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Three-Dimensional CAD-Based Mesh Generator for
the Dey–Mittra Conformal FDTD Algorithm
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Abstract—It is well-known that the finite-difference time-do-
main (FDTD) method is subject to significant errors due to the
staircasing of surfaces that are not precisely aligned with major
grid planes. Dey and Mittra introduced a locally conformal
method (D-FDTD) that has shown substantial gains in the accu-
racy of modeling arbitrary surfaces in the FDTD grid. A mesh
generator for this purpose was reported by Yu and Mittra. In this
paper, we present the formulation and validation of an alternative
CAD-based mesh generator for D-FDTD that has improved
capabilities for arbitrary three-dimensional (3-D) perfect electric
conductor (PEC) geometries. This mesh generator is capable of
importing AutoCad and ProE files of 3-D PEC scatterers and
resonators. It can reduce the required FDTD grid resolution by up
to 4:1 in each Cartesian direction in 3-D relative to conventional
staircased FDTD models when modeling cavity resonances of
complex PEC structures such as twisted waveguides.

Index Terms—Conformal method, finite-difference time-domain
(FDTD), mesh generation.

I. INTRODUCTION

I T IS well documented that the basic finite-difference time-
domain (FDTD) method is subject to error due to its

simplistic staircasing of geometries [1], [2]. Errors persist even
for very small space increments. In the literature, a variety
of meshing techniques have been proposed to improve the
modeling of arbitrarily shaped geometries in the FDTD grid.
Some of these methods include nonorthogonal algorithms and
locally conformal algorithms. These methods offer the prospect
of modeling arbitrary three-dimensional (3-D) geometries
subject to certain limiting considerations.

Unstructured, irregular grids such as those used by finite-ele-
ment (FE) solvers offer the greatest flexibility for accurate mesh
generation. Rather than deforming the geometry to conform to
the grid (as in the standard FDTD algorithm), the nonorthogonal
mesh conforms to the geometry. A method for implementing
nonorthogonal grids for FDTD modeling was reported in [3]
and adapted by others [4]–[8]. However, some of these methods
suffer from late-time instabilities, regardless of the time step,
due to the formulation of the projection vectors [9].
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While locally conformal gridding methods do not offer the
versatility of nonorthogonal algorithms, they have been rigor-
ously analyzed and have been shown to give superior results to
the standard FDTD method [10]. Locally conformal grids are al-
tered only where intersected by the wave-interaction geometry.
The grid retains its regular, orthogonal structure with modifica-
tions made only locally to specific grid edges and cells. As a
result, once the geometry generation is concluded, only slight
modifications are needed to existing FDTD codes to implement
fully the locally conformal algorithm.

Jurgens et al. introduced the first locally conformal grid for
modeling curved perfect electric conductor (PEC) surfaces.
This method, referred to as the contour-path FDTD (CP-FDTD)
method [11], [12], showed a marked accuracy improvement
relative to staircasing methods. Late-time numerical stability
problems with CP-FDTD were subsequently overcome by
Railton [13], [14]. Recently, Dey and Mittra introduced a new
locally conformal method (D-FDTD) [15] that is numerically
stable, easier to implement than CP-FDTD, and provides
improved accuracy. Yu and Mittra created an automated means
of implementing D-FDTD that gives excellent improvement
over staircased results [16].

This paper presents the formulation and validation of a CAD-
based mesh generator that has some improved capabilities rela-
tive to that of Yu and Mittra for arbitrary 3-D PEC geometries.
The CAD-based mesh generator is capable of importing 3-D ge-
ometries from AutoCad and ProE and modeling both scattering
and resonating structures using the D-FDTD algorithm. Sec-
tion II reviews the background of the CP-FDTD and D-FDTD
locally conformal algorithms, noting the current merits and lim-
itations of each method. Section III discusses the implementa-
tion details of the new CAD-based D-FDTD mesh generator for
PEC structures. Finally, Section IV provides and analyzes nu-
merical results.

II. BACKGROUND OF CP-FDTD AND D-FDTD LOCALLY

CONFORMAL ALGORITHMS

The CP-FDTD and D-FDTD methods [11], [15] are two lo-
cally conformal gridding techniques that have been shown to
produce substantial improvement in modeling certain types of
arbitrary structures. Both methods use the basic orthogonal-grid
FDTD algorithm for cells that are not intersected by the wave-
interaction geometry, but they distinguish between two classifi-
cations of cell/geometry-surface intersections that are unique to
each method.

