validity condition of Eq. (13) is satisfied, i.e.,
B < 1, the oscillatory interference structures in the
TSCS spectra calculated by the EPS approximation
are in phase with the benchmark data provided by
the FDTD method. Inthe cases of Figs. 1(d) and 1(e)
where B > 1, however, the oscillatory period of the
TSCS spectrum of the particle completely departs
from the one calculated by the EPS approximation.
Therefore Fig. 1 demonstrates the significance of the
validity condition of Eq. (13) to predict whether the
EPS approximation can be applied to an ellipsoid
with a certain aspect ratio.

B. Geometric Model for Irregularly Shaped
Particles—Gaussian Random Spheres

To investigate the validity and accuracy of the EPS
approximation applied to arbitrarily shaped parti-
cles, we use Gaussian random spheres as geometric
models. We define a Gaussian random sphere in
spherical coordinates as having the following angle-
dependent radius:

R
O = 0 21
r(9, ¢) \m exp[s(V, ¢)], (21)

where R is the mean radius and A is the normalized
standard deviation of the radius. s(9, ¢) is the log
radius, which defines the shape of the particles. s(V,
o) is given as a real-valued series expansion of spher-
ical harmonics Y;,, with degree [ and order m:

o 1
S(ﬁa ‘P) = E E Slelm(ﬁ’ ‘P)' (22)
=0 m=-1

The weights s;,, are selected on the basis of particle
geometry statistics, which is determined by the co-
variance function 3, = C,(3Q)In(A% + 1), the product
of the correlation function C,, and the log variance
In(A% + 1) of the log radius. The log variance In(A% +
1) determines the amplitude of the variation of the
radius. C,(8Q) describes the correlation of the ra-
dius (9, ¢) over the angular displacement (). Ifthe
correlation function is constant [C,(3()) = 1], the re-
sulting shape is a sphere. On the other hand, for
irregular particles, C,(3()) decreases with increasing
angular displacement. A steep decline of C(3())
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with 8() results from small-scale perturbations of the
particle shape. In this paper we use the modified
Gaussian correlation function following the research
of Muinonen et al.2!:

where v, is the correlation angle of the Gaussian
sphere—the angular displacement over which the cor-
relation drops to 1/Ve. Thus the geometry statis-
tics of the particle are specified solely by A and v,.
We generate the 3-D geometry of Gaussian spheres
in the spherical coordinates using a computer pro-
gram based on the code developed by Muinonen and
Nousiainen.22 As shown in Figs. 2(a)-2(c), increas-

sin%(Q/2)

2 sin’(v,/2) 23)

C,(Q) = exp[
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ing A results in an increased magnitude of deforma-
tion from a sphere in the particle shape. On the
other hand, as illustrated in Figs. 2(d)—-2(f), reducing
v, leads to an increased short-distance fluctuation
(increased numbers of valleys and hills) on the par-
ticle surface.

C. Comparison of Total Scattering Cross-Sectional
Spectra Calculated by the Finite-Difference Time-Domain
Method and the Equiphase-Sphere Approximation for
Gaussian Random Spheres

We conducted FDTD simulations for Gaussian
spheres with A ranging from 0.1 to 0.9 and vy, ranging
from 10° to 90°. The geometries of the Gaussian
spheres are converted to the Cartesian coordinates
and incorporated into the FDTD grids with 25-nm
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Fig. 2. Representative Gaussian sphere geometries.
Gaussian spheres with increasing A (v, is fixed at 70°).
Gaussian spheres with decreasing v, (A is fixed at 0.1).

resolutions. The particles are assigned a mean di-
ameter of the order of 3.5 pum and a refractive index
of 1.5. The EPS approximation given by Eq. (14) is
applied to calculate the TSCS spectra of the particles
after finding their best-fitting ellipsoids.

