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Numerical study of light correlations in a random medium
close to the Anderson localization threshold
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We applied a finite-difference time domain algorithm to the study of field and intensity correlations in random
media. Close to the onset of Anderson localization, we observe deviations of the correlation functions, in both
shape and magnitude, from those predicted by the diffusion theory. Physical implications of the observed
phenomena are discussed. © 2004 Optical Society of America
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Light propagating in a random medium undergoes
multiple scattering. As a result, it forms a complex
interference (speckle) pattern when it emerges from
the medium, which can be described statistically.1,2

There exist longer-range correlations that can be de-
tected as correlations between two distant speckles.3,4

These longer-range correlations in transmitted inten-
sities have received much attention in the context of
mesoscopic electronic systems,5 in which they result
in universal conductance f luctuations. For electronic
systems, only limited information (f luctuation of con-
ductance) can usually be deduced from experiments.
For light, however, momentum-resolved (angular) and
spatially resolved measurements are possible. The
latter yield much more detailed information about
the system. The connection between electrons and
photons is established by identifying the Landauer
conductance g with the total transmission coefficient
(summed over all incoming and outgoing channels).5

The majority of experimental and theoretical efforts
(see Refs. 1, 6–8 and references therein) to date
have been concentrated on systems in the regime of
diffusive transport, g .. 1. The intensity correlation
function (ICF) is defined as7,8

C�Dr,Dn� �
�I �r 1 Dr,n 1 Dn�I �r,n��

�I �r 1 Dr, n 1 Dn�� �I �r, n��
2 1 , (1)

where r and n are the spatial coordinate and fre-
quency, respectively. When the random medium’s
length L is greater than its width W , C is invariant
with respect to r and isotropic9 for Dr as long as one
avoids the evanescent zone on the output surface.10

Theoretically, based on pairing of incoming and outgo-
ing channels, three contributions to the ICF have been
identified3,4,7,8: short-range C1, long-range C2, and
infinite-range C3. Deep into diffusion regime g .. 1
in a waveguide geometry7,8 C1 � jCE�Dr,Dn�j2 � 1,
C2 � 1�g, and C3 � 1�g2, making the values of C2
and C3 small. Here

CE �Dr,Dn� �
�E�r 1 Dr,n 1 Dn�E��r, n��

�I �r 1 Dr,n 1 Dn��1�2�I �r, n��1�2 (2)
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is the field correlation function (FCF). Essentially,
the nonperturbative nature of the crossover from dif-
fusion to localization limits the amount of information
that can be obtained theoretically.11 The purpose
of this Letter is to introduce a numerical method for
studying correlation functions (CFs) based on a finite-
difference time-domain12 algorithm. This method
allows us to solve Maxwell’s equations for the elec-
tromagnetic f ield at every spatial grid at every time
step. It makes no assumption about the scattering
strength, accounts for all interference phenomena, and
makes it possible to obtain CFs in both diffusion and
localization regimes. Here we apply our method to
systems with values of g from 4.5 to 1.

We consider a two-dimensional system as shown
in the inset in Fig. 1: a parallel-plate metallic
waveguide f illed with circular dielectric scatterers of
refractive index n � 2 and diameter d � 1.4 cm. We
chose our parameters to be close to the microwave ex-
periments in Ref. 13. The scatterers were randomly
positioned (without overlapping) with a fixed filling

Fig. 1. Real part of spatial FCF. Squares, circles, and
triangles correspond to the systems with g of 4.4, 2.2,
and 1.1, respectively. The solid curve represents the f it
of Eq. (3) with zb�l � 0.8. The inset shows the geometry
of our system.
© 2004 Optical Society of America
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fraction f � 0.3. The metallic walls of the waveguide
ensured 99.9% ref lectivity, and uniaxial perfectly
matched layer12 boundary conditions were applied out-
side the waveguide. A TM-polarized broadband pulse
with a center wavelength of l � 2 cm (close to one of
the Mie resonances of the scatterers) was launched
by means of a point source placed one wavelength
from the left surface of the random medium inside the
waveguide. A temporal discrete Fourier transform
was applied to electric fields observed at a series of
vertical planes separated by l�2 at the output end
of the waveguide. By virtue of the discrete Fourier
transform, we obtained the continuous-wave response
of the system for a number of wavelengths li within a
4% range of l. This range was significantly narrower
than the width of the broadband pulse and the range
in which physical parameters of the system start
to deviate from those at l. The distance between
two consecutive li was chosen to be equal to the
average mode spacing. We obtained spatial f ield
and intensity CFs by setting Dn � 0 in Eqs. (1) and
(2). We averaged more than 48 configurations and
60 li, which is similar to the microwave experiments
in Ref. 13. In addition, because of the invariance
of correlations in the empty part of the waveguide,
we averaged more than ten observation planes. As
many as 100 spatial points equally spaced near the
center of each plane were sampled depending on Dr.
For spectral CFs, obtained with Eqs. (1) and (2) with
Dr � 0, the averaging procedure is similar except that
the number of li sampled depends on the value of Dn.

