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Abstract—We present what we believe to be the first algorithms
that use a simple scalar-potential formulation to model linear
Debye and Lorentz dielectric dispersions at low frequencies in
the context of finite-element time-domain (FETD) numerical
solutions of electric potential. The new algorithms, which permit
treatment of multiple-pole dielectric relaxations, are based on the
auxiliary differential equation method and are unconditionally
stable. We validate the algorithms by comparison with the results
of a previously reported method based on the Fourier transform.
The new algorithms should be useful in calculating the transient
response of biological materials subject to impulsive excitation.
Potential applications include FETD modeling of electromyog-
raphy, functional electrical stimulation, defibrillation, and effects
of lightning and impulsive electric shock.

Index Terms—Finite element methods, transient analysis.

I. INTRODUCTION

T HE electrical properties of dielectric materials inevitably
vary with frequency. This phenomenon is termed dielec-

tric dispersion. In the time domain, dispersion leads to a con-
volutional relation between an impulsive excitation and the ef-
fective dielectric impulse response. The dielectric dispersion
properties of biological tissues have been studied extensively. A
number of theoretical and empirical models are available to ex-
plain the large volume of measured data [1]–[7]. However, few if
any published computational simulations of tissue interactions
with low-frequency electric fields account for any dielectric dis-
persion. This holds for a variety of electrical signals within the
body, for example those due to muscle action potentials, heart
and brain activity, and functional electrical stimulation. Until re-
cently, it has been thought that tissue dielectric dispersion has
little effect on such electrical responses [8]. In fact, it has even
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been generally assumed that tissue displacement currents are
unimportant [9]. Recently, we explored the importance of tissue
displacement currents and dielectric dispersion at low frequen-
cies [8]. We employed a commercial finite-element time-do-
main (FETD) code [10] to model the propagation of an action
potential along a single muscle fiber in a homogeneous tissue
medium. The results of our study indicate that valuable physical
information can be lost if displacement currents and dispersion
are disregarded. While the FETD code used in [8] can treat dis-
placement currents, it cannot deal with frequency-dependent di-
electric permittivity. As a result, we were constrained to model
only homogeneous media, and were compelled to use a com-
plicated procedure involving Fourier transformation to obtain
broad spectral data. These are serious deficiencies if one desires
to model realistic anatomical structures subject to realistic elec-
trical waveforms. Subsequently, we were motivated to explore
the availability of computational methods capable of straight-
forward modeling of electrical signals propagating within in-
homogeneous, frequency dispersive biological tissues. For fre-
quencies above about 1 MHz, the finite-difference time-domain
(FDTD) method [11] is a popular approach for such modeling.
FDTD can readily incorporate dielectric dispersions having an
arbitrary number of Debye and Lorentz poles. However, FDTD
has not yet been extended fully to the low-frequency range that
is of interest here for biological tissue structures having arbi-
trary inhomogeneities and subject to arbitrary excitations. At
frequencies well below 1 MHz (appropriate for studies of the
body’s own electrical signaling network and many diagnostic
and therapeutic procedures), we believe that the FETD tech-
nique is currently the only available computational approach
that permits the required level of realistic modeling of gen-
eral time-dependent phenomena and arbitrary structures. The
full-wave approach of [12] permits FETD modeling of both
Debye and Lorentz dielectric dispersions with multiple poles.
However, this formulation yields an unnecessarily high com-
putational burden for low-frequency bioelectric field problems
where a scalar-potential approach is sufficient. With this moti-
vation, we report in this paper two new FETD algorithms for
efficient modeling of dispersive dielectric properties at low fre-
quencies where eddy currents and wave phenomena are unim-
portant [9], [13]. Based upon a scalar-potential formulation and
the auxiliary differential equation (ADE) technique (originally
applied to model dispersion in the context of FDTD [11]), the
new algorithms can treat multiple-pole Debye and Lorentz dis-
persions much more simply than the approach in [12]. Further,
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the algorithms retain all of the capabilities of previous nondis-
persive finite-element methods with respect to flexibility in sim-
ulating spatially inhomogeneous structures of arbitrary shape.
Section II of this paper presents the theoretical basis of the dis-
persive formulation. Section III presents the FETD algorithms
for the cases of multiple-pole Debye and Lorentz dispersions.
Section IV discusses the numerical implementation. Section V
reports validation studies, which illustrate the accuracy of the
new techniques. Finally, Section VI concludes the paper with a
discussion of future work.

