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Finite-difference time-domain numerical experiments and supporting analyses demonstrate that the spectral
dependence of the total scattering cross sections of randomly inhomogeneous dielectric spheres of sizes in
the resonant range closely resemble those of their homogeneous counterparts that have a volume-averaged
refractive index. This result holds even for the extreme case in which the refractive index within an inho-
mogeneous sphere varies randomly over the range 1.0–2.0. © 2003 Optical Society of America

OCIS codes: 290.5850, 290.0290.
The physical basis and phenomenology of light
scattering by particles in the resonant range are of
interest in a variety of science and engineering
disciplines.1,2 It is well known that scattering by ho-
mogeneous or layered spheres that comprise isotropic
dielectrics can be analyzed by Mie theory and its
extensions.2,3 However, because most particles of in-
terest have neither spherical shapes nor homogeneous
compositions, their scattering properties cannot be
obtained analytically.

In this Letter we report the application of a
finite-difference time-domain (FDTD) method4 to
investigate the role that random dielectric inhomo-
geneities play in light scattering by resonant spheres.
Previously, the FDTD showed promise in calculation
of scattering by realistic particles because of its ability
to model complex surface shapes and internal struc-
tures.5,6 In this Letter we also report an approxi-
mate analysis that supports our numerical findings.

First we verified our FDTD code by computing
the scattering pattern of homogeneous spheres and
comparing the results with Mie theory. A Gaussian
pulse wave source was imposed on the simulation
grid, and the scattered-field frequency response was
extracted by means of a discrete Fourier transform
run concurrently with the FDTD time stepping.4 The
perfectly matched layer absorbing boundary condition7

was used in our simulations to terminate the computa-
tional lattice. We constructed a 5-mm inhomogeneous
spherical dielectric particle within a FDTD space
lattice that had a uniform cubic cell size of 25 nm on
a side. Two cases of random inhomogeneity within
the particle were studied. In case 1 we assigned a
uniformly distributed, fine-grained, random value of
permittivity to each lattice cell within the sphere (cor-
relation length, Lc � 25 nm). In case 2 we assigned
a uniformly distributed, coarse-grained, random value
of permittivity to cubic blocks of size 4 3 4 3 4 lattice
cells �Lc � 100 nm� within the sphere. For both of
these cases we calculated the total scattering cross
section (TSCS) for an incident wavelength range of
0146-9592/03/100765-03$15.00/0
500–1000 nm for two ranges of randomly assigned
refractive index, 1.45–1.55 and 1.0–2.0, separately,
using a pseudouniform random-number generator.8

Figure 1 illustrates typical assignments of the ran-
domly distributed refractive index along a cut through
the center of the particle for cases 1 [Fig. 1(a)] and 2
[Fig. 1(b)]. Note that groupings of adjacent random
refractive indices create composite internal inhomo-
geneities with effective length scales that vary over a
wide range, as illustrated by the arrows.

Figure 2(a) graphs the FDTD-calculated TSCS (in
units of square meters) versus wavelength for 10 ran-
dom sequences of refractive index ranging from 1.45 to
1.55 for case 1, the f ine-grained inhomogeneity. The
filled circles represent the results of the FDTD simu-
lations for distinct sets of random inhomogeneities at
30 wavelengths from 500 to 1000 nm. In addition,
Fig. 2(a) shows the results of two finer-frequency-
resolution FDTD simulations at 30 wavelengths
from 750 to 800 nm and at 30 wavelengths from
850 to 900 nm for a single set of random inhomo-
geneities. For comparison, the dotted curve shows
the corresponding Mie data for a 5-mm homogeneous
sphere with n � 1.5 (the volume average of the
random refractive indices of the FDTD runs). From
Fig. 2(a) we see that the TSCS of each randomly
inhomogeneous particle as a function of wavelength
has an oscillatory pattern that closely resembles
that of its volume-averaged Mie counterpart. The
primary difference is that the FDTD-modeled
sphere lacks the high-frequency ripple structure
calculated by use of the Mie series. Based on our
numerical experiments with extremely f ine frequency
resolution, we believe that this discrepancy arises from
the staircasing of the sphere surface within the FDTD
space grid, which reduces the surface-wave effects
required for the appearance of the ripple structure.

Figure 2(b) repeats the study of Fig. 2(a) for case 2,
the coarse-grained inhomogeneity. Five random
sequences of refractive index ranging from 1.45 to 1.55
are examined. Figure 2(b) also shows the results
© 2003 Optical Society of America
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Fig. 1. Typical assignment of randomly distributed
refractive indices along a cut through the center of the
5-mm spherical particle; each FDTD grid cell has a
size of 25 nm: (a) f ine-grained and (b) coarse-grained
inhomogeneity.

of a finer-frequency-resolution FDTD simulation at
30 wavelengths from 750 to 800 nm for a single set
of random inhomogeneities. Comparing Figs. 2(a)
and 2(b), we can see that the primary effect of the
coarse-grained inhomogeneity is to slightly broaden
the spread of the TSCS. The TSCS of each randomly
inhomogeneous particle retains an oscillatory pattern
that closely resembles that of its volume-averaged Mie
counterpart.

Figure 3 repeats the studies of Fig. 2 for a much
wider range of random refractive index, 1.0 # n # 2.0,
within the inhomogeneous sphere. Here, two se-
quences of random refractive index in this range were
studied for each of cases 1 and 2. It is evident that
the TSCS of the randomly inhomogeneous particle
as a function of wavelength still resembles that of
its homogeneous volume-averaged Mie counterpart,
although not so well as previously, especially for the
coarse-grained case 2 below 600 nm.