Waveguide geometry makes our system quasi-one-
dimensional, with localization length j ~ Nl. N is the
number of waveguide channels, and l is the transport
mean free path. With an increase in L the system
crosses over from diffusion to localization while l is
kept constant. According to the diffusion theory, the
dimensionless conductance of a quasi-one-dimensional
system is g � �p�2�neff

�e�Nl�L0, where L0 � L 1 2zb
accounts for the boundary effect,14 the extrapolation
length zb is usually of the order of l, neff

�e� � c�vE ,
and vE is the energy transport velocity.15 In a passive
system g is equal to the Thouless number, which is de-
fined as the ratio of the diffusion mode linewidth to the
average mode spacing.6,16 In our system l � 1.8 cm
and neff

�e� � 1.77 (see below). The width of waveguide
W � 20 cm (N � 2W�l � 20) and lengths L of 20, 40,
and 80 cm yielded g of 4.4, 2.2, and 1.1, respectively,
and allowed us to study the correlation functions near
the onset of localization.

To determine zb, the real part of the spatial FCF can
be fitted with the formula

CE �Dr� �
p�zb�l�J0�kDr� 1 2sin�kDr��kDr

pzb�l 1 2
, (3)

where k � 2p�l, and J0 is a Bessel function of ze-
roth order. The imaginary part of CE�Dr� should
vanish due to isotropy,9 which is confirmed by our
calculation in which its value was less than 1023.
We derived the above expression in two dimensions
following the three-dimensional derivation of Ref. 17.
Equation (3) gives an excellent f it for all systems
studied with zb�l � 0.8 in Fig. 1. Absence of the
deviation of CE �Dr� from the expression derived in
the diffusion regime becomes apparent when one rec-
ognizes that CE �Dr� contains only information about
short-range correlations. It ref lects the correlations
on a length scale of l, which is much smaller than
j. neff

�e� in the expression for g can be calculated
as neff

�e� � �1 3 Wair 1 n 3 Wscat���Wair 1 Wscat�,
where Wair and Wscat are the energy stored in air
and scatterers, respectively. Wair and Wscat were
determined numerically to give neff

�e� � 1.77. The
physical parameter yet to be obtained is the transport
mean free path l. This can be done by fitting the
spectral CF to the complex function18,19

CE�Dn� � qL0�sinhqL0 , (4)

where q � �pDn�D�1�2�12 i�. l enters Eq. (3) through
L0, and the diffusion coefficient D � vEl�2. Figure 2
shows the fitting of the real and imaginary parts of
CE�Dn�, from which we find l � 1.8 cm. The HWHM
of jCE �Dn�j2 should coincide with 1.46 times the diffu-
sion mode linewidth dn � D�L0 2, at least in the dif-
fusion regime. The inset in Fig. 2 shows that the
obtained l and dn are consistent. A slight deviation
in the system of g � 4.4 is attributed to its short
length.

The spatial dependence of the long-range contribu-
tion to the ICF was derived in diffusion up to the 1�g2

order13:

C�Dr� 2 jCE�Dr�j2 �

µ
4
3g

1
8

15g2

∂
1 1 jCE�Dr�j2

2
. (5)

Figure 3 shows both the magnitude and the normal-
ized profile of Eq. (5). The numerically calculated
C�Dr� 2 jCE�Dr�j2, shown in Fig. 3, reveals that its
spatial profile is independent of g. Specifically, the
ratio of its value at Dr � 0 to that at Dr ! ` remains

Fig. 2. Real (empty symbols) and imaginary (f illed sym-
bols) parts of the frequency FCF. Solid and dashed curves
represent the real and imaginary parts, respectively, of CE
given by Eq. (4) with l � 1.8 cm. The inset compares dn
found with a HWHM of jCE�Dn�j2 to D�L02. Both quan-
tities are normalized to average mode spacing. Symbol
notations are the same as in Fig. 1.
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Fig. 3. Magnitude of long-range contribution to ICF
versus dimensionless conductance g. Symbol notations
are the same as in Fig. 1. Solid line represents diffusion
expansion formula Eq. (5) at Dr � 0. The inset shows
the long-range contribution to the ICF normalized to 1 at
Dr � 0. Solid, dashed, and dotted–dashed curves corre-
spond to samples with g of 4.4, 2.2, and 1.1, respectively.
Thick solid curve plots Eq. (5).

Fig. 4. Frequency dependence of the long-range contribu-
tion to the ICF normalized to value at Dn � 0. Symbol
notations are the same as in Fig. 1.

equal to 2. Stronger oscillations in the numerical
data are likely due to the finite width of the wave-
guide. However, the magnitude of the long-range
contribution is significantly enhanced because of
localization effects, far beyond the diffusion prediction
up to the order of 1�g2.

In Fig. 4, as g decreases, the long-range contribu-
tion to spectral ICF, C�Dn� 2 jCE�Dn�j2, is broadened
when Dn is normalized to dn. We ascribe this effect to
strong f luctuations close to the localization threshold;
namely, a few (more conducting) channels with larger
than average linewidth dominate ICF, leading to its
spectral broadening.

In conclusion, using the finite-difference time do-
main algorithm, we studied f ield and intensity corre-
lation functions close to the onset of localization. In
this regime neither experiments nor analytical theo-
ries have given such detailed information about the
correlation of intensities transmitted through a ran-
dom medium.
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