Figure 3 illustrates six examples of our numerical
experiments conducted on a variety of Gaussian
spheres. In each example, displayed from left to
right, the geometry and size of the Gaussian sphere
are illustrated in the first panel; the corresponding
best-fitting ellipsoids are shown in the second panel,
and the comparison of the spectra calculated by
FDTD and the EPS approximation are plotted in the
third panel. For the particles illustrated in the
cases of Figs. 3(a)-3(c) we can see that the TSCS
spectra calculated by the EPS approximation closely
resemble the benchmark data provided by FDTD
method. In the cases of Figs. 3(d) and 3(e) the TSCS
spectra calculated with the EPS approximation start
to deviate from the FDTD data. In the case of Fig.
3(f) the oscillatory period of the TSCS spectrum of the
particle completely departs from that of its best-
fitting ellipsoid, and the EPS approximation is not
valid in the calculation of the TSCS spectrum for this
case. As discussed in Subsection 3.D, both the ex-
cellent accuracy of the EPS approximation in the
cases of Figs. 3(a)-3(c) as well as its relatively poor
performance in the cases of Figs. 3(d)-3(f) can be
explained with the validity analysis presented in Sec-
tion 2.

D. Validity and Accuracy of the Equiphase-Sphere
Approximation with Respect to Particle Surface
Fluctuations

In a previous study!® we investigated the correlation
between the aspect ratio and the validity of the EPS
approximation for spheroidal particles. There our
numerical study supported the validity criteria given
in Egs. (10a) and (10b). The numerical experiments
presented in Subsection 3.A also support the validity

(a) Gaussian Sphere

Best-Fitting Ellipsoid 4 %10

° Gaussian Sphere (FDTD)
--- EPS Approximation

3 4
2 »3
yum 1o o1 $jm)

600 700 800 800 1000
wavelength (nm)

(b) Gaussian Sphere x10

5800000
m&,eégo
[ HGaussian Sphere (FDTD)
--- EPS Approximation

500 6800 700 800 900 1000
wavelength {nm)

3 4
2 3
yum o 01 #{um)

(c) Gaussian Sphere

° ”Gaussian Sphere (FDTD)
--~ EPS Approximation
0 600 700 800 900 1000
wavelength (nm)

(d) Gaussian Sphere Best-Fitting Ellipscid

4
K W‘;&’;;;o;;;g;abbﬁﬂ
2
°  Gaussian Sphere (FDTD)
--- EPS Approximation

00 600 700 800 900 1000
wavelength {(nm)

x10"

5 566000050
Sosocoood™”

[ S e ——
(28] ©  Gaussian Sphere (FDTD)
-—- EPS Approximation

0
500 800 700 800 900 1000
wavelength (nm)

x10"

PR %
. ~ 935000006 o
B e o
ss® ~o s

so

=

45 43 45
y @10 013%um) y (o 018%m)

©  Gaussian Sphere (FDTD)
——— EPS Approximation

500 600 700 800 900 1000
wavelength (nm)

Fig. 3. TSCS spectra calculated by FDTD simulations and EPS
approximations for a variety of Gaussian spheres. The geome-
tries of the Gaussian sphere and its corresponding best-fitting
ellipsoid are illustrated on the left two panels for each example.
The incident light propagates in the 2 direction. (a) A = 0.1, vy, =
70% (b) A = 0.1, y, = 10% (c) A = 0.2, y, = 70°% (d) A = 0.2, vy,
15% () A = 0.2, v, = 40° (f) A = 0.6, y, = 70°.

condition of Eq. (13) for ellipsoidal particles. In this
subsection we focus on the effect of particle surface
fluctuations on the accuracy of the EPS approxima-
tion.

The examples shown in Fig. 3 illustrate both the
particle shapes for which the EPS approximation
gives fairly accurate results and for which the ap-
proximation cannot be applied. To systematically
investigate the validity and accuracy of the EPS
method, we conducted a parametric study of the ac-
curacy of the approximate TSCS spectra with respect
to the FDTD benchmark data. Two complementary
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Fig. 4. Accuracy measurements of the EPS approximation as
functions of the validity condition of parameter B,. The labeled
data points correspond to the cases illustrated in Figs. 3(a)-3(f).
FDTD simulation results are used as the benchmark data. (a)
rms error (%) versus B, (b) correlation coefficient versus B,.

measures are considered: rms error R and the cor-
relation coefficient .. The rms error measures the
overall estimation accuracy whereas the correlation
coefficient, which is evaluated with data recorded at
N wavelengths \;,