II. THEORETICAL BASIS OFDISPERSIVEFORMULATION

The Debye dispersion is characterized by the following ex-
pression for the relative permittivity, , as a function of the an-
gular frequency, [11]:

(1)

where is the relaxation time of theth Debye pole, is
the corresponding relative permittivity increment, and,
are the real and the complex part of the relative permittivity.
From (1) it is clear that , and

. Further, while rapidly decreases in
the vicinity of each pole frequency, , there is little change
elsewhere. The defining expression for the Lorentz dispersion
is [11]

(2)

where is the undamped resonant frequency of theth Lorentz
pole-pair, is the corresponding damping factor, and is the
corresponding relative permittivity increment. Again,

, and is the high-frequency limit
of the relative permittivity. The terms in (2) can be regarded
as pole-pairs because each denominator has two complex roots.
The resonant nature of the Lorentz dispersion can be easily rec-
ognized in (2): the contribution of theth pole-pair to the total
relative permittivity increases asapproaches but remains
finite if is greater than zero.

As discussed in [11], multipole dispersion can be accounted
for by adding polarization current terms to the right-hand side
of the Maxwell-Ampere Law

(3)

Here, and denote the magnetic and electric field intensities,
is the permittivity of vacuum, and is the high-frequency

limit of the relative permittivity as defined in (1) and (2). is
the contribution of the th Debye pole or th Lorentz pole-pair
to the total polarization current. We need to specify this con-
tribution before proceeding with the derivation of the computa-
tional algorithms.

There are two standard numerical methods to obtain for
Debye and Lorentz dispersions, the piecewise linear recursive
convolution (PLRC) method, and the ADE method [11]. Both
techniques have been successfully employed to derive FDTD
algorithms for high-frequency problems involving electromag-

netic wave interactions. For the low-frequency problem at hand,
we choose the ADE method because it can be integrated into the
general FETD scheme quite naturally.

Following the general ADE approach, we first expressin
the frequency domain as a function of and the frequency-
dependent material properties. For example, we have

(4)

for Debye materials and

(5)

for Lorentz materials. We multiply both sides of (4) by
and both sides of (5) by , and then use

the inverse Fourier transformation to obtain

(6)

and

(7)

respectively. Equations (6) and (7) are the desired ADEs for
Debye and Lorentz materials. The initial conditions are

for (6) and , for (7).

III. SOLUTION APPROACH

The next step is to solve (3) and (6) for Debye materials, and
(3) and (7) for Lorentz materials in the context of the FETD
technique. In each case, the starting point is a system of differen-
tial equations rather than a variational principle, so we will use
Galerkin’s method to discretize this system and derive the corre-
sponding set of linear algebraic equations. Since the differential
equations are formulated in the time domain, they will first be
discretized in space and then in time, a widely used two-step
approach [14].

A. Derivation of the Weighted-Residuals Version of the
Low-Frequency Maxwell-Ampere Law

We first take the divergence of both sides of (3) to eliminate
, since the divergence of the curl of a function vanishes iden-

tically. Then, we multiply both sides by the piecewise continu-
ously differentiable scalar function and integrate over
the solution domain, . This yields

(8)

Integrating by parts, we obtain

(9)

where denotes the boundary of the solution domain, and the
subscript indicates the outward normal component of the cor-
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responding vector. The surface integrals in (9) can be expressed
by a single integral

(10)

The three terms grouped within the parentheses in (10) are,
respectively, the normal component of the conduction current
density, the displacement/polarization current density at infinite
frequency, and the polarization current density due to the disper-
sive nature of the medium. These terms are included in the total
normal current density, , at . It is that is specified
whenever the current is a part of the boundary conditions. The
negative sign is used to comply with the convention used here
that inward flowing currents at are considered positive.

