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Three-Dimensional FDTD Modeling of Impulsive
ELF Propagation About the Earth-Sphere

Jamesina J. Simpson, Student Member, IEEE, and Allen Taflove, Fellow, IEEE

Abstract—This paper reports the application of an efficient
finite-difference time-domain (FDTD) algorithm to model impul-
sive extremely low frequency (ELF) propagation within the entire
Earth-ionosphere cavity. Periodic boundary conditions are used
in conjunction with a three-dimensional latitude-longitude FDTD
space lattice which wraps around the complete Earth-sphere.
Adaptive combination of adjacent grid cells in the east-west
direction minimizes cell eccentricity upon approaching the poles
and hence maintains Courant stability for relatively large time
steps. This technique permits a direct, three-dimensional time-do-
main calculation of impulsive, round-the-world ELF propagation
accounting for arbitrary horizontal as well as vertical geometrical
and electrical inhomogeneities/anisotropies of the excitation,
ionosphere, lithosphere, and oceans. The numerical model is
verified by comparing its results for ELF propagation attenuation
with corresponding data reported in the literature.

Index Terms—Earth, extremely low frequency (ELF), finite-dif-
ference time-domain (FDTD) methods, propagation, sphere.

1. INTRODUCTION

ROPAGATION of extremely low-frequency (ELF: 3 Hz—3

kHz) and very low-frequency (VLF: 3-30 kHz) electro-
magnetic waves in the Earth-ionosphere waveguide is a problem
having a rich history of theoretical investigation extending over
many years (see, for example, [1]-[6]). Currently, ELF/VLF
propagation phenomena form the physics basis of important re-
mote-sensing investigations of lightning and sprites [7], global
temperature change [8], subsurface structures [9], and potential
earthquake precursors [10].

Most theoretical techniques for modeling ELF/VLF prop-
agation in the Earth-ionosphere waveguide are based upon
frequency-domain waveguide mode theory [2], [5]. Berenger
[11], [12] and Cummer [13] were the first investigators to apply
the finite-difference time-domain (FDTD) method [14] to this
problem. They used two-dimensional (2-D) cylindrical-co-
ordinate FDTD grids to investigate VLF propagation over
lossy ground paths due to either manmade sources or lightning
discharges. Both investigators reported very good agreement
of their FDTD models with benchmark data. In particular,
Cummer found “extremely good” agreement between numer-
ical mode theory and FDTD for nighttime ELF-VLF spectra
below 10 kHz, and a comparable level of agreement for the
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daytime spectra. A “major strength” of FDTD is its automatic
calculation of all the fields due to lightning (discharge and post-
discharge, evanescent and propagating), while other solution
techniques are forced to treat these fields separately. Further,
FDTD can, in principle, permit straightforward modeling (with
no increase in simulation time) of arbitrary horizontal as well as
vertical inhomogeneities of the atmosphere and Earth. Cummer
concluded that “the simplicity of FDTD propagation modeling
and ever-increasing computer power probably make FDTD the
technique of the future.”

Subsequently, Simpson and Taflove [15]-[17]' and Hayakwa
et al. [18], [19] reported the initial applications of FDTD to
model the complete Earth-sphere at ELF. Both groups used
spherical-coordinate latitude-longitude grids with periodic
boundary conditions based upon fundamental work by Holland
[20]. Hayakawa et al. reported no improvements relative to
Holland’s grid, which is subject to increasing space-cell eccen-
tricity upon approaching the poles due to converging lines of
longitude. Since the Courant stability limit is set by the smallest
space-cell dimension in a grid, this eccentricity mandates a
corresponding reduction in the allowable time step. For the
Holland grid, the Courant limit is reduced to approximately
d/r. times the limit that would exist if all grid cells maintained
the square configuration of those located at the equator, where
d is the cell dimension at the equator and 7. is the radius of the
Earth. This is a very significant mandatory time-step reduction
factor for high-resolution grids having d smaller than 100 km
(i.e., d/re < 1/64).

