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Abstract—A computational hydrodynamics model consisting
of a system of four coupled time-domain partial differential
equations is applied to study the response of the cellular sodium
ion channel to a microwave electric-field excitation. The model
employs a dynamic conservation law formulation, which has not
been previously applied to this problem. Results indicate that the
cellular sodium ion channel exhibits an electrical nonlinearity
at microwave frequencies, which generates an intermodulation
spectrum when excited by an amplitude-modulated electric field.
Intermodulation products having frequencies down to 50 MHz,
and very likely well below 50 MHz, appear possible. This is a new
nonthermal microwave interaction mechanism with living tissues
that, if observable below 0.1 MHz, could enable the stimulation of
excitable biological tissues, and thereby have significant implica-
tions for human health and safety.

Index  Terms—Computational modeling, living cells,
microwaves, nonlinearity, nonthermal electromagnetic
interactions.

1. INTRODUCTION

HERE EXISTS a substantial literature regarding the bi-
ological effects of electromagnetic fields from ac power
frequencies to microwaves [1]-[5]. However, in this body of
research, relatively few studies have attempted to investigate
potential interaction mechanisms at the level of individual cells.
This paper reports on the results of a detailed computational
study of the response of the cellular sodium ion channel to an
amplitude-modulated microwave electric-field excitation. We
have extended and applied a hydrodynamic model that inte-
grates a system of four coupled partial differential equations
which includes the Poisson—Nernst—Planck (PNP) equations [6]
as a limiting case. The simulation code for our model is adapted
from that was created by C.-W. Shu, Brown University, Provi-
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dence, RI, and is used in this paper with permission. A detailed
description of the algorithm is provided in [7] and [8]; salient
features are summarized in Section VI. We believe this to be the
initial application of such modeling technology to the electro-
magnetic bioeffects problem.

Our computational model is based upon the dynamic conser-
vation law formulation. In turn, the dynamic conservation law
formulation is a natural extension of the steady-state conserva-
tion law model of [9]. The spatial dimensions of our model are
in the order of nanometers in length and tenths of nanometers
in diameter. The temporal events analyzed occupy time scales
ranging from subpicoseconds to tens of nanoseconds, much less
than the duration of gating pulses, which are typically in the mil-
lisecond range. We are thus examining the open channel.

Our model indicates that the cellular sodium ion channel
exhibits an electrical nonlinearity at microwave frequencies,
which generates an intermodulation spectrum when excited
by an amplitude-modulated electric field. Intermodulation
products having frequencies down to 50 MHz, and very likely
well below 50 MHz, appear possible. This is a new nonthermal
microwave interaction mechanism with living tissues that, if
observable below 0.1 MHz, could enable the stimulation of
excitable biological tissues [10] and thereby have significant
implications for human health and safety.

II. OVERVIEW OF THE STRUCTURE AND FUNCTION
OF ION CHANNELS

Sodium channels exist in axons and neuron cell bodies, in stri-
ated muscles and cardiac muscles, as well as in many endocrine
glands [11]. Unlike potassium channels, they are very similar
in function, but their kinetics differ. In axons and muscle fibers,
fast sodium channels generate action potentials, which are the
foundation of any sensory-motor performance and higher cog-
nitive functions. Slow sodium channels, most clearly observed
in the soma of cells in the hippocampus, neostriatum, thalamus,
and other parts of the brain, regulate the excitability of cells by
generating prolonged sub-threshold changes in the membrane
potential [12]. Without actually initiating the action potential,
they condition the cell and, thus, modulate the delicate mech-
anisms of activation of neuronal circuits. For example, slightly
depolarized thalamic neurons oscillate at the frequency of ap-
proximately 10 Hz, whereas in the hyperpolarized state, they
are likely to oscillate at approximately 6 Hz [13].
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The slow sodium channels give rise to the so-called nonin-
activating or persistent conductance [12]. It is conceivable that
this prolonged conductance of sodium ions may expose the cell
to ambient electric fields of frequencies below the gating fre-
quency of the fast sodium channels. Such fields may, therefore,
disrupt the function of neuronal circuits.