To bring (9) into a more symmetric form, we use the fact that,
in low-frequency problems, is a gradient field. Such fields can
be expressed solely in terms of the electric scalar potential,

(11)

Using (11), we can rewrite (9) as

(12)

Equation (12) is the weighted-residuals version of the low-fre-
quency Maxwell-Ampere Law (LFMAL). The integral in the
third term on the left-hand side of (12) can be written in the
same form as those in the first two terms, because (6) and (7)
and their homogeneous initial conditions imply thatand the
time-derivative of are always collinear. Hence, can be
written in the form

(13)

where is a space- and time-dependent scalar multiplicative
factor.

B. Discretization in Space of the Weighted-Residuals Version
of LFMAL

Equation (12) can now be discretized in space according to a
standard procedure for the Helmholtz equation [15]. Using the
interpolation functions as weighting functions as per Galerkin’s
method, for each elementwe first calculate the matrix

(14)

where is the space occupied by the element, andand
are the interpolating functions centered at nodesand . If nodes

and are connected with element, then the corresponding
matrix term, , can be easily calculated [15]. If nodes
and are not connected with element, then is zero.
Equation (12) yields at theth element

(15)

where and are the (constant) values of the material
properties within the th element; is the unknown multi-
plicative factor from (13) that is constant within theth element;
and is the unknown global vector of the nodal potential.de-
pends on any prescribed nonzero voltage inor at , but for
the sake of simplicity we assume that only zero voltage (ground)
can be prescribed. Therefore, is the total normal current for
the th element, if this element has one or more faces located
along . is zero otherwise. To further simplify our notation
we introduce the quantity , which is associated with theth
element

(16)

C. Discretization in Time of the Weighted-Residuals Version
of LFMAL

The second step, discretization in time, can be performed in-
dependently of the first step. In particular, the order of the ap-
proximation in time may be different from the order of approx-
imation in space. For example, the approximation in space may
be linear, while the approximation in time may be quadratic.
This fact is important in the case of Lorentz materials, since the
corresponding auxiliary differential equation (7) is of second
order and cannot be discretized with linear elements in time.
In the case of Debye materials, linear elements can be used in
time and (15) can be cast into the following form if Galerkin’s
method is applied [15]:

(17)

The superscripts in (17) refer to the time at which the corre-
sponding variable is evaluated measured in time-steps, and
is the length of the time-step. We note that the linear approxima-
tion implemented with finite elements in time yields the same
result as the linear approximation in time implemented with the
PLRC method [11]. If quadratic approximation in time is used,
(15) transforms into [14]:

(18)

where

(19)

and

(20)

and the parametersand assume different values for different
weighting functions in time. For example, the choice of
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and corresponds to the weighting functions used by
Galerkin’s method. For the “average acceleration” weighting
functions, these values are and . Note that
the choice of and can influence the numerical stability of
the time-stepping scheme, which will be addressed later.

D. Discretization of the ADE

We next provide updating procedures for . Such proce-
dures can be inferred from the ADEs.

1) Debye Materials: In the case of Debye materials, we use
Galerkin’s method with linear approximation in time [15] and
obtain the following result from (6):

(21)

We next apply the same technique to discretize (21) in space as
with (3). That is, we take the divergence of both sides of (21),
multiply by and integrate over . This yields

(22)

Integration by parts yields

(23)

Again, the subscript in the surface integrals of (23) denotes
the outward normal component of the corresponding vector with
respect to the surface.

Equation (23) represents a relation between the volume inte-
grals only, because the surface integrals cancel each other out.
To see this, we note that (21) implies

(24)

Multiplying both sides of (24) by and integrating over
proves the cancellation.

