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The Determmahon of the Effectlve Radlus of a
Fllamentary Source 1n the FDTD Mesh
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mining the effective radius, 7., of a single axial field component,

spectively. The method is based upon matching FDTD results for
a filamentary field source with the analytical Green’s function in

- two dimensions. We find that r.g ~ 0.2 grid cells over a wide )

- range of grid resolutions. Further, our findings vividly demonstrate
- the nondissipative nature of the Yee algorlthm even for Very coarse

~ grid resolutions.

Index Terms——Effectiveradius, FDTD, filamentary source.

- L INTRODUCTION

often use a single axial field component (L, or H,, respec-
tively) to source a radially outgoing wave. The effective radius,
roff, Of such a filamentary source has been subject tosome CON-
jecture. Knowledge of r.g can be important in certain three-di-
mensional modeling problems, for example in calculating the
driving-point impedance of an antenna comprised of such a fil-
ament, or in specifying the wire gauge that would yleld the same
 fields as the filament. .
Accurate, effective subcell models of thm wires [1] are used
in FDTD grids to precisely mesh ﬁne geometrlcal features

which are a fraction of a grid cell in size. Such models have

often been used in antenna modeling and design [2], [3].

Howeyver, this letter does not use a subcell model. Rather, a

ﬁlamentary hard source is excited and its effective radius 7eg
O.Qh. whe_re h is the gnd i

is determined. It is shown that Teff N
resolution. @~ .

In order to venfy the accuracy of a glven techmque the re-
~ sults are commonly compared to a known analytical solution.
We discuss one of the most basic tests of this type for the Yee

algorithm, namely the response of the space lattice to an impul-
‘sive source located at its center. We will focus on the frequency
~ domain Green’s function for the 2—D Yee grid, and the genera-

tion of comparable FDTD data

1L GREEN’S FUNCTIoN N

Maxwell’s equatlons in two d1men310ns y1eld the followmg
‘scalar wave equatron ' ' B
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Abstract—Thls paper proposes a rlgorous method for deter-
" is valid for either a TM,, or TE,

E. or H.,in a two-dimensional (2-D) TM., or TE, FDTD grid, re- by E, or H,, respectively. Given a Dirac delta function in time

WoO- DIMENSIONAL (2-D) T™M,, or TE, FDTD solvers o

S Bu_ 1w

where c is the speed of light in the given medium. This equation
mode, where u is substituted

as the excitation pulse, the solution can be shown to be the fol-
lowmg 2-D tlme -domain Green S functlon Gap

cU(ct —7r)

PR 2
2/ c2t2 — r? (2)

u(r,t) = Gan(r,t) =

~ where r is the radial distance from the source and the unit step -
' 'functlon U 1S deﬁned as '

1'r<ct

U(Ct —T) = O r>ct’

- (3)

Note that G’ oD ('r t) — 00 at the leadmg edge of the outgomg

wave since 7 = ct. Any numerical solver is unable to model a
‘wave with Inﬁmte amplitude. However in the frequency domain
this is easily resolved. Therefore it is instructive to analyze the
2D frequency-domam Green’s function

JH (2)(k"°) .

u('r' w) T (4)

GQD(T UJ)

~where H, @) ; is the Hankel functron of the second kmd and kis
 the free space wave number at w = 27 f. |

Gz p is also unbounded in the frequency domain, but only

~atr = 0 due to the smgulanty of the Hankel function. This, in

fact, does not present a problem since the singularity is naturally
avoided. A line source in the FDTD grid has been known to
have some measurable radius, an effective radius, although it has

‘never been quant1ﬁed The excitation field in the grid radiates
- from the edges of this filament just as an antenna in a physical
system Therefore, a finite distance exists from the geometrical -

center of the source to the location where the wave is actually

radiating. As a result, the Hankel function is no longer infinite
~ and is in fact easily handled by the FDTD mesh. Numerical
experiments discussed below demonstrate that Gop(r,w) can

be calculated very accurately by an FDTD model which excites

- a srngle E, or H, field.

III METHODOLOGY FOR FINDING THE EFFECTIVE SOURCE
RADIUS ' '

