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Exact solution of Maxwell’s equations for optical interactions
with a macroscopic random medium

Snow H. Tseng, Jethro H. Greene, and Allen Taflove

Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208

Duncan Maitland

Medical Physics and Biophysics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

Vadim Backman and Joseph T. Walsh, Jr.

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
Received December 11, 2003

We report what we believe to be the first rigorous numerical solution of the two-dimensional Maxwell equations
for optical propagation within, and scattering by, a random medium of macroscopic dimensions. Our solution
is based on the pseudospectral time-domain technique, which provides essentially exact results for electro-
magnetic field spatial modes sampled at the Nyquist rate or better. The results point toward the emerging
feasibility of direct, exact Maxwell equations modeling of light propagation through many millimeters of bio-
logical tissues. More generally, our results have a wider implication: Namely, the study of electromagnetic
wave propagation within random media is moving toward exact rather than approximate solutions of Maxwell’s
equations. © 2004 Optical Society of America
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Tissue optics deals with light scattering by biological
structures, on which noninvasive optical imaging
techniques such as optical coherence tomography are
based. Most studies of tissue optics have utilized
heuristic approximations in the categories of radiative
transfer theory1 and Mie theory,2 including Beer’s
law, the Kubelka–Monk theory, the adding–doubling
method, the diffusion approximation, and the Monte
Carlo method. To various degrees, these methods
neglect the full-vector electromagnetic wave nature of
light based on Maxwell’s equations, especially with
regard to near-f ield interactions of closely spaced
particles.

Recently, finite-difference time-domain numeri-
cal solutions of Maxwell’s equations3 were applied
to model optical interactions with models of single
biological cells.4 In principle, the finite-difference
time-domain method (FDTD) could be used to model
cell collections spanning macroscopic dimensions (mil-
limeters) and thus to attack the tissue-optics problem
on the most fundamental basis. However, using the
FDTD may not be feasible for many years because
computers lack capabilities to deal with the enormous
database of electromagnetic f ield vector components
mandated for the FDTD by its mesh-density require-
ment of 20 or more samples per optical wavelength in
each spatial dimension.

In this Letter we report the initial application to the
tissue-optics problem of an emerging advanced vari-
ant of the FDTD: the pseudospectral time-domain
technique (PSTD).5,6 For large electromagnetic wave
interaction models in D dimensions that do not have
geometric details or material inhomogeneities smaller
than one-half wavelength the PSTD reduces computer
storage and running time by approximately 8D :1 rela-
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tive to standard the FDTD while it achieves com-
parable accuracy.5,6 This advantage is sufficient to
permit, for the first time to the authors’ knowledge
rigorous numerical solution of the full-vector Maxwell
equations for optical propagation within, and scatter-
ing by, a random medium of macroscopic dimensions.

The most basic version of the PSTD is implemented
on an unstaggered, collocated Cartesian space grid.
Let �Vi� denote the values of field component V at all
points along an x-directed cut through the grid, and let
��≠V�≠x�i� denote the x derivatives of V at the same
points needed in Maxwell’s equations. Using the dif-
ferentiation theorem for Fourier transforms, we can
write Ω

≠V
≠x

Ç
i

æ
�2F21�jk̃xF �Vi�� , (1)

where F and F21 denote, respectively, the forward
and inverse discrete Fourier transform and k̃x is the
Fourier transform variable that represents the x com-
ponent of the numerical wave vector. In this way,
��≠V�≠x�i� can be calculated in one step. In multiple
dimensions, this process is repeated for each cut par-
allel to one of the major axes of the space lattice.

According to the Nyquist sampling theorem, the
representation in Eq. (1) is exact (i.e., of infinite order)
for electromagnetic field spatial modes sampled at
the Nyquist rate or better. This permits the PSTD’s
meshing density to approach two samples per wave-
length in each spatial dimension. The wraparound
caused by the periodicity in the discrete Fourier trans-
form is eliminated by use of the anisotropic perfectly
matched layer absorbing boundary condition.7

We introduce an arbitrary incident wave by im-
plementing the scattered-f ield formulation.3 Here,
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the total electric �E� and magnetic �H � fields within
the grid are decomposed into a sum of unknown
scattered f ields �Escat,Hscat� and known incident
fields �Einc,Hinc� propagating in a lossless vacuum.
Following Ref. 3, we write Maxwell’s curl equations
for this case as

m
≠Hscat

≠t
1 s�Hscat � 2 = 3 Escat 2 s�Hinc

2 �m 2 m0�
≠Hinc

≠t
, (2)

e
≠Escat

≠t
1 sEscat � = 3 Hscat 2 sEinc

2 �e 2 e0�
≠Einc

≠t
(3)

in a source-free region where material parameters
m, e, s�, and s are mapped into the grid to specify
the geometry. Space derivatives of �Escat, Hscat� are
implemented by means of Eq. (1), and time stepping
is implemented by the Yee leapfrog.3,5,6 The total E
and H fields are obtained in a postprocessing step by
addition of the PSTD-computed scattered f ields to the
known incident f ields.

The PSTD has been extensively validated.5,6,8 For
electromagnetic wave interaction structures whose
primary geometrical or material feature sizes exceed
one half of the dielectric wavelength �ld�, the PSTD
has been shown to exhibit the same computational
accuracy and dynamic range as FDTDs that have
approximately eight-times-finer resolution.5,6 That
is, a PSTD grid with coarse ld�4 resolution provides
approximately the same accuracy as a FDTD grid
with f ine ld�32 resolution. Much experience with
FDTD modeling has shown that this level of spatial
resolution yields an accuracy of better than 1 dB over
dynamic ranges that exceed 50 dB for the scattering
intensity observed at all possible angles, including
backscatter.3 For the millimeter-scale optical paths
of great current interest in biophotonics, we expect
PSTD grids with ld�4 resolution to provide compa-
rable accuracy and dynamic range.