4(b), where we plot the percent rms error and the
correlation coefficient as functions of B, for 23 Gauss-
ian spheres covering a wide range of shapes (A rang-
ing from 0.1 to 0.9 and v, ranging from 10° to 90°).
To calculate By, N\, is chosen as the central wave-
length of our range of interest (500—1000 nm), i.e.,
Ao = 750 nm. The surface fluctuation correlation
angle I is approximated by v,, the correlation angle
of the Gaussian sphere, because both angles quantify
the angular scale within which a geometric feature is
present. To better illustrate the connection between
the quality of the EPS approximation and the accu-
racy measurements, we cross reference six data
points in Figs. 4(a) and 4(b) with their corresponding
particle geometries and the TSCS spectra shown in
Figs. 3(a)-3(f).

We observe from Fig. 4 that when the criterion of
Eq. (20) is satisfied (B, < 1), the EPS approximation
is sufficiently accurate, i.e., the rms error R < 10%
and the correlation coefficient r, = 0.9. Figure 4(b)
further reveals that when B, > 1, the accuracy of the
EPS approximation degrades rapidly as B, increases.
This further demonstrates the importance of the pa-
rameter B, in when we determine the validity of the
EPS approximation.

We note from the validity criterion of Eq. (20) that
By is proportional to the square root of the correlation
angle I" when the magnitude of the surface fluctua-
tion o[dL(r)] is fixed. The geometric interpretation
is that surface perturbations within smaller angular
scales have less effect on the validity of the EPS
approximation. This provides the explanation for
the two cases shown in Figs. 3(d) and 3(e), where the
seemingly more irregular particle in Fig. 3(d) can be
better treated by the EPS approximation than the
apparently less irregular particle in Fig. 3(e).

4. Summary and Discussion

In this paper we have presented the EPS approxi-
mation to characterize light-scattering properties of
arbitrarily shaped particles. Our analytical and
numerical studies reveal that the interference

Z {[TSCSrprp(X;) — (TSCSeprp(M)[TSCSges(X;) — (TSCSges(M)) 1}

r.

NO’[TSCSFDTD()\)]O'[TSCSEPS()\)] ’

(24)

quantifies the capability of the EPS approximation to
replicate the frequency oscillation characteristics of
the TSCS spectrum.

Note that all particles considered here have best-
fitting ellipsoids that satisfy the validity criterion of
Eq. (13). We further note that the validity condition
of Eq. (16) is satisfied for most convex particles when
the best-fitting ellipsoid is properly chosen. Thus
the B, factor in the validity condition of Eq. (20) is the
most important parameter that effects the accuracy
and validity of the EPS approximation.

The influence of the 3, factor on the validity of the
EPS approximation is illustrated in Figs. 4(a) and
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structure characteristic of the TSCS spectrum of a
spherical particle with a size in the resonance range
is also present for a wide range of irregularly
shaped particles. We also demonstrate that the
TSCS spectra of irregularly shaped particles can be
easily calculated by the EPS approximation. Be-
cause of its mathematical simplicity, the EPS ap-
proximation can be used to probe the size and
geometric characteristics of a wide variety of irreg-
ularly shaped particles from their TSCS spectra.
The vertical axis length 2¢ of the best-fitting ellip-
soid of a particle, which is an estimation of the
longitudinal extent of the particle, can be easily



derived from the periodicity of the interference
structure by use of Eq. (3).

Furthermore, we have derived and verified the va-
lidity criteria of the EPS approximation to guide the
practical application of this method. The validity
analysis should enable researchers to determine
when this approximation can and, importantly, can-
not be used to model light interaction with nonspheri-
cal particles based on the particle geometry.

Overall, we have demonstrated that the effective,
yet easy to use, EPS approximation can be used to
model light scattering by a wide range of nonspheri-
cal particles when certain validity criteria are satis-
fied. This method may become a valuable tool for
the analysis of light scattering by random particles in
many applications.

We acknowledge the financial support by the Na-
tional Science Foundation under grants BES-
0238903 and ACI-0219925. We also express our
gratitude to the authors of the original Gaussian ran-
dom sphere generation code, K. Muinonen and T.
Nousiainen, for making their code publicly available.
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