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Abstract: We have derived the signal-to-noise ratio in direct-detection
Random-Modulation Continuous-Wave (RM-CW) lidar in the presence of
colored additive noise. In contrast to a known formula derived for the
photon shot-noise regime, which may adequately describe experimental
conditions in the near-infrared, our result is applicable mainly at longer,
mid-infrared wavelengths. Unlike the former formula, our result is
explicitly dependent on the pseudorandom code (PRC) used for modulation.
Three known modulation codes, the M-, A1-, and A2-sequence are
compared and shown to have practically equivalent signal and noise
properties (provided that clutter inherent in the A1- and A2-sequence is
neglected), except that the M-sequence has a near-zero-frequency noise
pickup that degrades its performance in real measurement systems. This
difference provides an alternative explanation of a better performance of the
A1-/A2-sequence in a previous experiment [3], carried out in the near-
infrared. It suggests the presence of an additive noise component and thus
some applicability of our result also in near-infrared lidar. A need for
balanced sequences – particularly in the mid-infrared – is explained,
although in a different way than previously suggested in near-infrared,
photon shot noise-limited lidar. Additional, sinusoidal carrier modulation is
considered and shown to have significant drawbacks. Our results allow
comparison of given modulation sequences, and construction of improved
ones. Interestingly, the improved sequences will possess less “random”
characteristics, seemingly against the underlying concept of random
modulation.
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1. Introduction

Lidar is a widely used optical technique of remote sensing. The sensed target can be - among
others - a reflecting solid object or the atmosphere containing backscattering aerosols. Since
range and angular resolution is normally required, a laser source capable of fast modulation or
switching must be used. Typically, high peak-power (~1-10MW) short-pulsed (~10ns) lasers
are used, but many applications call for compact laser sources (preferably solid-
state/semiconductor), in which the maximum instantaneous power is significantly lower. This
is particularly true in semiconductor and mid-infrared (~2-15µm) lasers. Fortunately, these
lasers can often operate at high duty-cycles and even continuously without severely
compromising the maximum instantaneous power. This greatly compensates for its low level.
The optimum overall lidar performance in such a case is achieved when the laser source is
operated at as high a duty-cycle as possible. Then, to preserve range resolution, a special laser
modulation and return signal demodulation sequence must be used. This technique is known
as Random-Modulation Continuous-Wave (RM-CW) lidar [1-5]. It has been successfully
applied to detect aerosols and particulate matter with the use of low-power cw near-infrared
semiconductor lasers. However, a variety of applications – most notably spectroscopic
measurements of physico-chemical parameters of the atmosphere – require mid-infrared
wavelengths since atmospheric pressure-broadened ro-vibrational transitions in most
molecules of interest are not properly resolved in the near-IR. Additionally, the near-IR
transitions are much weaker, being overtones of the fundamental transitions in the mid-IR.
Moreover, the atmosphere has broad windows of high transmission in the mid-IR. This has
led to continued research efforts to develop mid-IR semiconductor lasers operating at high
duty-cycles at or near room temperature, and to incorporate them into remote-sensing systems
[6].

Therefore, a need arises to predict overall performance of the various types of mid-IR
RM-CW lidar. At the core of such analysis is the signal-to-noise ratio of lidar return obtained
with a given laser modulation sequence, atmospheric response function, and demodulation
sequence, in the presence of a realistic noise that can be deduced from standard detector
specifications. The purpose of this work is a derivation of this signal-to-noise ratio in the case
of direct (i.e., optically non-coherent) detection lidar, and a comparison of the performance of
known sequences (the M-, A1-, and A2-sequence). The M-sequence (also called the
maximum shift-register sequence) is the most commonly used pseudo-random sequence [7,8].
It has been used for decades in spread-spectrum communications, an area closely related to
RM-CW lidar through the use of correlation properties of pseudo-random sequences. In fact,
the M-sequence can be defined by its correlation function (given in section 2.5.1) resulting
from a feedback connection of a set of shift registers [8]. It was first applied to RM-CW lidar
by Takeuchi et al. [1,2]. The A1-sequence can be viewed as a double-length M-sequence with
inverted polarity in every other bit [3]; similarly, the A2-sequence is a quadruple-length M-
sequence with inverted polarity in every other pair of adjacent bits [ibid.].