In contrast, in [15] and [16], Simpson and Taflove reported
a key improvement in FDTD mesh generation to minimize the
effects of increasing space-cell eccentricity upon approaching
a pole. Their mesh was constructed to maintain approximately
square cells in the polar regions by a novel adaptive cell-com-
bining technique applied to adjacent grid-cells in the east—west
direction. This permitted maintenance of the time-step at nearly
the level permitted by the Courant stability condition for the
square equatorial cells. Further, as shown in [15] and [16], their
technique demonstrated a high degree of isotropy for numerical
wave propagation within the model despite the mesh nonuni-
formity due to the adaptive east—west cell combinations. This
technique, the basis of the work reported in this paper, permits
a standard laboratory workstation (the Dell 530) to generate
high-resolution (approximately 40x40x 5 km) modeling results
for global, fully three-dimensional (3-D) impulsive ELF propa-
gation within the entirety of the Earth-ionosphere cavity.

This paper reports for the first time the complete algorithmic
details of the extension of the work of [15] and [16] to a fully 3-D

Thttp://www.ece.northwestern.edu/ecefaculty/taflove/3Dmovietext @ gif.avi.
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model of the complete Earth-ionosphere cavity. To our knowl-
edge, this represents the first direct time-domain model for ELF
around-the-world propagation with sufficiently fine grid resolu-
tion (approximately 40x40x 5 km) to render fine-grained local
details of the complex horizontal and vertical geometrical and
electrical inhomogeneities/anisotropies of the ionosphere, litho-
sphere, and oceans.

Section II introduces the 3-D FDTD space lattice used in
this model. Sections III and IV discuss the details of the cor-
responding numerical algorithm. Section V reports a validation
study that compares the FDTD calculations for frequency-de-
pendent ELF propagation attenuation with data reported in the
literature. This section provides details of the impulsive excita-
tion and the assumed Earth-ionosphere geometry and electrical
properties. Section VI concludes with a discussion of ongoing
and potential research in this area.

II. FDTD SPACE LATTICE

The present model maps the complete Earth-ionosphere
cavity onto a 3-D spherical-coordinate FDTD space lattice that
extends =100 km radially from sea level. Fig. 1 illustrates
the general layout of the lattice as seen from the TM plane
at a constant radial coordinate. The lattice is a logically
Cartesian 2M x M x K cell arrangement, where M is a
power of two. The lattice-cell position index in the west-to-east
direction is 1 < ¢ < 2M, the lattice-cell position index in the
south-to-north direction is 1 < 5 < M, and the lattice-cell
position index in the radial direction is 1 < k < K. We
see that the grid cells follow along lines of constant latitude,
6 =constant, where # is the usual spherical angle measured
from the north pole; and along lines of constant longitude,
¢ =constant, where ¢ is the usual spherical azimuthal angle

South pole

R Grid column
i=2M

Isosceles triangular
grid cells in rows
j=1and j=M

General layout of the of the three-dimensional FDTD lattice covering the complete Earth-sphere as seen in a TM plane at a constant radial coordinate.

measured from a specified prime meridian. In this manner,
each TM plane of the grid shown in Fig. 1 is comprised of
isosceles trapezoidal cells away from the north and south poles
[Fig. 2(a)] and isosceles triangular cells at the poles [Fig. 2(b)].
Similarly, each transverse electric (TE) plane at a constant
radial coordinate is comprised of isosceles trapezoidal cells
away from the north and south poles [Fig. 3(a)] and a polygon
at the poles [Fig. 3(b)].

We choose to have the same angular increment in latitude,
Af = 7 /m, for each cell in the grid. Thus, the south—north span
of each trapezoidal or triangular grid cell is As_, = 7R/m,
where R is the radial distance from the center of the Earth. To
maintain square or nearly square grid cells near the equator, we
select the baseline value of the angular increment in longitude
A¢ to equal Af. However, this causes the west—east span of
each cell Ay,_. = RA¢sinf to be a function of 6. This could
be troublesome for cells near the north and south poles where
6 — 0 and § — m, respectively. There, the geometrical eccen-
tricity of each cell Aq_,/Ay_e = Af/(A¢sinf) would be-
come quite large, and the numerical stability and efficiency of
the FDTD algorithm would be degraded. An algorithmic means
to deal with this problem will be discussed below.

The wraparound or joining of the lattice is along a specific
line of constant longitude, or meridian. As discussed below, this
joining is, in effect, a periodic boundary condition applied at
each j-row of lattice cells, whether trapezoids or triangles.