Ambient low-frequency electric fields disrupt the function of
neuronal circuits because they can elicit an action potential. The
new perspective we obtain in the context of the sodium channels
is that these low-frequency fields may arise from a possible non-
linear response of the channel to microwave fields. Such non-
linear response may be expected to occur at some frequencies,
not necessarily in the microwave region, if the ion flow through
the channel is considered an electro-hydrodynamical process.

From this point-of-view, we expect a similar nonlinear re-
sponse in any kind of ion channels. For example, resting channels
may provide a high degree of coupling of an ambient electric
field with the cell because they are open when the cell is at rest
and, therefore, would not obstruct the flow of low-frequency
intermodulation currents. In nerve cells, the resting channels
are permeable to potassium, sodium, and chloride ions [14].

We believe that the ion flow through the channel can reason-
ably be considered an electro-hydrodynamical process because
the ion channels themselves are thought to be water-filled pores
[15]. Tons pass through the pores at the rate of 10%/s [16]. This
model was not fully accepted until at least the late 1970s. Up to
that time, an alternative hypothesis under investigation was that
the ion channels are structures for active transport of ions [15].

Ion channels are formed by proteins spanning the cell mem-
brane. Genetic research has shown that voltage-gated sodium,
potassium, and calcium channels have evolved from a common
gene and have the same overall structure [16], [17]. This simi-
larity justifies to some extent generalizing results obtained for
one type of channels to other types.

Experiments using high-resolution X-ray crystallography
have revealed the three-dimensional (3-D) geometrical struc-
ture of a potassium channel [18]. The pore was found to be
constructed of an “inverted teepee.” The selectivity filter is
situated at the wide end of the pore and is about 1.2-nm long,
thus permitting two potassium ions to pass through it in close
proximity one after the other. The repulsive force between
the ions increases their speed in the filter. The width of the
filter allows only a single potassium ion to pass by a given
point along the filter at a time. This confirms a long-standing
hypothesis that the ions are dehydrated before they pass through
the filter [15]. A large water-filled cavity in the center of the
pore reduces the electrostatic barrier in the middle of the lipid
bilayer of the membrane.

Extrapolated to a sodium ion channel, these results justify
an initial one-dimensional (1-D) approach to modeling the ion
channel. However, such an approach neglects the fine structure
of the water cavity and the overall conical shape of the channel.
The electro-hydrodynamical concept excludes the process of de-
hydrating of the ions. If considered in a more general paradigm,
these details might reveal some additional nonlinear effects.

III. SYSTEM OF COUPLED PARTIAL DIFFERENTIAL EQUATIONS

Our model of the response of the cellular sodium ion channel
to an amplitude-modulated microwave electric field involves
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integrating in time () a hydrodynamic model consisting of a
system of four coupled time-domain partial differential equa-
tions that enforce conservation of particles, conservation of
momentum, conservation of energy, and Poisson’s equation
(see [9, Appendix]). In this model, a 1-D space having the
positional coordinate x is considered. The system of equations
is as follows.

A. Conservation of Particles

—+ —(nv) =0 (1)

where n and v are, respectively, the ion concentration and ion
translational velocity in the channel’s pore.

B. Conservation of Momentum

% + %(pv) + %(nkBT) = enkE — f—p )
where p = mnw is the ion momentum density in the channel’s
pore, m is the ion mass, kg is Boltzmann’s constant, 7" is the
ion temperature in the channel’s pore, e is the electron charge,
E = —(09/0x)+ Eext is the total electric field, ® is the electric
potential, Fey: is an externally applied electric field of arbitrary
time waveform and intensity, and 7, is the momentum relaxation
time of the ions in the channel’s pore.

C. Conservation of Energy

ow 1o} 0

5t + %(vw) + %(nkaT)
o w 37’L]€BTO 0 oT
=envE - + . + p (nn 8;1:) 3)

where w = (3/2)nkpT + (1/2)nmv? is the ion energy density,
Ty is the temperature of the channel’s protein and lipid mem-
brane, 7, is the energy relaxation time of ions in the channel’s
pore, k = (31mok%Ty/2e) is the thermo-conductivity coeffi-
cient of the ions, and g is the ion mobility in the channel’s
pore when the electric field and other driving forces are small.