To complement the numerical experiments, we
present an analysis of how the internal inhomo-
geneities of a dielectric particle affect the wavelength
dependence of its TSCS. The TSCS of a particle
much larger than the incident wavelength can be
estimated by the Wentzel–Kramers–Brillouin tech-
nique9 when �n 2 1�kd .. 1 and �n 2 1� , 1, where
k is the incident wave number and n and d are
the refractive index and the size of the particle,
respectively. In this approximation, the scattering
contribution due to surface effects is neglected. To
improve accuracy, one can represent TSCS ss as the
sum of two terms: ss � ss

�n� 1 ss
�s�, where ss

�n� is
the contribution due to the volume of the scattering
particle and s

�s�
s is the so-called edge term,10 which

account for the effect of the sharp discontinuity of the
refractive index at the particle surface. For a spher-
ical particle of diameter d, ss

�s� can be approximated
as ss

�s� � 2p�d�2�2 �kd�2�22�3 (where high-frequency
ripple structure has been neglected), whereas ss

�n� is
written as

ss
�n� � 2 Re

√√√ ZZ
A

�1 2 exp�ij�r���d2r

!!!
, (1)

where r is a vector in the plane orthogonal to
the direction of propagation of the incident wave;
j�r� �

R
L�r� k�nl�r� 2 1�dl, in which the integration is

performed over the path L � d�1 2 sin2 g�r��n0
2�1�2

of the ray inside the particle; g is the angle be-
tween the incident ray’s propagation direction and
the radial vector pointing from the center of the
particle to the point of entry of the ray into the
particle; and A is the geometrical cross-section area

Fig. 2. Total scattering cross section versus wavelength
for 1.45 # n # 1.55. The ten FDTD simulations are repre-
sented by f illed circles; the corresponding Mie result, by
a dotted curve: (a) fine-grained and (b) coarse-grained
inhomogeneity.
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Fig. 3. Total scattering cross section versus wavelength
for 1.0 # n # 2.0. The two FDTD simulations are rep-
resented by the f illed circles; corresponding Mie result,
by a dotted curve: (a) fine-grained (b) coarse-grained
inhomogeneity.

of the particle. The refractive index inside the
particle can be written as the sum of mean refrac-
tive index n0 and its spatially varying component
dn�r�: n�r� � n0 1 dn�r�. Using this definition
and substituting j�r� into Eq. (1), we obtain ss

�n� �

pd2 Re
Rt21n0

221�n0
t21n0221�0 t�1 2 exp�i�r�n0� �t2 1 n0

2 2

1�1�2�exp�ira�r�t��dt, where t � cos g, r � kd�n0 2 1�,
and a�r� � �

R
L�r� dn�r���n0 2 1�dl�d. If jraj ,, 1, the

second exponent in ss
�n� can be expanded to allow the

integration to be performed analytically, yielding

ss � 2p�d�2�2�1 1 �2�n0 2 1��r�2�3 2 2n0 sin r�r

1 4n0 sin2�r�2��r2 1 b�r�� , (2)

where b�r� � r
R1
0 at2 sin�tr�dt accounts for the inho-

mogeneous distribution of the refractive index inside
the particle. When n0 ! 1 and b � 0, Eq. (2) matches
the well-known equation derived by van de Hulst2 for
a homogeneous sphere. However, for an arbitrary re-
fractive index, Eq. (2) provides better agreement with
the exact Mie solution.

Now assume that the spatial distribution of
dn has a correlation length Lc and a probability-
density function characterized by a standard deviation
sdn � �var�dn��n0 2 1���1�2. Then jb�r�j , sdnLc�d,
and the deviation of the TSCS from that of the equiv-
alent volume-averaged uniform sphere is negligible,
provided that Lc ,, d�sdn. For example, if the re-
fractive index inside a 5-mm particle varies with equal
probability from 1 to 2 for Lc � 25 nm, then jbj # 1023,
and the TSCS is expected to closely follow that of the
corresponding volume-averaged uniform sphere. This
conclusion is supported by FDTD simulations shown
in Fig. 3(a). As discussed above, Eq. (2) is valid
when jraj ~ 2p�n0 2 1�sdn�Lcd�1�2�l , p�2. This
condition can be used to estimate wavelength lc below
which the frequency of the interference structure may
be affected: lc � 4�n0 2 1�sdn�Lcd�1�2. For example,
if Lc � 100 nm, d � 5 mm, and the refractive index
varies from 1 to 2 with a uniform probability, then
lc 	 800 nm, which is again observed in our FDTD
simulations shown in Fig. 3(b). As another example,
if the variations of the refractive index have the same
correlation length but are limited from 1.45 to 1.55,
then the TSCS follows that of the uniform sphere for
a wavelength as short as lc 	 80 nm, i.e., smaller
than Lc.

In summary, we have conducted FDTD numerical
experiments and supporting analyses to demonstrate
that the spectral dependence of the total scattering
cross section of randomly inhomogeneous dielectric
spheres of size in the resonant range closely resembles
that of their homogeneous counterparts that have a
volume-averaged refractive index. This result holds
even for the extreme case in which the refractive index
within an inhomogeneous sphere varies randomly over
the range 1.0–2.0.
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