III. FDTD ALGORITHM, TM, COMPONENTS

A. Basic Algorithm

Given the above assumptions, Ampere’s law in integral form
[14] can be applied to develop an FDTD time-stepping relation
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Fig. 2. Details of the TM,-plane lattice-cell geometry: (a) isosceles
trapezoidal cell in the northern hemisphere away from the north pole and (b)
isosceles triangular cell at the north pole.

for the electric field F, at the center of the (¢, 7, k)th trapezoidal
grid cell. For example, referring to Fig. 2(a), we have

At
e0S (4, k)
x {HZTO(4,5 — 0.5, k) Ay—e(j — 0.5, k)
— H™ 05 (4 540.5, k) Ay_e(j+0.5, k)
+ [H)TP(i+ 0.5, 5, k)
—H}T02(i = 05,5, k)] A} (1)
where At is the time-step and

Aw_o(j +0.5,k) = R Adsin [(M - j)%

Aw_o(j — 0.5,k) = R Adsin [(M —j+ 1)%} (2b)
S(J/ k) = [Awfe(j - 057k)
FAsel 05,1 20,

BTN (i 5, k) = B2 (i,5,k) +

(2a)

(20)

Similarly, referring to Fig. 2(b), the update for £ at the center
of the ith triangular grid cell at the north pole (j = M) is given
by
At

eoS(M, k)
x {HO5(i, M — 0.5, k)

X Ay_o(M —0.5,k)

+ [H (i + 0.5, M, k)

Hn+0 O(Z — 0.5, M, k)] AS—n} 3

B (i, M, k) = EZ (i, M, k) +

where Ay, _o(M — 0.5, k) is given by (2b) for the case j = M

and
S(M, k) = Agy_o(M —20.o,k)As_n
. 1 [Ag—e(M — 0.5, k)
1 w—e ’
« sin {cos [ N ]} )

Expressions analogous to (3) and (4) can be derived for the :th
triangular grid cell at the south pole (7 = 1).

The basic FDTD time-stepping algorithm is completed by
specifying the updates for the H, and H, fields. For example,
referring to the trapezoidal grid cell shown in Fig. 2(a), we have

Hn-l—lo( J—05]€) Hn+05( ]—00k>

At
+ Epti,j—0.5,k+05
/LOAr [ ( J )
—E} i, —-0.5,k—0.5)]
At
EtYi. -1,k
* ll’OAS—Il [ z (II/J ’ )

—EXNi 5k )
Hyt%%(i 4+ 0.5, 4, k)
At

H} 54 0.5, 4, k)=

EM(i40.5,5,k—0.5

A [Ert1(i+0.5,, )
—E2T(i40.5, j, k+0.5)]
At

+————[ErMi+1, 5,k
NOAw—e(.%k) [ ( )

—E(i, 5, k)] (6)

where A, is the cell span in the radial direction.
For a triangular grid cell at the north pole (j =
Fig. 2(b), we similarly have
HIMY5 (5, M —0.5,k)=HP5(i, M — 0.5, k)
At
+——[Ey (i, M=0.5,k+0.5
HoA; [ G, )

n+1/ - = =
—E (i, M —0.5,k—0.5)]

M) shown in

At
MOAsfn

+ [E?+1(7:7M_17k)

—E2T (i, M, k)] (7
H}T02(i+ 0.5, M. k)
+ﬂ[E"+1(z'+o.5 M, k—0.5)

JTYAVSE T
—E2ti+0.5, M, k+0.5)]
At
+M0Aw—e(M7 k)
x [E2t(i+ 1, M, k)
—E2N(i, M, k)] . ®)
Expressions analogous to (7) and (8) can be derived for a trian-
gular grid cell at the south pole (5 = 1).

nH.5 _
HI (i 4 0.5, M, k) =

B. Merging Trapezoidal Grid Cells Approaching the
Polar Regions

As stated earlier, near the north and south poles the geo-
metrical eccentricity of each trapezoidal cell A _,/Ay_e =
AfB/(A¢sin f) can become quite large for a constant value of
Ad¢, thereby degrading the numerical stability and efficiency of
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Details of the TE,-plane lattice-cell geometry: (a) isosceles trapezoidal cell in the northern hemisphere away from the north pole and (b) polygon cell
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Fig. 4. Details of the TM,-plane grid-cell geometry in the northern hemisphere at the transition between two adjacent regular cells and a single cell spanning

twice the distance in the east—west direction.