The derived signal-to-noise ratio is also instrumental in calculations of the sensing range
and its limits in mid-IR direct-detection RM-CW lidar.

2. Signal-to-noise analysis in direct-detection mid-infrared RM-CW lidar

In the near-IR, the S/N ratio derived from Poissonian statistics of detected signal photons,
background photons, and perhaps dark counts [1-4] often adequately describes practical
detection regimes if the effect of demodulation is appropriately accounted for. This is
particularly true when a photomultiplier tube (PMT) is used as a detector. Here, high internal
gain, shunt resistance, and quantum efficiency combined with a low dark current allow
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detection of photons close to the shot-noise limit, and thus derivation of the S/N ratio merely
from the number of detected photons, assuming their Poissonian statistics. With an increasing
wavelength, however, the above assumptions become invalid. Mid-IR detectors of sufficient
and stable gain to overcome thermal noise do not exist. Further, background blackbody
radiation can be stronger than the backscattered laser light. Finally, and most importantly,
very low detector shunt resistance and/or high dark current typically yield much greater noise
than thermal noise of the following amplifier/load. In this regime, the noise does not depend
on the signal and is dominated by the detector. Then, our linear detection process allows
treatment of the noise as being additive.

In practical systems, we also need to allow for the arbitrary spectral density (“color”) of
the noise because its density strongly increases toward lower frequencies, typically below
several kHz. Additionally, we will assume that the noise is stationary. This is a good
assumption for practical purposes except near zero frequencies comparable to or lower than
the inverse averaging time, where the stochastic mathematical model/treatment is not valid.
Lastly, we will limit our analysis to direct-detection lidar, noting that a coherent superposition
of the scattered wave with a local oscillator before square-law detection would violate our
assumptions.

The entire model for our analysis is shown in Fig.1.

Fig. 1. Block diagram of signal-to-noise analysis of RM-CW lidar in presence of colored
additive noise.

Following the references, xi, zi, and ni are discrete-time counterparts of the respective
continuous-time quantities, and Gi is the discrete-time counterpart of g(t)⋅∆t, where

∆t is the sampling interval (chip length of the modulation waveform);

x(t) = P0⋅a(t) is the light power emitted into the atmosphere, where
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P0 is the laser output power when a = 1, and a(t) is a (dimensionless) modulation
waveform;

a´(t), equal to +1 or –1 when a equals 1 or 0, respectively, is a demodulation waveform;

g(t) is the atmospheric response function:

2 2( ) ( ) ( ) ( ) /
2 r r r

c
g t A R T R Y R Rβ= , (1)

where

R = ct/2;

c is the velocity of light;

Ar – receiver’s aperture area;

βr – differential backscattering coefficient;

Tr(R) – transmission coefficient to the distance R:

0

( ) exp ( )
R

rT R r drα
 

= − 
 

∫ (2)

(α - absorption coefficient),

Y(R) – the crossover function, or the geometrical form factor, which is the fraction
of the laser beam cross section covered by the receiver’s field of view;

and ni is the detector noise.

We have introduced the detector responsivity factor Rd. This factor converts the light power
into the detector output signal, which – depending on the type of detector and amplifier used –
can be voltage or current.

Finally, ψaa´ (j) is the (normalized) crosscorrelation function defined as

1
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where N is the sequence length.
By varying the delay, j, the above scheme recovers Gj from any distance of interest. Gj/∆t

is then equal to the atmospheric response function g from the distance R = (c⋅j⋅∆t)/2. From Gj,
βr(R) and its derivative parameters of the sensed medium can be determined. We are only
concerned with the derivation of the S/N ratio in the measurement of Gj.

Since our detection and demodulation process is linear, and the noise is additive, we can
calculate the output signal and noise separately.

