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Abstract:  We report a new finite-difference time-domain (FDTD) 
computational model of the lasing dynamics of a four-level two-electron 
atomic system.  Transitions between the energy levels are governed by 
coupled rate equations and the Pauli Exclusion Principle.  This approach is 
an advance relative to earlier FDTD models that did not include the 
pumping dynamics, or the Pauli Exclusion Principle. Further, the method 
proposed in this paper is more versatile than the conventional modal 
expansion of the electromagnetic field for complex inhomogeneous laser 
geometries constructed in photonic crystals or light-localizing random 
media. For such complex geometries, the lasing modes are either difficult or 
impossible to calculate. The present work aims at the self-consistent 
treatment of the dynamics of the 4-level atomic system and the 
instantaneous ambient optical electromagnetic field. This permits in 
principle a much more robust treatment of the overall lasing dynamics of 
four-level gain systems integrated into virtually arbitrary electromagnetic 
field confinement geometries. 
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1. Introduction 

The finite-difference time-domain (FDTD) computational solution of Maxwell’s equations [1] 
is attracting increasing interest in full-wave simulations of the dynamics of both passive and 
active photonic systems. The most  basic FDTD technique used in simulating lasing media 
involves incorporating a classical dispersive Lorentzian gain via the auxiliary differential 
equation (ADE) method [1, 2].  A second, more advanced ADE technique for this purpose 
incorporates rate equations that govern the time-domain dynamics of the atomic populations 
in the lasing medium [3]. Another advanced approach uses the density-matrix method along 
with FDTD to solve the semi classical Maxwell-Bloch equation via an iterative predictor-
corrector method [4]. With increasing interests of researches in quantum optics, such as laser 
cooling for atoms, quantum computing, enhanced spontaneous emissions in microcavities, 
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there is a need to treat the system either semi classically or fully quantum mechanically to 
explain these phenomena [6,7]. 

In this paper we report a new FDTD model of the lasing dynamics of a four-level two 
electron atomic system. Our model incorporates a simplified quantized electron energies that 
provide four energy levels for each of two interacting electrons.  Transitions between the 
energy levels are governed by coupled rate equations and the Pauli Exclusion Principle (PEP) 
[5].  Our new approach is an advance relative to the methods described in [3, 4] which do not 
include the pumping dynamics for a four-level system, or the PEP. With this semi classical 
approach, we treat the atom quantum mechanically, and the electromagnetic wave classically. 
This model could be potentially further extended to a full quantum mechanical treatment of 
the field-matter interaction.  

2. Method 

Figure 1 illustrates electron transitions in our simplified four-level two-electron model.  These 
transitions are treated as two coupled dipole oscillators.  Levels 1 and 2 correspond to dipole 
Pa   and Levels 0 and 3 correspond to dipole Pb.   

 

 

 

 

 

 

 

Fig. 1. four-level two-electron model 

The two-level Bloch equation is used for each oscillator.  This is now derived.  The atom-
photon Hamiltonian for a two-level system can be expressed as: 
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where e is the electron charge and '
' | |ˆ 'llV l l= ><  is the atomic transition operator.  For a 

two-level system, the dipole operator can be written as † *ˆ ˆˆ V V= +µ µ µµ µ µµ µ µµ µ µ  where 

ˆu e g=µµµµ r .  The first-order differential equations of the dipole operator with the 

empirical dephasing term V̂γ  are given by: 
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We define the direction of the dipole along the z-axis such that µ=µµµµ
z

e .  Therefore, the 

dipole operators are 
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Next we derive the second-order differential equation for the dipole operators in a two-

level system.  Using ( )† *ˆ ˆ ˆ/
a

d dt V V iµ µ ω µ− = , Eq. (5) becomes 
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The polarization density ( )
a

P t  between |1> and |2>  is then 
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where 12ω  is the resonance angular frequency;  
a

µ  is the dipole matrix element between 

levels |1> and |2>;  γa  is the dephasing rate for ( )
a

P t ;  Â  is the vector potential;  and 
i

N  is 

the atomic population density in level i.  A similar equation holds for the polarization density 
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where ω30 is the pumping frequency. 

We neglect the Rabi oscillation term 2 2 2

30
2 ( ) /

b
ω ⋅ �µµµµ A  in Eq. (8), which is important only 

when the external electric field is very high.  This yields the governing equations 
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where Pa and Pb have the resonant frequencies ωa and ωb;  aω�  is the energy difference 

between Levels 1 and 2;  bω�  is the energy difference between Levels 0 and 3;  and ζa  is 
3 2

0 21 216 /( )cπε ω τ .  In Eq. (9), the driving terms are proportional to the population 

differences and the damping coefficients γa and γb simulate the non-radiation loss.  For the 
example discussed later, γa  =  γb  =  10

–13
s-1. Further note that the electric field E is an 

instantaneous value that is composed of contributions from both the pumping and emission 
signals.  

The population operator for the upper level is expressed as 
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where Nu and Ng are defined in Eq. (1). Here, we include the spontaneous decay to the lower 

level by the term ˆ(1 )
g u

N Nγ− − . 

Due to the PEP, the presence of electrons within one energy level reduces the efficiency 
of the pumping or relaxation from other levels since each quantum state can be occupied by 
only one electron. Similar to semiconductor band structure, for interband interactions (3�0 or 
2� 1), this results in pumping blocking which takes the form µµµµ  = µµµµ0 (1−Ν).  Here, µµµµ0 is the 
quantum efficiency when there are no electrons in the active region, and N is the electron 
population density probability.  As a consequence, the quantum efficiency drops by a factor of 
(1 – N).  Similar to interband relaxations, intraband transitions (3 � 2 or 1�0) are reduced by 
a factor (1 – N) due to the Fermi distribution of the electron population within the band. 