the FDTD algorithm. Fig. 4 illustrates a means to mitigate this
problem by merging pairs of adjacent cells of the TM plane
in the west—east direction, effectively halving the cell eccen-

tricity. This process can be repeated several times as the grid
approaches a pole, allowing the user to specify a maximum al-
lowable cell eccentricity.
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The required algorithm is now presented. Again applying
Ampere’s law in integral form, the FDTD time-stepping rela-
tion for the £, field at the center of the merged cell is given by

EI (i, 5, k)

i At
= EZ(i,j,k) + 205G k)
y {Hg+0-5(z' —0.5,5 — 0.5, k) Ag_o(j — 0.5, k)
2
N HH05( 405,57 — 0.5, k) Ay_o(j — 0.5, k)
2

— H"O5(5, 54+ 0.5, k) Ay_e(j + 0.5, k)
+ [HT (i + 1,4, k)

—H}TO2(i = 1,4, k)] As_n}. 9)

The following F, fields within the merged cell, required for
the subsequent magnetic-field updates, are obtained by linearly
interpolating the E, field quantities calculated in (9):
E;H—l(i - 05/.]/ k)
3E" (i, 4, k) + Bt (i — 2,45,k
:[2(3)42( 1)) PP
EZ(i+0.5,4,k)
[BEI*H (4,5, k) + EX (i + 2,4, k)]

= 1 . (10b)

Now, the time-stepping algorithm for the merged cell can be
completed by specifying the updates for the H, and H, fields
at the periphery of the cell, for example
HIMY5(5 05,5 — 0.5, k)
= H"05(; - 0.5,5 — 0.5, k)
At
/’LOAr

+

n+1/- x
[Ey (1—0.5,7 — 0.5,k +0.5)

n+1; 7
—E;t(i—05,5— 0.5,k —0.5)]
At

+
NOAs—n

[E2tH(i— 05,5 — 1,k)
_E;H—l(i - 057./, k)]
HM3(140.5,5 — 0.5, k)

= HO9%(i 4+ 0.5, — 0.5, k)

Y

+ —— [E)TH(i+0.5,5 — 0.5,k +0.5)
n+1/; -
—E; 1 (i40.5,5 - 0.5,k —0.5)]
At

+
/J/()As—n

[EZt(i+0.5,5 — 1,k)

_E;H—l(i + 057.7 k)]
Hyt2(id 1,4, k)
= Hy (i +1,5,k)
At
NOAr

12)

+ [EXTY(i+ 1,4,k — 0.5)

—EM(i+1,7,k+0.5)]
At

+——— [ErT (i + 2,4,k
/’LOAW—e(]?k) [ ( )

—E2T(i, 4, k)] (13)

HP (0,5 4 0.5, k)
= H'O5(4, 5 +0.5,k)
At

+
.u'OAr

[Ert'(i,j + 0.5,k + 0.5)

Yy
n+l/. -
—E; N (i,j 4+ 0.5,k — 0.5)]
At
/J'(]As—n

+ [E;H—l(ivj: k)_E?—i—l(ivj"i_l:k)] - (14)

C. West—East Grid Wraparound (Periodic Boundary
Condition)

The grid wraparound (periodic boundary condition) in the
west—east direction completes the FDTD algorithm for the TM
components. For each row j of grid column ¢ = 1 in Fig. 1, this
is implemented by the following special time-stepping relation
for H, at the west boundary of the grid

n+1.5 - _ n+0.5 K
Hy (0'57j7k) _Hy (0'57J7k)
At
— [E"*Y0.5,7,k— 0.5
A, [Ey*1(0.5, 4, )
n+1 .

—E;0.5,5,k +0.5)]

N At
quW—C(j7 k)
_E:—i—l (2M7J, k)] -

[E;H—l(l»j: k)

(15a)

Upon obtaining each such H, value, the grid wraparound is
completed by implementing the following special relation for
each row j of grid column ¢ = 2M for H,, at the east boundary
of the grid:

n+1.5 s _ 1rn+0.5 .
Hy (2M +0.5,5,k) = H,, (0.5,7,k). (15b)

Steps (15a) and (15b) apply to all grid rows, whether containing
trapezoidal or triangular cells.