2.1 The signal

The demodulated signal without noise is [3]
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which for the M-sequence further equals

(C) 2001 OSA 8 October 2001 / Vol. 9,  No. 8 / OPTICS EXPRESS  389
#34252 - $15.00 US Received May 30, 2001; Revised September 28, 2001



0 0

1 1
(large N)

2 2j j

N
P G P G

N

+ ≅ (5)

In an analogous manner, we have for the A1-sequence,
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and for the A2-sequence [ibid.],

(0)

0 0

2 1

4 4 2
j

j j

S N
P G P G

N N
≅ = (7)

Note that the A1- and A2-sequence derived from the M-sequence of length N have a length of
2N and 4N, respectively.

Therefore, the M-, A1-, and A2-sequences possess equivalent signal properties in our S/N
ratio analysis. Their different limitations and immunity to clutter do not affect our analysis.

The detector output signal for all of these sequences is equal to

(0)

0

1

2
d j

d j

R S
R P G

N

⋅ ′≅ ⋅
′

, (8)

where we have substituted 0P ′ for 0P to account for possible losses in light power between
the telescope and the detector, and N´ denotes the actual length of a given sequence.

2.2 The noise

To find the output noise, we will make a transition to continuous time and apply known tools
of stochastic signal analysis [7]. The demodulated noise becomes

1 1
( ) ( )i j i T

kN

a n a n d
kN T

τ τ τ−
< >

′ ′→∑ ∫ , (9)

where T = kN⋅∆t. This can be viewed as a moving average of a stochastic signal a´(τ)n(τ)
using a rectangular window of duration T.

Since we want to characterize n(τ) by its power spectral density, we will find the rms
value of the output noise in the frequency domain. The power spectral density of the product
a´(τ)n(τ) is

( )
( ) ( )

2a n a

f
G f G f

η
′ ′= ∗ , (10)

where

{ }( ) ( )a aG f R τ′ ′= ℑ (11)

is the power spectral density of the demodulation sequence a´(t), Ra´(τ) is the normalized
autocorrelation function of the demodulation sequence, and η(f) is the positive-frequency
noise power spectral density.

Since Ra´(τ) is periodic, its power spectral density can be represented as a Fourier series:
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where f0 = 1/T0 = 1/(N⋅∆t), and cn are the Fourier coefficients of Ra´(τ):
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The mean-square output noise is
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where H(f) is the transfer function associated with the averager, which is a linear and time-
invariant system. Here, we have assumed that the noise is stationary. |H(f)|2 can be found from
the impulse response function
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We can simplify this result if T⋅f0 = (T/T0) = k » 1, that is, if the measurement/averaging is
carried out over a large number of periods. The distribution sinc2fT (of width ~1/T) can then
be approximated by the δ(f) distribution:
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which allows us to write the final formula for the output rms noise as
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Here, we have used the fact that η(f) is an even function.
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2.3 The signal-to-noise ratio

Therefore, the signal-to-noise ratio in the measurement of the atmospheric response Gj is
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To express Rd and η in terms of commonly used infrared detector specifications, we note
that
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( ) / 2
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where D*(f), the detectivity at frequency f, is a commonly used figure of merit for
photodetectors, particularly in the mid-IR, and Ad is detector’s area. Equation (21) then
becomes
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As we can see, strict prediction of the signal-to-noise ratio requires knowledge of η(f) or
D*(f) in a range of frequencies from DC to ~1/∆t, whereas D* at only one frequency is
available in routine detector specifications.

For noise whose power spectral density η(f) does not change throughout the range of
frequencies where cn is significant (that is, from DC to ~1/∆t), we can simplify the above
expression noting that
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Therefore, in the case of white noise, Eq. (21) reduces to
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2.4 Comparison to the photon shot-noise regime

We can now compare the result of Eq. (25) to that derived by Takeuchi et al. [1,2] for the M-
sequence in the case of signal and background photon shot-noise-limited measurements,
which is a realistic approximation in near-IR lidar:
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where

l ≈ N/2 for the M-, A1-, and A2-sequences;

N is the sequence length;

k is the number of periods of averaging;

b is the background radiation power;

ξ=∆t⋅ηQ/hν is the conversion constant from light power to photoelectron number,
where

ηQ is the detector’s quantum efficiency,

h is Planck’s constant,

ν is the light frequency;

Here, the excess noise factor (typically ~2 to 3 in PMTs), has been neglected.