With (11), (23) simplifies to

(25)
This can be immediately discretized in space by using standard
procedures [15]. For element number, we obtain

(26)

Here, the values of and vary in space but are considered
to be the constants, and , within each element; is the
Dirichlet matrix of the th element normalized with respect to
the material properties [15]. and are available from the
initial conditions.

2) Lorentz Materials: In the case of Lorentz materials, we
use the general method of weighted residuals and quadratic
approximation in time as described in [14]. Equation (7) then
yields

(27)

where

(28)

We discretize (27) in the same way as we did in the case of
Debye materials and obtain

(29)

Equation (29) refers to theth element, where , ,
are the values of the coefficients in front of , and
in (27), and is the value of from (28).

E. Completion of the Algorithms

1) Debye Materials:Equation (26) allows us to eliminate
from (17), which becomes

(30)

The only unknown variable in (30) for is . It can
be calculated if the left-hand and right-hand sides of (30) are
obtained and summed over all elements. This is the well-known
process of assembling the global matrices. If is available
for and , and is available for ,
then can be obtained from (26). Now we can obtain
by substituting and in (30), which completes the
algorithm.

2) Lorentz Materials: Equation (29) allows us to eliminate
from (18), which for becomes
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TABLE I
PARAMETERS OF THESIMULATED DISPERSIVEMATERIALS

(31)

The same time-stepping procedure used for Debye materials
works for Lorentz materials in conjunction with (29) and (31).

F. Numerical Stability

Time-stepping schemes can become unstable. The one we use
for Debye materials is unconditionally stable and is considered
to be a good option when coping with oscillation errors [14].
This scheme results from the application of Galerkin’s method
to linear elements in time. However, the same method applied to
quadratic elements in time yields a conditionally stable scheme
for Lorentz materials. While such a scheme may still be useful
in many bioelectric problems, we utilize the general form of
time-stepping given by (18) to derive our algorithms for Lorentz
materials [14]. The obtained schemes are unconditionally stable
for [14].

IV. I MPLEMENTATION

We implement the above algorithms in a MATLAB [16] code.
The model geometry and the finite-element mesh are generated
with the software package FEMLAB [17] and then exported into
the workspace of MATLAB. The solution is displayed either
directly in MATLAB or imported in FEMLAB to use other ad-
vanced visualization tools.

Consider the computer storage requirements of the algo-
rithms presented in this paper. To calculate the updated global
set of nodal potentials for the Debye case, we need to
store at each node. Further, we must store for each Debye
pole the corresponding in (26) at the nodes of each

element. For , this means that storage must be provided for
each node as many times as the number of elements to which
the node belongs.

To calculate the updated global set of nodal potentials
for the Lorentz case, we need to store and at each
node. Further, we must store for each Lorentz pole-pairthe
corresponding and in (29) at the nodes of each ele-
ment. For and , this means that storage must be pro-
vided for each node as many times as the number of elements
to which the node belongs.

V. VALIDATION

We now discuss the validation of our theory and numerical
algorithm. Our focus is the calculation of the time-varying po-
tential distribution within a dielectric cube. The cube is held at
zero potential on one of its faces, and is excited at its opposite
face by a normally directed uniform current density having the
Gaussian time dependence

(32)

where is the time-step number. At all other cube faces, we
assume zero normal current and hence zero normal derivatives
of the potential.

The FETD model of this cube consists of 24 linear tetrahe-
dral elements with 14 nodes. We use a time-step of 9.785 ns
for the Debye material and 7.828s for the Lorentz material.
Therefore, in conjunction with the current waveform specified
in (32), the excitation spectrum has significant power from dc
to several hundred kilohertz for the Debye material, and from
dc to several hundred Hertz for the Lorentz material. A total
of 512 time-steps implements an FETD
simulation that is centered in time about the peak of the current
excitation. Two cases of dispersive dielectrics are considered.
In the first case we simulate the five-pole Debye material re-
ported in [6]. This example is of interest for two reasons: 1) It
has a large number of poles, allowing a thorough test of the dis-
persive algorithm. 2) It provides an excellent approximation of
reported experimental data for muscle from 10 Hz to 100 GHz
[6]. In the second case we simulate a fictitious Lorentz material
having three pole-pairs. This also provides a rigorous test of the
dispersive algorithm. Table I provides the Debye and Lorentz
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(a)

(b)

Fig. 1. Frequency-dependent dielectric properties of the five-pole Debye
material specified in [6] and Table I: (a) Relative permittivity" (!). (b)
Conductivity�(!) = � + !" (!).