Fig. 1(a) and (b) shows two general classifications of cell in-
tersections for the CP-FDTD method of [11]. The update equa-
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Fig. 1. General cases for CP-FDTD and D-FDTD locally conformal algorithms. (a), (b) CP-FDTD method where H field is located (a) outside PEC, or (b) inside
PEC. (c), (d) D-FDTD method where (c) the stability criteria is met, and (d) the stability criteria is violated.

tion for depends upon whether the field is inside or out-
side the PEC. In Fig. 1(a), is outside the PEC so its update
equation is the standard circulation of the surrounding fields.
Accounting for the modified edge lengths and areas

(1)

In Fig. 1(b), is within the PEC. In this case, cell 1 is expanded
into cell 2 during the calculation of . is not updated in cell
2, and the fields outside the PEC in cell 2 are borrowed from
cell 1. The update equation for this case is as follows:

(2)

Due to field borrowing and cell expansions, this formulation is
numerically unstable. An alternate CP-FDTD formulation de-
scribed in [13], [14] introduces modifications that achieve sta-
bility without compromising the accuracy of the solution.

The D-FDTD method is less complex and more stable than
the CP-FDTD method since it does not require cell expansion
or field borrowing. As shown in Fig. 1(c), (d), D-FDTD imposes
stability criteria that require two general classifications of cells
depending upon whether the stability criteria are violated.

The D-FDTD stability criteria are based on: 1) the minimum
grid-cell face area and 2) the maximum ratio of the grid-cell
edge length to the grid-cell face area for a specified cell. If either
criterion is not met, the electric fields along the grid-cell face are
set to zero. Otherwise the update is treated normally. The actual
threshold values for the stability conditions are dependent upon
the Courant number. Given a Courant number that is one-half
the maximum allowable, D-FDTD requires that the minimum
area be 1.5% of the area in an unmodified grid cell. Second, the
ratio of the maximum grid-cell edge length to the area of the

Fig. 2. Field leakage into PEC due to locally conformal algorithm.

grid-cell face must not be more than 15 times greater than that
of an unmodified cell.

In Fig. 1(c), all stability considerations have been met for the
D-FDTD method. For this case, the field update equation is
identical to the CP-FDTD (1) when the field is outside the
PEC. On the other hand, in Fig. 1(d), the area of interest outside
the PEC is below a minimum allowable value, thereby violating
one of the stability criterion. The cell is assumed to be entirely
filled with a PEC and all cell edge lengths are set equal to zero.

A consequence of the locally conformal methodology is the
tendency for numerical fields to propagate into the PEC region.
The grid is modified to account for partial edge lengths, but un-
like nonorthogonal algorithms, there is not an actual grid en-
tity that lies along the surface of the geometry. Fig. 2, shows
the mechanism for field leakage. From the figure, is up-
dated normally according to the D-FDTD algorithm. Assuming
the stability requirements are met in that grid face, will be
nonzero. The update for is as follows:

(3)

Since is nonzero, is nonzero in spite of the fact that it
is entirely immersed in a PEC. The numerical energy in the grid
is thus able to spread nonphysically outwards into the PEC.
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Fig. 3. FE mesh of a hemisphere. (a) Hemisphere superimposed onto an FDTD
grid where the intersected FDTD edges are shown. (b) Electric wall surrounding
a hemispherical resonator.

To prevent this leakage from occurring, a PEC shell is
wrapped around a resonator as in this case, or a PEC shell
is inserted inside a scatterer. The shell is created by simply
assigning zero to the electric field edge lengths wherever the
shell is needed.

Once the modified areas and edge lengths are determined and
the electric wall is created, the D-FDTD algorithm can be im-
plemented easily by existing FDTD solvers. The inclusion of
standard FDTD features such as absorbing boundary conditions,
total-field/scattered-field surfaces, near-to-far field transforma-
tions, and others may be used without alteration. However, the
execution time of the D-FDTD method is greater due to the ad-
ditional multiplications of edge lengths and division by grid-cell
areas. For a setup consisting of a six-cell, perfectly matched
layer [17] boundary condition, the execution time of the field
update equations increased by only 4.3% as compared with the
standard FDTD algorithm.