For a meaningful comparison, we will reduce Eq. (26) to the case 0lP G b , that is,
background photon shot-noise-limited detection:

0

1
2 j

RM

P GS

N b

kN

ξ

ξ
  → 
 

%

(27)

Essentially, our result – Eq. (25) – is the same as Eq. (27) except that the denominators
describe noise of a different nature. Specifically,

b

kN

ξ
is the Poissonian noise of background photons detected during the measurement

interval of k cycles, normalized consistently with the signal (i.e., divided by kN), and

2T

η
is the rms detector noise of positive-frequency power spectral density η in the

noise-equivalent bandwidth of 1/2T, corresponding to time-averaging over a period of T.

2.5 Performance comparison of the M-, A1-, and A2-sequence in the presence of colored
noise

Returning to the general case of colored noise, we will evaluate the S/N ratio given by Eq.
(21) for three specific sequences: M, A1, and A2. We have found that signal properties (the
numerator in Eq. (21)) are described by the crosscorrelation function between the modulation
and the demodulation sequence, and are practically identical for all of these sequences. Noise
properties (the denominator in Eq. (21)) are described by the autocorrelation function of the
demodulation sequence.
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2.5.1 The M-sequence

The autocorrelation function Ra´
(M) (τ) and its Fourier coefficients for the M-sequence are

known to be [8]
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where Tc, called the chip length, equals ∆t, and the fundamental frequency (n=1) is
f0=1/(NTc).

2.5.2 The A1- and A2-sequence

The autocorrelation function Ra´
(A1) (τ) of the A1-sequence [3] of length 2N (obtained from

the M-sequence of length N) can be written as
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As in our signal analysis, for large N, we can neglect the low-amplitude and high-frequency
“ripple” described by the last term in the above equation. The Fourier coefficients then
become

( 1) 2 21 1 1 1 1 1
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(31)

and the fundamental frequency is now f0 = 1/(2NTc).
For large N, the results for the A2-sequence of the same length as the A1-sequence are

identical.

2.5.3 Sequence parameters and performance comparison

To perform a sensible comparison of the S/N properties of the three sequences under
consideration, we need to specify their parameters: the chip length and the total length. We
consider the following choice of parameters to be optimal.

The M-sequence of length N should be compared to the A1-sequence of length 2N and the
A2-sequence of length 2N. This choice implies that the A2-sequence is derived from the M-
sequence of half the length, ≅ N/2. Further, the chip lengths of all of these three sequences
should be the same. This choice is dictated by, and satisfies, the following criteria:

• The range resolution obtained with any of these sequences of chosen parameters is the
same. This also allows maintaining the same signal properties (the same atmospheric
response Gj).

• The bandwidth required to realize specified modulation patterns is the same for each
sequence.
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• The unambiguous range as measured by the spacing between two adjacent peaks
associated with signal properties is the same for each sequence.

As a consequence, however, we have to accept two minor differences between such
chosen sequences:

• The fundamental frequency f0 of the A1/A2 sequence is half that of the M-sequence.

• The “ripple” in the autocorrelation and crosscorrelation function of the A2-sequence, as
measured by the ratio of the amplitudes of the small (“ripple”) peaks to the large
(signal-related) peaks, is twice that of the A1-sequence (2/N compared to 1/N).

This nonzero correlation observed between major peaks of the crosscorrelation function is
responsible for undesirable pickup of signals from different ranges (clutter), and degrades the
signal properties of the A1- and A2-sequences in unfavorable conditions [5]. Since we have
excluded this effect in our signal analysis, and have shown its negligible contribution to
overall noise, the given choice of sequence parameters (chip length and total length)
combined with our results show that the A1- and A2-sequences are equivalent in terms of
their signal and noise properties.