(a)

(b)

Fig. 2. Frequency-dependent dielectric properties of the three-pole-pair
Lorentz material specified in Table I: (a) Relative permittivity" (!). (b)
Conductivity�(!) = � + !" (!).

parameters for these cases, and Figs. 1 and 2 graph the corre-
sponding material relative permittivity and conductivity

.
To establish a comparative benchmark, we use the fast

Fourier transform (FFT) technique described in [8] to calculate
the time-waveform of the electric potential at the excited cube
face. The primary computational consideration here is that
significant padding of the exciting waveform of (32) is required
both before and after the current pulse in order to properly
simulate excitation by a single, isolated pulse rather than the

Fig. 3. Agreement of the FETD and benchmark FFT results for the
time-waveforms of the calculated potential at the excited cube face for the
five-pole Debye material of Fig. 1.

Fig. 4. Agreement of the FETD and benchmark FFT results for the
time-waveforms of the calculated potential at the excited cube face for the
three-pole-pair Lorentz material of Fig. 2.

periodic pulses implied by the FFT. In fact, we implement this
padding by using a total of 262 144 time-steps (each 9.785 ns
for the Debye material and 7.828s for the Lorentz material)
centered about the peak of the current excitation. Figs. 3 and
4 compare the FETD and benchmark FFT results for the
time-waveforms of the calculated potential at the excited
cube face for the Debye and Lorentz materials of Fig. 1 and
Fig. 2, respectively. At all time points, there is a very high level
of agreement of about 1% relative to the maximum voltage
variation. In fact, the agreement for the Lorentz material case
( 0.07%) is even better than for the Debye case because
second-order accurate time-stepping is employed.

VI. CONCLUSION

This paper reported new FETD algorithms based upon
a simple scalar-potential formulation to calculate the time
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evolution of the electric potential distribution in materials
exhibiting Debye and Lorentz dielectric dispersions. The new
algorithms are applicable to the case where eddy currents and
wave phenomena are negligible. In general, this case arises
for biological tissues of centimeter-to-meter scale exposed to
electromagnetic fields having spectra below 1 MHz. These
algorithms are based upon the auxiliary differential-equation
(ADE) technique previously reported in the context of the
FDTD method [11]. For Debye dispersions, we use the un-
conditionally stable Galerkin time-stepping scheme [14], [15].
For Lorentz dispersions, we use a more general formulation
[14] which yields both conditionally and unconditionally
stable time-stepping schemes depending upon the choice of
parameters. Validation examples for the new FETD algorithms
have been provided for generic geometries of tissues having
multipole Debye and Lorentz dispersions, which are excited
with spectral bandwidths covering the entire range of appli-
cability of the algorithms. We note the following limitations
arising from the new FETD algorithms for modeling dispersive
materials. First, eddy currents and wave phenomena cannot
be modeled. Second, the required computer storage increases
linearly with the number of Debye poles or Lorentz pole-pairs
being modeled. Third, Cole-Cole dispersions [1], [4] cannot
be directly modeled. However, because Cole-Cole dispersions
can be accurately approximated with multiple-pole Debye
expansions [6], [18], this limitation is not serious. In fact, Fig. 1
and Fig. 3 show validation results for one such approximation.
An interesting possibility for future work in this area is the
development of FETD algorithms to model nonlinear disper-
sive biological materials at low frequencies, as encountered
in electroporation [19]–[21]. This should be possible based
upon the experience of the FDTD community in developing
ADE algorithms for nonlinear dispersive materials at optical
frequencies [11].
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