III. IMPLEMENTATION DETAILS OF THE CAD-BASED D-FDTD
MESH GENERATOR

A general difficulty in implementing the D-FDTD algorithm
in three dimensions is in the systematic ability to create a
reliable mesh for an arbitrary geometry. The D-FDTD mesh
generator discussed in this paper is capable of robustly im-
porting 3-D PEC geometries from AutoCad and ProE and
modeling both scattering and resonating structures. It is built on
the FE mesh generator, CUBIT1 produced by Sandia National
Laboratory [18]. CUBIT produces a conformal nonorthogonal
FE mesh consisting of triangular or quadrilateral planar facets.
This faceted mesh is imported into the D-FDTD mesh generator
where it is superimposed onto a uniform Cartesian FDTD grid.
The intersection points of the FE mesh geometry with the
FDTD grid are evaluated, and the appropriate FDTD grid-cell
edge lengths and areas are modified.

Fig. 3(a) shows a sample FE mesh of a hemispherical scat-
terer created using CUBIT and superimposed onto an FDTD
grid. The FDTD edges that intersect the geometry are shown
protruding from the hemisphere. Since this is a scattering geom-
etry, the portions of the edges that are visible in the figure show
the modified edge lengths that are calculated by the mesh gen-
erator. All other FDTD grid edges are left unchanged. Fig. 3(b)

1CUBIT is a registered trademark of Sandia National Laboratory, Albu-
querque, NM 87185-0203 USA.

illustrates the converse situation where the hemisphere is mod-
eled as a cavity. Here an external electric wall is used to prevent
field leakage outside the hemisphere.

Intersections of the faceted FE surface and the local FDTD
grid cells must be carefully considered in order to create a gen-
eral-use mesh generator. To create the D-FDTD mesh, the FE
mesh must first be located in the standard FDTD grid away from
any total field/scattered field boundaries and absorbing bound-
aries. Each facet of the FE mesh is evaluated separately, and the
edges of the FDTD grid are surveyed in order to determine if an
intersection exists. The listing of the coordinates of each facet
produced by the FE mesh generator create either a clockwise or
counterclockwise rotation. This orientation is used to determine
the interior and exterior regions of the wave interaction region.

The procedure for evaluating an intersection of a facet with
the FDTD grid begins by locating the FDTD grid edges near
the FE facet. In the case of an -directed FDTD edge (a sim-
ilar methodology may be applied to - and -directed edges), it
is determined whether its ( ) coordinates are positioned in-
ternally to the facet. Each edge of the facet is used to separately
test for inclusion of the ( ) coordinates of the FDTD grid edge
in its interior. The cross-products of the vector representation of
the edges of the facet are taken with the normal vector of the
facet such that the resultant inclusion vector is directed inside
the facet. The edge vectors are then extended out in both direc-
tions and formed into a plane by extruding the line into the
directions. The ( ) coordinate of the -directed FDTD grid
edge is evaluated to determine if it lies in the direction of the in-
clusion vectors relative to the half planes. If it does for all edges
of the facet, the FDTD -directed grid edge is determined to be
located within the interior of the facet extruded in the direc-
tions; otherwise, it is not.

It has not yet been determined whether an actual intersection
has occurred. The plane equation for the FE facet is used to eval-
uate the value of the facet at the coordinate ( ). An intersec-
tion of the -directed FDTD edge with the facet will occur if
the -value of the facet is determined to be within the span of
the FDTD edge. The interior of the wave-interaction region is
determined from the direction of the circulation of the coordi-
nates of the facet produced by CUBIT. The edge length can be
determined using the portion of the FDTD edge inside this re-
gion, and the electric wall can be built exterior to this region.

Fig. 4 shows problematic cases that can often occur for arbi-
trary geometries. Fig. 4(a) shows a special case where a facet
of the FE mesh intersects an FDTD edge at a vertex. The divi-
sion of the grid edges inside and outside the wave-interaction
region can be determined normally once the edges contacting
the intersected vertex are evaluated. The top leftmost grid edge
is completely outside the wave-interaction region while the cen-
tral vertical grid edge is completely within, and the top rightmost
edge is considered to be doubly intersected. Once this evalua-
tion is made, the edge length and area calculation of the FDTD
grid cells proceeds normally.