Therefore, we only need to compare the noise properties of the M-sequence of length N to
those of the A1-sequence of length 2N using Eq. (29) and Eq. (31). First, we note that

0( )

2n
n

nf
c

η∞

=−∞
∑

is a weighted average of all η(nf0). Furthermore, this average is properly normalized, since –
for all demodulation sequences – their normalized autocorrelation is equal to one at τ=0 (Eq.
(24)). Therefore, the noise performance of the various demodulation sequences can be
qualitatively compared by plotting the Fourier coefficients cn for each sequence (see Fig.2).
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Fig. 2. Comparison of noise pickup distribution of M-sequence and A1-/A2-sequence; N=7.

As we can see from Fig.2, the noise properties of the M-, A1-, and A2-sequences in our
approximation of k→∞ are practically the same, except that the M-sequence has a nonzero
DC noise pickup. In practical electronic systems, where the noise spectral density strongly
increases toward low frequencies (typically like ~1/f below a few kHz), this difference can
result in superior performance of the A1/A2-sequence, and could explain a better S/N ratio in
an experimental comparison carried out by Nagasawa et al.[3].

Since the limiting case k→∞ (infinite number of periods) is not strictly satisfied in
practice, it is worthwhile to notice that the effect of finite k can be incorporated as
windowing. Indeed, in Eq. (18), we have sinc2fT (T is the averaging time) rather than
(1/T)δ(f). As a result, the line spectra described by the Fourier coefficients cn are in general
windowed, frequency-broadened to ~1/T. Therefore, in practical systems, our concern is the
pickup of near-zero-frequency noise (down to ~1/T) rather than “DC” noise. [In fact, our
framework of stochastic noise analysis is not valid for frequencies lower or comparable to
1/T, although the description of DC noise pickup is qualitatively correct.] A semi-quantitative
analysis shows that the S/N ratio is an order of magnitude greater in the A1- or A2-sequences
compared to the M-sequence in typical experimental conditions (sequence length N=1000;
chip length Tc=30ns; integration time T=3s; and 1/f noise spectral density). The ~5-times
greater S/N ratio in the A2-sequence compared to the M-sequence that was observed in an
experiment carried out by Nagasawa et al. [3] using a near-IR laser is in satisfactory
agreement with our estimation. This agreement is reasonable taking into account that the
performance differences between pseudo-random sequences are associated with the additive
colored noise component, which is generally less pronounced at shorter (near-IR)
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wavelengths. The advantage of the A1- or A2-sequence over the M-sequence by a factor of 9
in the S/N ratio corresponds to a 3-fold improvement in the maximum lidar sensing range.

2.5.4 Effect of imbalance on overall performance

As we have established that a DC component in the spectrum of the autocorrelation function
of a demodulation sequence is highly undesirable, it would be worthwhile to relate it to some
simple property of the sequence. Below, we show that this DC component c0 is uniquely
related to the imbalance property of the demodulation sequence:
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For the M-sequence,
1

1
N

i
i

a
=

′ =∑ , which gives c0 = (1/N)2, in agreement with c0
(M) given by Eq.

(29). By definition, an imbalanced sequence has
1

0
N

i
i

a
=

′ ≠∑ , and therefore yields a nonzero (or

near-zero-frequency) noise pickup, whereas a balanced sequence yields none.
Interestingly, the requirement of balance in a sequence that maximizes the signal-to-noise

ratio in the presence of a typical colored noise (i.e., increasing toward low frequencies) is in
an apparent contradiction with the requirement of “randomness.” This is because an ideal
random sequence would have a frequency-independent spectral density at the low-frequency
end. Therefore, sequences that are optimal for practical RM-CW lidar applications will not
possess ideal “random” or even “pseudorandom” properties.

2.6 Random modulation on a sinusoidal carrier

Our previous discussion dealt with baseband transmission, that is, the light power was
modulated only by the pseudorandom sequence. The modulation spectrum and the noise
pickup extended from ~DC to ~1/Tc, covering the region of highest noise density in practical
systems. To avoid this spectral coincidence, we could employ additional modulation with a
sinusoidal carrier, which would shift the modulation spectrum and noise pickup to higher
frequencies where the noise density is usually much lower. This would, however, degrade the
signal properties of the entire system, as we show below.