In this Letter we report the initial application
of the PSTD to model two-dimensional transverse-
magnetic scattering of light by large bundles of in-
finitely long dielectric cylinders in free space. We
use a PSTD grid that has a uniform spatial resolu-
tion of 0.25 mm, equivalent to 0.3ld at 300 THz for
cylinder refractive index n � 1.2. Figure 1 shows the
PSTD-computed total scattering cross section (TSCS)
of a 160-mm overall-diameter cylindrical bundle of
34 randomly positioned, noncontacting, dielectric
cylinders of diameter d. For each of the cases studied
�d � 5, 10, 15, 20 mm�, a single PSTD run provides a
frequency response of 0.5–300 THz �l0 � 60 1 mm�
with a resolution of 0.5 THz. Note that the position
of the center of each cylinder is fixed for each case.
We can see that, as d exceeds approximately 10 mm,
the bundle’s TSCS above 60 THz saturates.

Figure 2 shows the PSTD-computed TSCS of a
160-mm overall-diameter cylindrical bundle of N
randomly positioned, noncontacting n � 1.2 dielectric
cylinders of individual diameter d � 5 mm. Here, five
cases are shown �N � 80, 200, 320, 400, 480�. We see
that, as N exceeds approximately 200, the TSCS above
60 THz saturates at the level indicated in Fig. 1.

Figure 3 shows results analogous to those of Fig. 2
for a bundle of N dielectric cylinders for individ-
ual diameter d � 10 mm. Five cases are shown
�N � 20, 50, 80, 100, 120�. As N exceeds approxi-
mately 50, the TSCS above 60 THz saturates at the
same level as in Figs. 1 and 2.

Together, Figs. 1–3 show that a saturation effect for
the TSCS of a fixed-overall-sized bundle of randomly
positioned, noncontacting cylinders can be achieved in
different ways. In Fig. 1 the position and number of
the cylinders within the bundle are constant, while the
diameter of each cylinder increases. In Figs. 2 and 3
the diameter of each cylinder is constant, while the to-
tal number of cylinders within the bundle increases.
As the average dielectric coverage of each bundle in-
creases beyond a certain threshold, the TSCS of the
bundle becomes independent of its internal geometric
details such as the size, position, and number of its con-
stituent cylinders.

Fig. 1. PSTD-computed TSCS of a 160-mm overall-
diameter cylindrical bundle of 34 randomly positioned,
noncontacting n � 1.2 dielectric cylinders of individual
diameter d. Four cases [(a)–(c)] are shown, with the po-
sition of each cylinder fixed. As d exceeds approximately
10 mm, the TSCS above 60 THz saturates.

Fig. 2. PSTD-computed TSCS of a 160-mm overall-
diameter cylindrical bundle of N randomly positioned,
noncontacting n � 1.2 dielectric cylinders of fixed individ-
ual diameter d � 5 mm. Five cases [(a)–(e)] are shown.
As N exceeds approximately 200, the TSCS above 60 THz
saturates at the level indicated in Fig. 1.
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Fig. 3. PSTD-computed TSCS of a 160-mm overall-
diameter cylindrical bundle of N randomly positioned,
noncontacting n � 1.2 dielectric cylinders of fixed individ-
ual diameter d � 10 mm. Five cases [(a)– (e)] are shown.
As N exceeds approximately 50, the TSCS above 60 THz
saturates at the same level as in Figs. 1 and 2.

Fig. 4. PSTD-computed TSCSs of (a) a 160-mm overall-
diameter cylindrical bundle of 120 randomly positioned,
noncontacting n � 1.2 dielectric cylinders of individual di-
ameter d � 10 mm; (b) as in (a) but for 480 cylinders of
individual diameter d � 5 mm; (c) a single cylinder of re-
fractive index n � 1.0938, the average refractive index for
(a) and (b).

This conclusion is further supported by Fig. 4, which
illustrates the PSTD-computed TSCSs of (a) a 160-mm
overall-diameter cylindrical bundle of 120 randomly
positioned, noncontacting n � 1.2 dielectric cylinders
of individual diameter d � 10 mm; (b) as in (a) but
for 480 cylinders of individual diameter 5 mm; and
(c) a single cylinder of refractive index n � 1.0938, the
volume-averaged refractive index in (a) and (b). We
can see that the frequency dependence of the TSCSs
of the bundles of (a) and (b) represents essentially the
average behavior of the TSCS of the volume-averaged
homogeneous cylinder of (c). The primary difference
is that the homogeneous cylinder exhibits ripples of its
TSCS versus frequency as a result of coherent internal
wave-interference effects that are suppressed by scat-
tering events within the random clusters.

We have reported what we believe to be the f irst
rigorous numerical solution of the two-dimensional
Maxwell equations for optical propagation within, and
scattering by, a random medium of macroscopic dimen-
sions. Our solution is based on the pseudo-spectral
time-domain technique, which provides essentially
exact results for electromagnetic field spatial modes
sampled at the Nyquist rate or better. In ongoing
research we have found that it is straightforward to
extend the PSTD to the full-vector Maxwell equations
in three dimensions. We have validated PSTD models
of scattering by isolated spheres and are commencing
studies of optical interactions with millimeter-scale
three-dimensional volumes of biological tissues.

The results reported in this Letter point toward the
emerging feasibility of direct, exact Maxwell-equations
modeling of light propagation through, and scatter-
ing by, millimeters of biological tissues. More gener-
ally, our results have a wider implication. Namely,
the study of electromagnetic wave propagation within
random media is moving toward exact rather than ap-
proximate solutions of Maxwell’s equations.
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