IV. THE FDTD ALGORITHM, TE, COMPONENTS
A. Basic Algorithm

Similarly, Faraday’s law in integral form [14] can be applied
to develop an FDTD time-stepping relation for the magnetic
field H, at the center of the (z+0.5, 7+0.5, k+0.5)th trapezoidal
grid cell. For example, referring to Fig. 3(a), we have

H'U5(040.5,5 4 0.5,k 4 0.5)

= H!0%(i 4 05,5 + 0.5,k + 0.5)
At

+ woS(5 + 0.5,k +0.5)
X {E"(i +0.5,5 4+ 1,k +0.5) Ay o(j+1,k+0.5)
—E™(i40.5,5,k+0.5)Ay_c(j, k + 0.5)

+ [E}(i,j 4 0.5,k +0.5)

—Ej(i4+1,j+0.5,k+0.5)] Ay}

(16)
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Similarly, referring to Fig. 3(b), the update for H, directly at the
north pole (z = 0.5, 5 = M + 0.5) is given by
H'2(0.5, M 4 0.5,k + 0.5)
= H"%5(0.5, M + 0.5,k +0.5)
At
pwoS(M 4+ 0.5,k 4+ 0.5)

N
X {Z E™(X = 0.5, M,k +0.5)

X=1

X Ag—o( M,k +0.5)} (17)

where Ay, _o(M, k+0.5) is given by (2b) for the case j = M, N
is the number of F/, components surrounding the H, component
directly at the pole, and

NAy_o(M, k+0.5)?2
S(M + 0.5,k + 0.5) = ( ,W+ 5)
4 tan (N)

Expressions analogous to (17) and (18) can be derived for H,
directly at the south pole (z = 0.5, j = 0.5).

The basic FDTD time-stepping algorithm is completed by
specifying the updates for the £, and E, fields. For example,
referring to the trapezoidal grid cell shown in Fig. 3(a), we have

ErMt (i 405,45,k +0.5) = E™(i +0.5,5,k 4+ 0.5)
At 5
n+40.5(; 5o
+ E [Hy (Z+0.0,J,k)
n+40.5/ K
—Hy9(i 405,45,k +1)]
At

€0Asfn

(18)

_|_

[HZFTO(i40.5,5 + 0.5,k + 0.5)

—H"*9%(4-0.5, 0.5, k+0.5)] (19)

—p
E, (i+0.5, j, k+0.5)

—
E,(i+1.5, j, k+0.5)

Details of the TE,-plane grid-cell geometry in the northern hemisphere at the transition between three adjacent regular cells and two cells each spanning

nt+le; o (s s .
Ey7(i,j + 0.5,k +0.5) = E; (4,5 + 0.5,k + 0.5)
n At
EoAr

[Ht%5(i, 5+ 0.5,k + 1)
_Hg—i—o.s(i?j + 0.5, k)]
N At
€0Aw—_e(j + 0.5,k 4+ 0.5)
x [H2H05(i — 05,5 4 0.5,k + 0.5)

—HO5(i 0.5, + 0.5,k +0.5)] .

(20)

B. Merging Trapezoidal Grid Cells Approaching the Polar
Regions

As stated earlier, near the north and south poles the geo-
metrical eccentricity of each trapezoidal cell, As_,/Ay_e =
Af#/(A¢ sinf), can become quite large for a constant value
of A¢, thereby degrading the numerical stability and efficiency
of the FDTD algorithm. Fig. 5 illustrates a means to mitigate
this problem by merging pairs of adjacent cells in the TE plane
in the west—east direction, effectively halving the cell eccen-
tricity. This process can be repeated several times as the grid
approaches a pole, allowing the user to specify a maximum al-
lowable cell eccentricity.

The required algorithm is now presented. The following E,.
field at the boundary of the merged cell, required for the sub-
sequent magnetic-field update, is obtained by linearly interpo-
lating the F, field quantities:

ErtN(i 405,54+ 1,k 4 0.5)

[E7(i—0.5,j+1,k+0.5)+ E"(i+1.5,j+1,k+0.5)]
2

.21
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Applying Faraday’s law in integral form, the FDTD time-step-
ping relation for the H, field below the center of the merged cell
is then given by

HI5( 405,57 + 0.5,k + 0.5)
= H!M0%(i+ 05,5+ 0.5,k +0.5)
At

* 10S(j + 0.5,k + 0.5)

X {E"(i+0.5,5 + 1,k +0.5)Ay_o(j+1,k+0.5)
—E™(i+0.5,7,k+0.5)Ay_o(j, k 4+ 0.5)
+ [E}(i,5 4 0.5,k +0.5)