Let the carrier- and PRC-modulated output be

1 1
( ) ( ) cos(2 )

2 2 m ma t a t f tπ ϕ → + + 
 

, (33)

where fm » 1/Tc is the carrier frequency, such that the maximum instantaneous laser output
power remains the same. The demodulation waveform is

( ) ( ) cos(2 )m ma t a t f tπ ϕ′ ′ ′→ + (34)

Since a´(t) is symmetric about the zero level, the constant component ½ in a(t) can be
neglected as it vanishes upon demodulation.

The noise pickup distribution is given by the Fourier spectrum of the autocorrelation
function
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,
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As expected, carrier modulation shifts the center of the noise pickup distribution from 0 to
+/-fm.

Similarly, the crosscorrelation becomes

[ ],

1
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(37)

Therefore, in the presence of carrier modulation (in addition to pseudorandom code
modulation), Eq. (21) is still valid if the numerator (the demodulated signal) is multiplied by
(1/4)cos(2πfmτ + ϕm - ϕ´m) and we substitute

1 1

4 4n n n n nc c c′ ′− +→ + (38)

with n´ = fm/f0 in the denominator (demodulated noise).
Thus, the envelope of the demodulated signal-to-noise ratio in the case of carrier

modulation is 4 / 2 2 2 2.83= ≅ times lower than in the case of baseband (no carrier)
modulation, using only a pseudorandom sequence. A factor of 2 is due to the twice lower

average emitted laser power, and a factor of 2 is due to the twice shorter effective noise
averaging time.

Another significant drawback of carrier modulation is the requirement of much higher
modulation and detection bandwidth (fm » 1/Tc) and related signal processing power, and
perhaps also PRC – carrier synchronization. Furthermore, despite these increased
requirements, the range resolution is not enhanced. The range resolution is still determined
only by the crosscorrelation length of the random component of modulation, which is a
pseudorandom modulation code.

3. Summary and conclusions

Our results allow calculation of the signal-to-noise ratio in direct detection Random-
Modulation Continuous-Wave lidar in the additive noise regime. Our theory accounts for an
arbitrary noise spectral density and the basic properties of the system: maximum
instantaneous laser power, detector’s detectivity and area, atmospheric response function,
autocorrelation function of the demodulation sequence, and its crosscorrelation function with
the modulation sequence.

The derived S/N ratio is instrumental in calculations of the sensing range and its limits in
mid-IR direct-detection RM-CW lidar. This, however, requires specifying the atmospheric
response function for a given type of lidar, and is a subject of future work.
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Since addition of a sinusoidal carrier is shown to have significant drawbacks over
baseband modulation, the results are most useful in a comparison of existing pseudorandom
sequences and in devising new ones. Three known sequences, the M-, A1-, and A2-
sequences, are shown to have practically equivalent signal and noise properties. Differences
arise only due to clutter inherent in the A1- and A2-sequences, and the fact that the M-
sequence is imbalanced and thus has a near-zero-frequency noise pickup. The imbalance
degrades the performance of the M-sequence in practical systems with an additive noise
component in which the noise density strongly increases toward lower frequencies. This result
provides an alternative explanation of better performance of the A2-sequence in an
experimental comparison to the M-sequence if we allow for the existence of an additive noise
component [3]. We believe that the imbalance property plays no role in photon shot-noise-
limited detection. Demodulation can be viewed as a functional on a random, Poissonian
incidence of photons, with the mean related to imbalance, but not to the variance. It is best
illustrated by any balanced sequence, in which the mean noise is zero, while its variance is
not. The S/N ratio has not been previously derived for such sequences.

Since generally the contribution of the additive component to noise strongly increases
with wavelength, so does the importance of balance in the demodulation sequence. While at
near-IR wavelengths an experiment has shown a few times greater S/N ratio in a balanced
sequence compared to the M-sequence [ibid.], this advantage would most likely be much
greater at mid-IR wavelengths. It puts a constraint of balance on the design of new sequences
for RM-CW lidar, particularly in the mid-IR. Interestingly, such sequences will possess less
“randomness” than the modulation sequences originally proposed for random modulation.
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