By coupling two dipole oscillators, Pb (between level 0 and 3) and Pa (between level 1 and 
2), The preceding considerations lead to the following rate equations for electron populations 
within four levels:  
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Here Ni is the electron population density probability in Level i and τij is the decay time 
constant between levels i and j.  The electron populations vary with pumping E·(dP/dt) and 
spontaneous emission decay (Ni – Nj) /τij.  Electrons in Level 3 spontaneously decay to Levels 
2 and 0 with decay time constants τ32 and τ30 respectively.  Electrons in Level 2 spontaneously 
decay to Levels 1 with decay time constants τ21. 

Our model couples Eq. (9) and Eq. (11) with the Maxwell-Ampere law:  

                                 ( )1 1
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This permits investigating both transient processes as well as asymptotic behavior at longer 
time scales.  

We now briefly summarize the computational algorithm. At time step n+1, we first 
implement Eq. (9) to update Pa and Pb.  Here, the use of explicit second-order finite-
differences centered at time-step n requires only knowledge of E at n.  Next, we apply Eq. 
(12) to update E to time-step n+1.  Next, we apply Eq. (11) to update N3 to time-step n+1.  
This involves the Pauli exclusion term (1 – N2), and N2 is taken from  time-step n.  Next, we 
apply in sequence Eq. (11) to update N2 and N1.  This allows N0 to be calculated by using the 
conservation of electron populations.  Finally we update H to time-step n+3/2 by applying the 
Maxwell-Faraday law.  This algorithm avoids the need to use the predictor-corrector 
algorithm of [4].  

3. Results 

To illustrate our model, we investigate a one-dimensional, optically pumped, single-defect, 
distributed Bragg reflector (DBR) laser cavity.  Each DBR has three layers of refractive 
indices alternating between 1.0 and 2.0 with thickness 375 nm and 187.5 nm, respectively.  
The gap between the DBRs is 750 nm, corresponding to a cold-cavity defect mode of 1.5 µm.  
This mode has a cold-cavity Q of 100, which is sufficiently small to achieve lasing with a 
relatively short FDTD running time.  In each DBR, the passband is centered at 0.75 µm, 
which allows the pumping light at this wavelength to escape the cavity.  Further, the stopband 
is centered at 1.5 µm, which confines the lasing mode at this wavelength within the cavity.  
To computationally extract the lasing signal, we record the calculated output time-waveform 
on one side of the DBR cavity, implement a fast Fourier transform, apply a flat-topped 
Gaussian filter function, and fast-Fourier-transform back to time domain.   

In the present example, we choose τ32 = τ10 = 100 fs and τ21 = τ30 = 300 ps (which takes 
into account the dephasing time).  The initial population density is N1 = N0 = 5×1023/m3.  With 
these parameters we estimate the required density probability of population inversion to be 
approximately 8.4×10-4.  

Figure 2 shows the calculated time evolution of the electron populations in all four levels.  
After the onset of pumping, the population in Level 1 starts to decrease, and the population in 
Level 2 starts to increase.  This is because pumping moves electrons from Level 1 to Level 0 
and then to Level 3 and finally to Level 2.   

 

  
Fig. 2. Electron population density probability. Left shows the inversion between levels 1 and 2.  

Because of the relatively long decay time from Level 2 to Level 1, the population of Level 
2 increases until inversion relative to Level 1 is reached.  As shown in Fig. 3, the laser output 
signal jumps upward at this point, followed by fluctuations that have been predicted in the 
literature [6]. 
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Fig. 3. Intensity output of pumping and lasing signals.  

 
To obtain the lasing threshold, we plot the output intensity vs. the pump intensity as 

shown in Fig. 4 for four cases:  (a) two-electron model with PEP;  (b) two-electron model 
without PEP;  (c) one-electron model  with PEP;  and (d) one-electron model without PEP.  
For both cases with the PEP, the lasing threshold is evidenced by a physically plausible 
sudden jump of the output intensity.  On the other hand, omission of the PEP for the one-
electron case results in a nonphysical zero-threshold laser operation.  Further, omission of the 
PEP for the two-electron case results in a nonphysical situation where both electrons occupy 
the ground state and there is no light output for the pump intensity considered. These 
calculations illustrate the importance of incorporating the Pauli Exclusion Principle.  

 

 
Fig. 4. Output intensity vs. pump intensity.  

4. Summary and discussion 

In summary, we have reported a new FDTD computational model of the lasing dynamics of a 
four-level two-electron atomic system. Transitions between the energy levels are governed by 
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coupled rate equations and the Pauli Exclusion Principle.  Our model combines classical 
electrodynamics and quantum mechanics for improved understanding of the interaction of 
electrons and electromagnetic waves.  

Specifically, we believe that the new FDTD model is more versatile than previous models 
employing modal expansions of the electromagnetic field, especially for complex 
inhomogeneous laser geometries such as those constructed in photonic crystals or light-
localizing random media. For such complex geometries, the lasing modes are either difficult 
or impossible to calculate. Our new model does not require knowledge or calculation of the 
lasing modes. 

In addition, during laser turn-on, turn-off, or pulsing, the generation of broadband 
transient electromagnetic energy cannot be well described by modal theory, which 
intrinsically represents sinusoidal steady-state phenomena.  The instantaneous nonlinear 
interactions of such transients with the lasing medium could be important, but are difficult to 
model using the modal-expansion method. These interactions are naturally treated in our 
model.  

Overall, the present work aims at the self-consistent treatment of the dynamics of the 4-
level atomic system and the instantaneous ambient optical electromagnetic field. This permits 
in principle a more robust treatment of the overall lasing dynamics of four-level gain systems 
integrated into virtually arbitrary electromagnetic field confinement geometries. 
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