—EJ(i+1,j+05k+05)] Ay}, (22)

The time-stepping algorithm for the merged cell can be com-
pleted by specifying the updates for the F, and F, fields at the
periphery of the cell. For example, the following algorithm is
used to update the E,, components directly above each H, (I +
0.5,740.5,k+0.5), for any even integer I, where 0 < I < 2M:

EM(i 405,45,k +0.5) = E™(i+0.5,5,k 4+ 0.5)
At .
— [H™%5(; 4+ 05,5,k
+ A [Hy%°(i 4 0.5, 5, k)
n40.5/; =
—H, (i4 05,5,k +1)]
At
EOAs—n

+ [H2195(i+ 05,5+ 0.5,k + 0.5)

—H!0%i+0.5,5—0.5,k+0.5)] . (23)

The E, field below each H. is updated as follows:

EM (i 405,45,k +0.5) = E™(i+0.5,5,k 4+ 0.5)
At .
— [H™%3(; 4+ 05,5,k
+aoAr[ g0+ 0.5,5,k)
n40.5/; =
—H9(i+ 0.5, 5,k + 1)]
At

+ EOAs—n

[H2195(i+ 05,5+ 0.5,k + 0.5)

—H!0%i+0.5,5—0.5,k+0.5)] . (24)

Each FE, field at the periphery of the cell can be updated as
follows:

E}T(i,j 4+ 0.5,k 4+ 0.5) = E} (i, + 0.5,k + 0.5)
+ EOAT:T [H45(i, 5 4+ 0.5,k + 1)
—HI05(i, 5 4 0.5,k)]
At
T oo BAw—a(j + 05,k 1 0.5)
x [H2*5(i — 0.5, + 0.5,k + 0.5)
—HT0%i+0.5,j+0.5,k+0.5)] .

(25)

C. West—East Grid Wraparound (Periodic Boundary
Condition)

The grid wraparound (periodic boundary condition) in the
west—east direction completes the FDTD algorithm for the TE

Sea water
0.3Qm Distance, km

-300

-100

160

Fig. 6. Conductivity values used for the lithosphere according to whether the
space lattice point is located directly below an ocean or within a continent [23].

components. For each row j of grid column ¢ = 0.5, this is im-
plemented by the following special time-stepping relation for
H , at the west boundary of the grid:

HP15(0.5,5 4 0.5,k + 0.5) = H**%5(0.5,5 4 0.5,
At
T S 105,k +05)
X {E™(0.5,j 4+ 1,k +0.5)Ay_c(j+1, k+0.5)
— E(0.5, 7,k + 0.5)Ay_c(j, k + 0.5)
+ [Ej(2M,j + 0.5,k + 0.5)
—EM (1,5 + 0.5,k + 0.5)] Ag_pn} .

(262)

Upon obtaining each such H, value, the grid wraparound is
completed by implementing the following special relation for
each row 7 of grid column i = 2M + 0.5 for H, at the east
boundary of the grid:

H'E5(2M40.5, j40.5, k40.5) = H'F12(0.5, j40.5, k+0.5).
(26b)

V. VALIDATION STUDY

In this paper, our goal is to validate our new 3-D FDTD
model by comparing its predicted ELF propagation character-
istics with the data reported in [21]. Our model utilizes topo-
graphic and bathymetric data from the NOAA-NGDC “Global
Relief CD-ROM” [22]. These data are mapped onto our 3-D
space lattice with an assumed resolution of 40x40x 5 km at the
equator. This cell size is a compromise choice to meet the fol-
lowing set of requirements.

1) Limit the space-lattice size to permit its residence in
memory on our laboratory’s 2-GB workstation.

2) Resolve ELF wavelengths of 800 km or greater (frequen-
cies of 375 Hz or less) with 20 or more cells per wave-
length.

3) Provide one-to-two cell resolution for the radial extent
(height and depth) of the Earth’s oceans and mountain
ranges.

For the lithosphere, conductivity values are assigned ac-
cording to Fig. 6 [23], depending upon whether the space lattice
point is located directly below an ocean or within a continent.
For the atmosphere, the exponential conductivity profile used
in [24] is assumed. This permits the most straightforward
comparison of the present FDTD modeling results with the data
reported in [16] since ELF propagation is crucially affected
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Fig. 7. FDTD-calculated temporal response observed at the equator directly

east and west of the source: (a) at points A and A’ located 1/4 of the distance
to the antipode; (b) at points B and B’ located at 1/2 of the distance to the
antipode.

by the ionosphere characteristics. Note that, however, this
model is capable of significantly greater ionospheric detail,
i.e., day-to-night transitions, anisotropy, etc., than that possible
using the analysis of [21].