FDTD frequency-domam data may be gathered by per—

) formmg a discrete Fourier transform concurrently with time

stepping. Alternatrvely, a time- harmonic source may be excited

~and the envelope of the response collected after the high
~ frequency transients have dissipated. Using this latter approach,
- we need only a simple peak detector to acquire the envelope.
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z-axis of a coarse grid with resolution Ao /5. The finite scaling
factor to achieve a best fit between the exact and FDTD results
is 1.252. From (5), thls yields f* = 0.247. '
~ Fig. 2 is similar to Fig. 1 except that it compares the radral
variation of the magmtude of the Green s function with scaled
FDTD-calculated |H,(kr)| values as observed at all points
within the grrd Our methodology 1S to scale the FDTD results
so that the Green’s function forms: (a) the upper envelope of
the varlatron of FDTD values and (b) the lower envelope of
the same varlatron of values Thrs yrelds two results for the
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Fig. 1. |H.(kr)| with scaled and unscaled FDTD values along the z axis for _ ooy -~ .
)\o/5 grldresoluuon - o ' ogkl . - _
| ' -0+t | — Exact Hankel Function|
~ Consider for example the hard-source excrtatlon of exc1t1ngr B T o -
a single H, field component at the center of a 2-D TE. grrd o 50.6 N o
We assume that the equivalent radius of the excited filamentary § o5 N
source is given by reg = f*h where b is the gnd-cell sizeand £ ,,| N S
f*is a decimal fraction that we call the effectrve source radrus 8 0 R
' - - =2 0.3 C PN -
A step-by-step process for determmmg f follows: e S
1) Run the FDTD simulation for a given grid resolutron W1th -
~ a unity excitation amplitude of the hard-sourced H.,. 1
2) Graph the FDTD- calculated sinusoidal steady state T U T |
~ values of H, versus radial distance from the source. > e a8
3) Apply a constant multrplymg factor C to the graphed . o
FDTD data to generate the best fit in the Ly norm sense B ) B
- relative to the analytrcal frequency-domarn Green S func— I ! B !
o tron _ _ o o % . 0.9l - .
~ 4) By our bas1c assumpt1on concemmg the effect1ve source' - 0’8_ S
~ radius of the exc1ted H component we determme f o | 7 Exact Hankel Function|
from th e foll OWI n g - _ I - ~07 , — — - Scaled FDTD Values
L P - Yo
G h __ jH(z) 5
- . . £04r
' Upon substrtutmg k, h and C 1nto (5) we obtam f * by §03 _
- using a table of Hankel functlon values generated by T
' MATLABTM S G 0.2
--IV.NUMERICAL RESULTS'-' P N
' o 5 10 15 20 = 25
. F1g 1 shows a comparison of the analyt1cal Green S funct1on ' ke " . ‘
- with both raw and scaled FDTD results for |H, (k'r)l along the - ©

Frg 2. Scatter dragram of |H (kr)| throughout the entire grrd for three grrd

. resolutrons (@) Ao / 5; (b) )\0 / 10; (c) Ao/ 20

multlplymg factor C, whrch by (5 ) results in two correspondmg

“values of f*. (In Fig. 2, we show for clarity only the scaled

upper envelope of the FDTD values. ) These two values bound

the range of f* observed for the particular grid resolution used.

‘For \og/5 resolutron [Flg 2(a)] there is a significant variation
of the FDTD-calculated |H,(kr)| values throughout the grid

wh1ch yrelds a large range of f " between 0. 149 and 0.247. As
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. TABLE 1

EFFECTWE FILAMENTARY SOURCE RADIUS, f* (FRACTION OF ONE SPACE o

CELL) FOR VARIOUS FDTD GRID RESOLUTIONS

o Resolutzon Rcmge 0 f f*
o © 0.149 — 0.247

$ os7-oxr
5§ 0200-0207
% 0206-0.209

the resolutlon 1mproves to )\0 / 10 [F1g 2(b)] the variation of
the FDTD values decreases. This narrows the range of f* to be-

tween 0.187 and 0.211. Reﬁmng the resolution further to Ag /20

- [Fig. 2(c)] causes the variation to markedly diminish, thereby_ |
o t1ghten1ng the range of f° * to between 0.200 and 0.207. Contin-

‘uing 1n this manner converges the spread of FDTD calculated

|H,(kr)| values to the Green’s function, y1eld1ng a converged B
value for f* of approx1matcly 0.21. Table I summarizes the con-
vergence properues of f * for gr1d resolut1ons between )\0 / 5and

Xo/40. ;
We see from Tablc I that Teff R
range of resolutrons We make the followrng additional obser-
vation from Fig. 2. Although a variation of FDTD values of
|H.(kr)| exists throughout the grid, for any given cut at a fixed
azimuth angle ¢ the agreement between the Green’s function
and the FDTD values 1S excellent for an appropnate ch01ce of

0. 2 grld cells over a wide
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C Whlle the coarse- gnd FDTD data are known to have s1gn1ﬁ-
cant phase-velocity errors due to numencal dispersion, the am-

‘plitude-distribution data show no evrdence of either d1ss1pat10n
“or incorrect fall-off W1th r. ' . . .

Note that the ﬂuctuatlons observed 1n the FDTD data seen in

B F1g 2 are due to the effectively noncircular shape of the source,
i.e., T is a function of ¢, and to the dependence of numer-
ical dispersion on ¢ [4]. As the resolution improves to \g/20,
however, the numerical dispersion is greatly reduccd and Teff

becomes nearly 1ndependcnt of ¢.

V CONCLUSION f

A ﬁlamcntary HARD source in a 2-D Yee grid has been
shown to have an effect1ve radius of approx1mately 0.2 grid

~cells for a wide range of commonly-used grid resolutions. The
‘nondissipative nature of the Yee algonthrn was indicated as

part of th1s study
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