D. Poisson’s Equation

2
—ag =e(n+mnp) )
where ¢ is the dielectric permittivity of the channel’s pore,
and np is the distribution of permanent charge on the channel
protein.

Equation (1) ensures conservation of the number of particles.
Here, the concentration of particles changes with time solely as
the result of drift (flow). In (2) and (3), collisions are approxi-
mated as relaxations to values of the equilibrium state. In each
of these equations, the second term on the left-hand side is due
to drift, and the third term is due to the pressure gradient, i.e.,
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the mechanical force, which contributed from ion—-ion interac-
tions and ion thermal motion.

On the right-hand sides of (2) and (3), the first term is due
to the electrical force. This arises from: 1) the charge applied
to the baths that sustains the externally applied transmembrane
potential; 2) the permanent charge on the channel protein; 3) the
mobile charge (ions) in the channel’s pore; 4) the induced
(i.e., polarization) charge of the several dielectrics; and 5) the
externally applied microwave field. The second term on the
right-hand sides of (2) and (3) is due to the frictional force
arising from ion—channel and ion-water interactions. Finally,
the last term on the right-hand side of (3) is due to the heat
flux into the system.

IV. BOUNDARY CONDITIONS

We assume that the ion channel is positioned symmetrically
between x = —(L/2) and x = (L/2), where L denotes the
channel length. At x = —(L/2), the potential is defined by the
built-in potential and the bias across the channel

LY oy BT [
Q) <}_'§'> - ‘ﬁnas 4‘ 1Il n (__l;) ] (5)

¢ 2

where n; is the intrinsic ion concentration and Vj,;,s is a user-
defined static potential. At z = (L/2), ® is defined exclusively
by the built-in potential

¢<£>zzﬁéfhl__ﬁL_ , 6)
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We note that, because of the way that the channel protein folds,
there is a normally directed electric field within the lumen, re-
sulting in a periodic potential along its length. However, we do
not incorporate this periodicity in the boundary conditions in
this model.

Consider next the boundary conditions on the carrier concen-
trations. These are given at x = +(I/2) by the values of the

ion density
L L

Finally, the boundary condition temperatures are given by

L L
f(Den r(E)-n

where T} is the ambient temperature. There are no boundary
conditions directly specified for the velocity in the incompletely
parabolic system of (1)—(3).

V. PARAMETERS

Following [9], we employ the Baccarani-Wordeman empir-
ical models [19] for the relaxation parameters
_ m’fhoTO
= eT

_ 3mokTTo Tp
T 9e2(T + Tp) 2

)

(10)
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TABLE 1

PARAMETERS USED IN THE MODEL
Parameter  Value
& 8060
np 10 mmol 171 = 6.02 nm—3
n; 0.1 mol 11 = 0.0602 nm—3
vs 0.01 nm ps—!
Viias 02V
m 23 a.m.u. (mass of Na®)
To 300°K
mo 0.04 nm?ps—1y—1
L 2.5 nm

where v, is the saturation velocity of ions in the channel’s pore.
The following parameters assumed for our model are summa-
rized in Table 1. These parameters were also used in [9] and
are thought to be representative of the cellular ion channel. The
choice of these parameters is nontrivial, clearly impacting the
results. Of these parameters, most are well understood. There
are two, however, that are less clear: the saturation velocity v,
and mobility mg. Note that, as discussed in [9], the current
choice of v, is consistent with the convergence of the hydrody-
namics model with decreasing relaxation time to the pnp model.
The key assumption in selecting 7 is that the diffusion in the
pore is the same as that in a free solution [9].