We excite our model with a vertical, 5-km-long current pulse
having a Gaussian time-waveform with a 1/e full-width of
480At, where At = 3.0 us. To ensure a smooth onset of the
excitation, the temporal center of this pulse is at 960A¢. This
current pulse is located just above the Earth’s surface on the
equator at longitude 47°W.

Fig. 7(a) graphs time-waveforms of the FDTD-calculated ra-
dial E-field at two observation points A and A’ on the Earth’s
surface at the equator directly east and west of the source at 1/4
of the distance to the antipode. Fig. 7(b) graphs the FDTD-cal-
culated time-waveforms at points B and B’ at the equator di-
rectly east and west of the source at 1/2 of the distance to the
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Fig. 8. Comparison between the FDTD-calculated ELF propagation

attenuation versus frequency over paths A B and A’ B’ with the results
reported in [21].

antipode. Note that waveform pair A, A’ is not identical; simi-
larly, waveform pair B, B’ is not identical. The observed lack of
symmetry is caused by a corresponding lack of symmetry of the
lithosphere geometry in this region. Further, note the evolution
of a “slow-tail” response similar to that predicted in [25].

Fig. 8 compares the FDTD-calculated ELF propagation at-
tenuation versus frequency over paths A B and A’ B’ with
the results reported in [21]. The FDTD data are obtained by
forming the ratio of the discrete Fourier transforms (DFTs) of
the time-waveforms shown in Fig. 7(a) and (b). The time-wave-
forms at points A and B are truncated at 22 849 and 24 165 time
steps, respectively; and the time-waveforms at points A’ and
B’ are truncated at 22 737 and 25023 time steps, respectively
(i.e., at each zero-crossing preceding the slow-tail response).2

Over the frequency range 50-500 Hz, the FDTD-computed
propagation attenuation values agree with the results of [21] to
within about £0.5 dB/Mm over path A B and within about £1.0
dB/Mm over path A’ B’.

VI. CONCLUSION

This paper has reported the application of a computationally
efficient FDTD technique to model impulsive ELF propagation
within the entire Earth-ionosphere cavity. Periodic boundary
conditions are used in conjunction with a spherical-coordinate,
3-D FDTD space lattice, which wraps around the complete
Earth-sphere. Adaptive combination of adjacent grid cells in
the east—west direction minimizes grid-cell eccentricity upon
approaching the poles and hence maintains Courant stability for
relatively large time steps. This technique permits direct, 3-D
time-domain calculation of impulsive, round-the-world ELF

2We must window the FDTD-calculated time-waveforms in this manner be-
cause the slow-tail response persists after the appearance of the signal arriving
over the equatorial long path. Therefore, the slow-tail response cannot be time-
stepped to its conclusion in isolation. The required windowing process in time
results in a frequency window of approximately 50-500 Hz within which our
FDTD results can be validly compared with the benchmark data of [21]. This is
because errors in the DFTs occur below about 50 Hz due to the absence of the
slow-tail response, while errors occur above about 500 Hz due to the truncation
of the data records.
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propagation accounting for arbitrary horizontal as well as ver-
tical geometrical and electrical inhomogeneities/anisotropies of
the excitation, ionosphere, lithosphere, and oceans. A standard
laboratory workstation (the Dell 530) is sufficient to generate
high-resolution (approximately 40x40x5 km) modeling re-
sults for all components of the Earth-ionosphere cavity within
4100 km of sea level.

The new model is verified by comparing the FDTD calcula-
tions for ELF propagation attenuation with corresponding data
reported in the literature. In our ongoing work, we are using
teraflops supercomputing resources to exercise this model for
both very-high-resolution and very-long-time-duration simula-
tions, aiming at an improved understanding of the coupling be-
tween the Earth’s local crustal dynamics and its global electro-
dynamics. In this regard, we expect that this model will eventu-
ally be coupled with emerging geophysical codes now under de-
velopment for the study of seismic phenomena, including earth-
quake precursors.?
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