These intersections are all termed point-wise since the FDTD
edge intersects the FE mesh at a single location. On the other
hand, planar intersections occur when an FDTD edge lies di-
rectly along the surface of the FE mesh as in Fig. 4(b). Planar
intersections do not divide an FDTD grid edge at a single point
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Fig. 4. Special cases concerning the intersection of the FE mesh with FDTD
grid including (a) intersection of FE mesh at a vertex of the FDTD grid; (b)
planar intersections of the FE mesh with the FDTD grid. In (b), the facets of the
FE mesh are outlined in white and the intersected FDTD grid edges internal to
the geometry are emphasized with black.

Fig. 5. Possible intersections of the FE mesh with the FDTD grid. Grid-cell
areas are calculated based on the resultant edge lengths.

into regions inside and outside the PEC as for point-wise inter-
sections. Instead, the length of the FDTD edge in the wave-in-
teraction region must be evaluated after determining all the in-
tersections of the FE facets with the FDTD edge since a single
FDTD edge may be intersected multiple times. After compila-
tion, the portion of the FDTD edges outside the facets are con-
sidered to be in the wave-interaction region since the facets rep-
resent the PEC boundary of the geometry.

The planar intersection points are not found by representing
the facet by a planar equation as for point-wise intersections.
Rather the equation of a line passing through each edge of the
FE facet is used. Assuming an -directed FDTD edge at
in the plane, the value of each of the edges of the FE facet
at are calculated by representing the edges as infin-
itely extending lines. If the value lies on the FDTD edge, then
an intersection point is found. Since multiple facets may inter-
sect the same edge, the intersections must be grouped to deter-
mine FDTD edge lengths once all intersections of FE facets with
FDTD edges have been determined.

Once all the point-wise and planar mesh geometry is com-
piled, special consideration must be given to those edges that
contain both classifications of intersections. During the final
analysis of these types of edges, the interior and exterior regions
of the PEC must be compared and a final evaluation made based
on the geometry of the hybrid intersection point.

Fig. 5 provides a sampling of typical point-wise intersections
that can occur and are accounted for in this mesh generator. This

figure shows examples of intersections of the faceted FE mesh
with Cartesian FDTD grid-cell faces that demonstrate singly in-
tersected edges, doubly intersected edges, and multiple doubly
intersected edges. If an edge is singly intersected, as in Fig. 5(a)
and (b), the calculation of the edge length is found by simply
determining the edge length outside the PEC. For multiply in-
tersected edges as shown in Fig. 5(c) and (d), it is determined
whether the region between the intersection points or away from
them is outside the PEC. In Fig. 5(c), the PEC is external to the
intersection points, and the grid-cell edge length becomes the
interior segment length between the two points. In Fig. 5(d), the
PEC is between the intersection points and the grid-cell edge
length becomes the addition of the segment lengths to either side
of the intersecting curve.

Once the edge lengths of the FDTD grid are known, the area
can be calculated. Fig. 5(a) shows a simple case where two ad-
jacent edges of an FDTD cell are intersected. The area of this
cell is simply the area of the triangular PEC wedge subtracted
from the full unmodified cell area. Similarly, Fig. 5(b) consists
of two singly intersected edges, but these edges are not adjacent.
The area is then the sum of two cross products as follows:

(4)

Fig. 5(c), shows the case where an edge is doubly intersected
and two other edges are singly intersected. Each pair of inter-
section points must be matched appropriately. To avoid overlap
and unnecessary complexity, it is useful to calculate the area
inside the PEC in this case so that the cell may be effectively
divided into two regions independent of each other. The area
of the two portions of the PEC may then be subtracted from
the total area of an unmodified cell to determine the total area
in the cell. In Fig. 5(d), the sum of the cross products of the
vector edge lengths spanning the interior of the doubly inter-
sected edges must be determined in order to find the area of the
cell. Since the PEC is inside this region, the final area is found
by subtracting this from the area of an unmodified cell.