VI. ALGORITHM

The hydrodynamic model summarized above can generate a
wide variety of nonlinear fluid behavior including the forma-
tion of propagating shock waves and other disturbances—in-
deed, much of the behavior of fluids that we observe every day
as weather, water flows in our sinks and drains, and even waves
at the beach. Simple discretization does not always work well
for such systems, and can even lead to completely erroneous
modeling results. Sophisticated numerical techniques must be
applied to properly account for the possibility of shock pro-
duction. For this reason, we employ the previously developed,
essentially nonoscillatory (ENO) shock-capturing scheme de-
scribed in detail in [7] and [8], and previously applied to model
the open ion channel (unexcited by microwaves) in [9]. Several
key aspects of the ENO algorithm and our adaptation of it for
this study are now reviewed. (For the reader interested in a de-
tailed mathematical description of the algorithm, [8] provides a
readable and extensive discussion.)

First, and most generally, the ENO algorithm permits a flex-
ible specification of its order of numerical accuracy. For this
study, we select a third-order accurate numerical implementa-
tion in both space and time for the conservation law system, and
use standard second-order differencing for Poisson’s equation.
For the conservation system, spatial differencing adaptively
employs stencil subsets of a uniform grid that are selected to
minimize oscillations, as discussed below. Time stepping is
via an explicit third-order Runge—Kutta scheme, which per-
mits variable time-step size. Before the algorithm can proceed
to the next time step, two quantities must be computed: the
Courant—Friedrichs-Levy (CFL) number (the numerical sta-
bility index that governs the length of the time step) and the
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numerical flux. Given the 2.5-nm-length L of the ion channel,
a subpicosecond time step is required both to accurately model
ion flow and to ensure numerical stability. That is, velocities of
ion transport integrated over subpicosecond time intervals yield
translational distances within the channel that are relatively
small compared with L so that the results of the numerical
integration are accurate.

Second, with our model written as a perturbed first-order hy-
perbolic system, the Jacobian matrix can be computed analyti-
cally together with its eigenvalues and eigenvectors. In fact, the
eigenvalues are given by v — ¢, ¢, and v + ¢ for sound speed
c? = (5kgT/3m). The eigenvalue with the largest modulus
A determines the time step (At/Az) < (1/X). The eigenvec-
tors permit a field-by-field decomposition so that, ultimately,
the flux can be defined for single scalar equations and propagate
to the system via similarity transformations. In this diagonaliza-
tion, the boundary conditions for the numerical method are char-
acterized as inflow boundary conditions, which are standard for
hyperbolic problems. The algorithm is overdetermined (in the
subsonic case) by requiring the velocity gradient to vanish, but
this is known to converge to analytical compatibility as Az —
0.

Third, and most specifically, the ENO scheme is targeted at
the numerical solution of scalar equations of the form

ou a[f(u)] B
E_{_ ox =0

which can develop shocks and/or steep gradients. The ingenuity
of the ENO scheme lies in the numerical representation

where fi—(l /2) is the numerical flux flowing into a cell situ-
ated halfway between the grid points. It was shown in [7] that
this value could be computed as the analytical derivative of a
certain Newton interpolation polynomial constructed via finite
differences on adaptive stencils, which minimize oscillations.
The degree of the Newton polynomial is related to the order of
the method in regions of smoothness of the solution, and is of
degree 4 in our case. An additional comment relates to the de-
composition of the flux, prior to approximation, into a part f+
with nonnegative signal speed, and a part f~ with nonpositive
signal speed. This is called the local Lax—Friedrichs flux split-
ting, and defines the upwinding. The interpolation polynomials
are actually constructed for each flux component.

When the ENO algorithm is applied to perturbed equations
(forcing terms added), the forcing terms are treated explicitly.
This is the case even for the term involved in the energy equa-
tion where the heat-flux divergence is discretized by a classical
second-order approximation. The model used here is called an
incompletely parabolic system, defined by the hyperbolic sub-
system for the concentration and momentum densities, and the
parabolic energy equation for the carrier temperature. This af-
fects the consistency of the boundary conditions.
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Fig. 1. (a) Computed time waveform of the sodium ion current density for

a 20-V/cm 4-GHz microwave excitation amplitude modulated at 100% by a
400-MHz sinusoid. (b) Corresponding Fourier spectrum with the dc component
suppressed.
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Fig. 2. Computed LFCE as a function of the 4-GHz carrier amplitude. The

amplitude modulation by a 400-MHz sinusoid is fixed at 100%. Characteristic
of nonlinear systems, the conversion efficiency diminishes exponentially as the
carrier amplitude is reduced. With the carrier reduced to 1.25 V/cm, the LFCE
drops to approximately 0.8%.

VII. RESULTS

Fig. 1(a) graphs the temporal waveform of the calculated
sodium ion current density in the channel for a 20-V/cm 4-GHz
microwave electric-field excitation amplitude modulated at
100% by a 400-MHz sinusoid. Fig. 1(b) is the corresponding
Fourier spectrum of this current density with the dc spectral
component suppressed. This spectrum is normalized to the
peak component at the 4-GHz carrier frequency. We observe
intermodulation products clustered about the fundamental
frequency and its harmonics. Such an intermodulation spec-
trum is characteristic of the excitation of a nonlinear system
by multiple-frequency sinusoids. Of particular interest is the
low-frequency product at the 400-MHz modulation frequency.
This product has an intensity that is approximately 12% of the
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Fig.3. Computed LFCE as a function of the microwave carrier frequency from
500 MHz to 8 GHz, maintaining a 50-MHz amplitude modulation at 100% and
a carrier amplitude of 10 V/cm. The conversion efficiency is approximately
constant for carrier frequencies below 1 GHz, but drops off exponentially for
carrier frequencies above 5 GHz.

carrier. We define this ratio as the low-frequency conversion
efficiency (LFCE).

Fig. 2 graphs the LFCE observed for the case of Fig. 1 as a
function of the 4-GHz carrier amplitude. Characteristic of non-
linear systems, the LFCE diminishes exponentially as the carrier
amplitude is reduced. With the carrier reduced to 1.25 V/cm, the
LFCE drops to approximately 0.8%.

Fig. 3 graphs the LFCE as a function of the carrier frequency
from 500 MHz to 8 GHz, maintaining a 50-MHz amplitude
modulation at 100% and a carrier amplitude of 10 V/cm. We
see that the conversion efficiency is approximately constant for
carrier frequencies below 1 GHz, but drops off exponentially for
carrier frequencies above 5 GHz.

Fig. 4 graphs the LFCE as a function of the modulating
frequency between 50-800 MHz, maintaining 100% amplitude
modulation of a 20-V/cm 4-GHz carrier. We see that the LFCE
is approximately constant over the entire range of modulating
frequencies.

VIII. DISCUSSION

Our computational modeling results imply that an amplitude-
modulated microwave electric field can induce low-frequency
ion currents in the cellular sodium channel due to a nonlinearity
inherent in the ion-flow process. As discussed in Section II, the
sodium channel influences the subtle operating mechanisms of
neuronal circuits. Furthermore, because “there should be much
mechanistic similarity among the channels” [17], our results
should be generalizable to potassium and calcium channels.

We note that the subpicosecond time step used in our algo-
rithm prevents integration to the time scales needed to directly
calculate low-frequency mixing products below approximately
50 MHz. However, Fig. 4 indicates that reducing the modu-
lation frequency results in an undiminished LFCE down to
50 MHz, and very likely well below 50 MHz. Given that “below
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Fig. 4. Computed LFCE as a function of the modulating frequency between
50-800 MHz, maintaining 100% amplitude modulation of a 20-V/cm 4-GHz
microwave carrier. The conversion efficiency is approximately constant over
the entire range of modulating frequencies.

0.1 MHz, stimulation of excitable biological tissues plays a
dominant role” [10], such a conversion phenomenon could
have significant implications for human health and safety.

In conclusion, the results of our hydrodynamic model of the
cellular sodium ion channel provide a formal nonlinear mecha-
nism for transducing microwave signals to influence ion flow
currents at time scales potentially permitting interaction with
naturally occurring body processes. Such a nonthermal trans-
duction would present possibilities for appropriately modulated
microwave signals to interfere with normal cell-membrane
functions. This could have potential impacts, especially in the
defense technology area, where it is conceivable that personnel
could be exposed to the required 2-kV/m microwave electric
field. Finally, our computational modeling results may be useful
in guiding experimental investigations of potential microwave
nonlinearities in biological tissues [20].
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