IV. NUMERICAL RESULTS AND APPLICATIONS

The accuracy of the CAD-based D-FDTD mesh generator has
been determined via comparison with published results in addi-
tion to comparison with Ansoft High Frequency Structure Sim-
ulator (HFSS)2 [19], a commercial FE method solver. The first
validation sequence compared results published by Railton and
Schneider for the resonant frequencies of cylindrical and spher-
ical cavities [10]. Fig. 6 shows a cut-away of the FE mesh of
a sample cylindrical resonator used in this study. FDTD edges
that are intersected by the FE mesh are drawn showing their
partial edge lengths and subsequently modified grid-cell areas.
Fig. 7(a), taken from Railton and Schneider [10], shows the error
of the standard staircasing FDTD algorithm compared with the
stabilized CP-FDTD and D-FDTD methods at a resolution of

for cylindrical cavities oriented at various angles. Fig. 7(b)
shows the error of Railton and Schneider’s D-FDTD results
compared with the error using the new D-FDTD CAD-based
mesh generator. The results for the new D-FDTD mesh gener-
ator are within the error limits reported in [10]. Differences in

2HFSS is a registered trademark of Ansoft Corporation, Pittsburgh, PA 15090
USA.
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Fig. 6. FE mesh of the cylindrical cavity resonator in the FDTD grid.

Fig. 7. Comparison of error in the resonant frequency versus tilt angle of the
cylindrical cavity of Fig. 6 for (a) staircase FDTD, stabilized CP-FDTD, and
D-FDTD methods, as reported in [10] and (b) D-FDTD method with the new
CAD-based mesh generator.

the exact values are likely a consequence of the random place-
ment of the geometry in the grid.

Fig. 8, shows a cut-away of the FE mesh of a sample spherical
resonator as represented in its entirety in the D-FDTD grid. The

Fig. 8. FE mesh of the spherical cavity resonator in the FDTD grid.

Fig. 9. Comparison of error in the resonant frequency versus radius of the
spherical cavity of Fig. 8 for (a) staircase FDTD, stabilized CP-FDTD, and
D-FDTD methods, as reported in [10] and (b) D-FDTD method with the new
CAD-based mesh generator.

shell surrounding the sphere is explicitly shown in Fig. 8 in ad-
dition to the partial edge lengths of the intersected FDTD grid
edges interior to the sphere. Fig. 9(a), taken from Railton and
Schneider [10], again shows the error of the staircasing FDTD
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Fig. 10. FE mesh of a resonant cavity formed by a twisted waveguide of
elliptical cross section.

Fig. 11. Comparison of the error in the resonant frequency of the fundamental
mode of the twisted elliptical waveguide cavity of Fig. 10 obtained using the
staircased FDTD algorithm and the new CAD-based D-FDTD algorithm.

algorithm compared with the stabilized CP-FDTD and D-FDTD
methods, this time at a resolution of . Fig. 9(b), shows
the error of Railton and Schneider’s D-FDTD results compared
with the error using the new D-FDTD mesh generator. Once
again the results of the new D-FDTD mesh generator are within
the error limits reported in [10].

Additionally, the D-FDTD mesh generator was used to ana-
lyze the resonant frequency of a cavity comprised of a twisted
waveguide of elliptical cross section. Here, the benchmark solu-
tion is taken to be a highly resolved FE method calculation using
Ansoft HFSS. Figs. 10 and 11, show the geometry of this res-
onator and a comparison of the error in the calculated resonant
frequency of the D-FDTD model versus the staircased FDTD
model. We see that the new mesh generator for D-FDTD yields
an error at eight grid cells per wavelength that is comparable
to that obtained using the conventional staircased algorithm at
32-grid cells per wavelength.

V. SUMMARY AND CONCLUSION

This paper has introduced a new CAD-based mesh gener-
ator for the Dey–Mittra conformal FDTD algorithm (D-FDTD)

that is capable of robustly and automatically importing AutoCad
and ProE files for FE models of PEC scatterers and resonators.
The new mesh generator produces results comparable to previ-
ously published solutions using the D-FDTD methodology and
to benchmark FE frequency-domain software such as Ansoft
HFSS. The new mesh generator for D-FDTD can reduce the re-
quired FDTD grid resolution by up to 4:1 in each Cartesian di-
rection in 3-D relative to conventional staircased FDTD models
when modeling cavity resonances of complex PEC structures
such as twisted waveguides.
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